Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and Their Pd(OAc)2 Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of poly(EDMA) and poly(EDMA-co-MMA)
2.3. Loading of the Polymeric Materials with Pd(OAc)2
2.4. Measurements
3. Results and Discussion
3.1. Thermal Gravimetric Analysis
3.2. AC Electrical Properties
3.2.1. Dielectric Permittivity
3.2.2. AC Electrical Conductivity
3.2.3. Conduction Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chanda, M.; Roy, S.K. Industrial Polymers, Specialty Polymers, and Their Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Aguilar, M.R.; Román, J.S. Smart Polymers and Their Applications; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Huang, Y.; Ellingford, C.; Bowen, C.; McNally, T.; Wu, D.; Wan, C. Tailoring the electrical and thermal conductivity of multi-component and multi-phase polymer composites. Int. Mater. Rev. 2020, 65, 129–163. [Google Scholar] [CrossRef]
- Bloor, D.; Donnelly, K.; Hands, P.J.; Laughlin, P.; Lussey, D. A metal—Polymer composite with unusual properties. J. Phys. D Appl. Phys. 2005, 38, 2851. [Google Scholar] [CrossRef]
- Coetzee, D.; Venkataraman, M.; Militky, J.; Petru, M. Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 2020, 12, 742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, Q. The influence of particle shape and size on electric conductivity of metal—Polymer composites. Eur. Polym. J. 2004, 40, 323–327. [Google Scholar] [CrossRef]
- Bhattacharya, S.K. Metal Filled Polymers; CRC Press: Boca Raton, FL, USA, 1986; Volume 11. [Google Scholar]
- Carmona, F. Conducting filled polymers. Phys. A Stat. Mech. Its Appl. 1989, 157, 461–469. [Google Scholar] [CrossRef]
- Viswanathan, K.; Ravi, T.; Thirusakthimurugan, P.; Ramachandran, D.; Prasath, S.S.; Shanboughe, K.N.; Suma, M.N. Carbon nanotube embedded smart polymer composite for strain and Piezo-resistive data transducer application. Mater. Today Proc. 2018, 5, 17247–17252. [Google Scholar] [CrossRef]
- Peng, C.; Zhang, S.; Jewell, D.; Chen, G.Z. Carbon nanotube and conducting polymer composites for supercapacitors. Prog. Nat. Sci. 2008, 18, 777–788. [Google Scholar] [CrossRef]
- Dubal, D.P.; Chodankar, N.R.; Kim, D.-H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129. [Google Scholar] [CrossRef]
- Chen, C.; Tang, Y.; Ye, Y.S.; Xue, Z.; Xue, Y.; Xie, X.; Mai, Y.W. High-performance epoxy/silica coated silver nanowire composites as underfill material for electronic packaging. Compos. Sci. Technol. 2014, 105, 80–85. [Google Scholar] [CrossRef]
- Yeetsorn, R.; Fowler, M. Resistance Measurement of conductive thermoplastic bipolar plates for polymer Electrolyte Membrane fuel Cells. Appl. Sci. Eng. Prog. 2014, 7, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ushakov, N.M.; Kosobudsky, I.D. About the Features of Electric Conductivity Models for Polymer Composite Nanomaterials Based on Cu (Cu2O)-LDPE. Semiconductors 2020, 54, 1692–1694. [Google Scholar] [CrossRef]
- Misiura, A.I.; Mamunya, Y.P.; Kulish, M.P. Metal-filled epoxy composites: Mechanical properties and electrical/thermal conductivity. J. Macromol. Sci. Part B 2020, 59, 121–136. [Google Scholar] [CrossRef]
- Lei, X.; Zhang, X.; Song, A.; Gong, S.; Wang, Y.; Luo, L.; Li, T.; Zhu, Z.; Li, Z. Investigation of electrical conductivity and electromagnetic interference shielding performance of Au@ CNT/sodium alginate/polydimethylsiloxane flexible composite. Compos. Part A Appl. Sci. Manuf. 2020, 130, 105762. [Google Scholar] [CrossRef]
- El-Arnaouty, M.B.; Eid, M.; Ghaffar, A.M.A.; Abd El-Wahab, S.Y. Electrical Conductivity of Chitosan/Dimethyl Amino Ethyl Methacrylate/Metal Composite Prepared by Gamma Radiation. Polym. Sci. Ser. A 2020, 62, 714–721. [Google Scholar] [CrossRef]
