Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers
Abstract
:1. Introduction
2. The Experiments
2.1. Materials and Instruments
2.2. Experimental Procedures
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bahrami, B.; Hojjat-Farsangi, M.; Mohammadi, H.; Anvari, E.; Ghalamfarsa, G.; Yousefi, M.; Jadidi-Niaragh, F. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 2017, 190, 64–83. [Google Scholar] [CrossRef]
- Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316. [Google Scholar] [CrossRef] [Green Version]
- Massoudinejada, M.; Rasoulzadehb, H.; Ghaderpooric, M. Magnetic chitosan nanocomposite: Fabrication, properties, and optimization for adsorptive removal of crystal violet from aqueous solutions. Carbohydr. Polym. 2019, 206, 844–853. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.N.; Muzzarelli, R.A.; Muzzarelli, C.; Sashiwa, H.; Domb, A.J. Chitosan chemistry and pharmaceutical perspectives. Chem. Rev. 2004, 104, 6017–6084. [Google Scholar] [CrossRef]
- Illum, L. Chitosan and its use as a pharmaceutical excipient. Pharm. Res. 1998, 15, 1326–1331. [Google Scholar] [CrossRef]
- Felt, O.; Buri, P.; Gurny, R. Chitosan: A unique polysaccharide for drug delivery. Drug Dev. Ind. Pharm. 1998, 24, 979–993. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.P.; Patel, R.R.; Patel, J.K. Chitosan mediated targeted drug delivery system: A review. J. Pharm. Pharm. Sci. 2010, 13, 536–557. [Google Scholar] [CrossRef]
- Virtanen, E.; Kolehmainen, E. Use of bile acids in pharmacological and supramolecular applications. Eur. J. Org. Chem. 2004, 16, 3385–3399. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, H.; Xu, G.; Yao, P. Liver-targeted delivery of insulin-loaded nanoparticles via enterohepatic circulation of bile acids. Drug Deliv. 2018, 25, 1224–1233. [Google Scholar] [CrossRef] [Green Version]
- Chae, S.Y.; Son, S.; Lee, M.; Jang, M.K.; Nah, J.W. Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier. J. Control Release 2005, 109, 330–344. [Google Scholar] [CrossRef]
- Ho, N.F.H. Utilizing bile acid carrier mechanisms to enhance liver and small intestine absorption. Ann. N. Y. Acad. Sci. 1987, 507, 315–329. [Google Scholar] [CrossRef]
- Dawson, P.A. Role of the intestinal bile acid transporters in bile acid and drug disposition. Handb. Exp. Pharmacol. 2011, 201, 169–203. [Google Scholar]
- Pasanphan, W.; Buettner, G.R.; Chirachanchai, S. Chitosan conjugated with deoxycholic acid and gallic acid: A novel biopolymer-based additive antioxidant for polyethylene. J. Appl. Poly. Sci. 2008, 109, 38–46. [Google Scholar] [CrossRef]
- Kim, K.; Kwon, S.; Park, J.H.; Chung, H.; Jeong, S.Y.; Kwon, I.C.; Kim, I.S. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan–deoxycholic acid conjugates. Biomacromolecules 2005, 6, 1154–1158. [Google Scholar] [CrossRef]
- Zhang, Z.; Cai, H.; Liu, Z.; Yao, P. Effective enhancement of hypoglycemic effect of insulin by liver-targeted nanoparticles containing cholic acid-modified chitosan derivative. Mol. Pharm. 2016, 13, 2433–2442. [Google Scholar] [CrossRef]
- Park, J.-K.; Kim, T.-H.; Nam, J.-P.; Park, S.C.; Park, Y.H.; Jang, M.-K.; Nah, J.-W. Bile acid conjugated chitosan oligosaccharide nanoparticles for paclitaxel carrier. Macromol. Res. 2014, 22, 310–317. [Google Scholar] [CrossRef]
- Roos, P.H.; Kolb-Bachofen, V.; Schlepper-Schäfer, J.; Monsigny, M.; Stockert, R.J.; Kolb, H. Two galactose-specific receptors in the liver with different function. FEBS Lett. 1983, 157, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Roggenbuck, D.; Mytilinaiou, M.G.; Lapin, S.V.; Reinhold, D.; Conrad, K. Asialoglycoprotein receptor (ASGPR): A peculiar target of liver-specific autoimmunity. Autoimmun. Highlights 2012, 3, 119–125. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.W.; Li, X.R.; Yang, Z.L.; Li, P.Z.; Wang, F.; Liu, Y. Novel polyion complex micelles for liver-targeted delivery of diammonium glycyrrhizinate: In vitro and in vivo characterization. J. Biomed. Mater. Res. 2009, 88A, 140–148. [Google Scholar] [CrossRef]
- Zhang, C.; Ping, Q.; Ding, Y. Synthesis and characterization of chitosan derivatives carrying galactose residues. J. Appl. Polym. Sci. 2005, 97, 2161–2167. [Google Scholar] [CrossRef]
- Zhao, R.; Li, T.; Zheng, G.; Jiang, K.; Fan, L.; Shao, J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials 2017, 143, 1–16. [Google Scholar] [CrossRef]
- Li, L.; Liang, N.; Wang, D.; Yan, P.; Kawashima, Y.; Cui, F. Amphiphilic polymeric micelles based on deoxycholic acid and folic acid modified chitosan for the delivery of paclitaxel. Int. J. Mol. Sci. 2018, 19, 3132. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Vara Prasad, C.V.N.S.; Ding, C.; Wang, B. Synthesis of carbohydrate conjugated 6A,6D-bifunctionalized β cyclodextrin derivatives as potential liver cancer drug carriers. Carbohydr. Polym. 2018, 181, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Gotink, K.J.; Verheul, H.M.W. Anti-angiogenic tyrosine kinase inhibitors: What is their mechanism of action? Angiogenesis 2010, 13, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.Y.; Chen, Z.; Chen, Y.J.; Lu, J.; Li, Y.; Wang, S.J.; Wu, G.L.; Qian, F. Improving oral bioavailability of Sorafenib by optimizing the “spring” and “parachute” based on molecular interaction mechanisms. Mol. Pharm. 2016, 13, 2599–2608. [Google Scholar] [CrossRef]
- Kim, D.W.; Talati, C.; Kim, R. Hepatocellular carcinoma (HCC): Beyond sorafenib—Chemotherapy. J. Gastrointest. Oncol. 2017, 8, 256–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.A.; Raza, A.; Ovais, M.; Sohail, M.F.; Ali, S. Current state and prospects of nano-delivery systems for sorafenib. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 1105–1115. [Google Scholar] [CrossRef]
- Cho, E.; Jung, S. Supramolecular complexation of carbohydrates for the bioavailability enhancement of poorly soluble drugs. Molecules 2015, 20, 19620–19646. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.H.; Ye, Q.F.; Miao, X.Y.; Liu, X.; Huang, S.Q.; Xiong, L.; Wen, Y.; Zhang, Z.J. Current status of sorafenib nanoparticle delivery systems in the treatment of hepatocellular carcinoma. Theranostics 2021, 11, 5464–5490. [Google Scholar] [CrossRef]
- Nelson, A.; Stoddart, J.F. Dynamic multivalent lactosides displayed on cyclodextrin beads dangling from polymer strings. Org. Lett. 2003, 5, 3783–3786. [Google Scholar] [CrossRef]
- Ashton, P.R.; Boyd, S.E.; Brown, C.L.; Nepogodiev, S.A.; Meijer, E.W.; Peerlings, H.W.I.; Stoddart, J.F. Synthesis of glycodendrimers by modification of poly (propylene imine) dendrimers. Chem. Eur. J. 1997, 3, 974–984. [Google Scholar] [CrossRef]
- Park, J.H.; Cho, Y.W.; Chung, H.; Kwon, I.C.; Jeong, S.Y. Synthesis and Characterization of Sugar-Bearing Chitosan Derivatives: Aqueous Solubility and Biodegradability. Biomacromolecules 2003, 4, 1087–1091. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Chou, C.; Li, C. Preparation, water solubility and rheological property of the N-alkylated mono or disaccharide chitosan derivatives. Food Res. Int. 2002, 35, 707–713. [Google Scholar] [CrossRef]
Samples | Elemental Analysis (%) | Degree of Substitutions (%) | ||||
---|---|---|---|---|---|---|
C | N | S | Cholic Acid | Galactosyl Moiety | Lactosyl Moiety | |
1 | 39.15 | 6.03 | 5.72 | |||
2 | 38.05 | 5.67 | 3.42 | 6.68 | 26.38 | |
3 | 38.29 | 6.23 | 1.66 | 3.97 | 11.65 |
Samples | Critical Aggregation Concentration | Diameter (nm) | Zeta Potential (mV) |
---|---|---|---|
1 | 1 mg/mL | 219.1 | 14.1 |
2 | 1 mg/mL | 571.5 | 38.3 |
3 | 1 mg/mL | 474.7 | 34.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, Y.; Cui, W.; Vara Prasad, C.V.N.S.; Wang, B. Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers. Polymers 2021, 13, 2939. https://doi.org/10.3390/polym13172939
Ding Y, Cui W, Vara Prasad CVNS, Wang B. Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers. Polymers. 2021; 13(17):2939. https://doi.org/10.3390/polym13172939
Chicago/Turabian StyleDing, Yili, Wutong Cui, Chamakura V. N. S. Vara Prasad, and Bingyun Wang. 2021. "Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers" Polymers 13, no. 17: 2939. https://doi.org/10.3390/polym13172939
APA StyleDing, Y., Cui, W., Vara Prasad, C. V. N. S., & Wang, B. (2021). Design and Synthesis of Lactose, Galactose and Cholic Acid Related Dual Conjugated Chitosan Derivatives as Potential Anti Liver Cancer Drug Carriers. Polymers, 13(17), 2939. https://doi.org/10.3390/polym13172939