- Ismail, A.M.; El-Newehy, M.H.; El-Naggar, M.E.; Moydeen, A.M.; Menazea, A.A. Enhancment the electrical conductivity of the synthesized polyvinylidene fluoride/polyvinyl chloride composite doped with palladium nanoparticles via laser ablation. J. Mater. Res. Technol. 2020, 9, 11178–11188. [Google Scholar] [CrossRef]
- Li, Y.-A.; Tai, N.-H.; Chen, S.-K.; Tsai, T.-Y. Enhancing the electrical conductivity of carbon-nanotube-based transparent conductive films using functionalized few-walled carbon nanotubes decorated with palladium nanoparticles as fillers. ACS Nano 2011, 5, 6500–6506. [Google Scholar] [CrossRef]
- Hsiao, M.-C.; Liao, S.-H.; Yen, M.-Y.; Ma, C.-C.M.; Lee, S.-J.; Lin, Y.-F.; Hung, C.-H. Electrical and thermal conductivities of novel metal mesh hybrid polymer composite bipolar plates for proton exchange membrane fuel cells. Int. Conf. Fuel Cell Sci. Eng. Technol. 2009, 48814, 871–878. [Google Scholar]
- Zenasni, M.; Quintero-Jaime, A.; Benyoucef, A.; Benghalem, A. Synthesis and characterization of polymer/V2O5 composites based on poly (2-aminodiphenylamine). Polym. Compos. 2021, 42, 1064–1074. [Google Scholar] [CrossRef]
- Nur, H.; Rismana, E.; Endud, S. Dielectric enhancement in cadmium sulfide—Poly (methacrylic acid-ethylene glycol dimethacrylic acid) nanocomposite through interfacial interaction. J. Compos. Mater. 2011, 45, 2023–2030. [Google Scholar] [CrossRef]
- Reddy, K.R.; Lee, K.-P.; Gopalan, A.I.; Kim, M.S.; Showkat, A.M.; Nho, Y.C. Synthesis of metal (Fe or Pd)/alloy (Fe–Pd)-nanoparticles-embedded multiwall carbon nanotube/sulfonated polyaniline composites by γ irradiation. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 3355–3364. [Google Scholar] [CrossRef]
- Diab, M.A.; El-Ghamaz, N.A.; Mohamed, F.S.; El-Bayoumy, E.M. Conducting polymers VIII: Optical and electrical conductivity of poly (bis-m-phenylenediaminosulphoxide). Polym. Test. 2017, 63, 440–447. [Google Scholar] [CrossRef]
- Elbayoumy, E.; Wang, Y.; Rahman, J.; Trombini, C.; Bando, M.; Song, Z.; Diab, M.A.; Mohamed, F.S.; Naga, N.; Nakano, T. Pd Nanoparticles-Loaded Vinyl Polymer Gels: Preparation, Structure and Catalysis. Catalysts 2021, 11, 137. [Google Scholar] [CrossRef]
- Indira, V.; Parameswaran, G. Thermal decomposition kinetics of salicylideneaminofluorene complexes of Cobalt (II) and Nickel (II). Thermochim. Acta 1986, 101, 145–154. [Google Scholar] [CrossRef]
- Zhou, L.; Wang, Y.; Huang, Q.; Cai, J. Thermogravimetric characteristics and kinetic of plastic and biomass blends co-pyrolysis. Fuel Process. Technol. 2006, 87, 963–969. [Google Scholar] [CrossRef]
- El-Ghamaz, N.A.; Ahmed, T.S.; Salama, D.A. Optical, dielectrical properties and conduction mechanism of copolymer (N, N′-bissulphinyl-m-benzenediamine-p-phenylenediamine). Eur. Polym. J. 2017, 93, 8–20. [Google Scholar] [CrossRef]
- Long, A.R. Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 1982, 31, 553–637. [Google Scholar] [CrossRef]
- Elliott, S.R. Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 1987, 36, 135–217. [Google Scholar] [CrossRef]
- Avakian, P.; Starkweathe, H.W., Jr.; Kampert, W.G. Dielectric analysis of polymers. In Handbook of Thermal Analysis and Calorimetry. Applications to Polymers and Plastics; Cheng, S.Z.D., Ed.; Elsevier Sci. BV: Amsterdam, The Netherlands, 2002; 4.3; pp. 147–165. [Google Scholar]
- El-Ghamaz, N.A.; El-Sonbati, A.Z.; El-Shahat, O. Conducting polymers IX: Optical properties, dielectric constants and conduction mechanism of poly (N, N′-Bis-salphinyl 2, 6-diaminipyridine-3, 5-diamini-1, 2, 4-trizole). J. Mol. Liq. 2018, 261, 503–512. [Google Scholar] [CrossRef]
- Zoromba, M.S.; El-Ghamaz, N.A.; El-Sonbati, A.Z.; El-Bindary, A.A.; Diab, M.A.; El-Shahat, O. Conducting polymers. VII. Effect of doping with iodine on the dielectrical and electrical conduction properties of polyaniline. Synth. React. Inorg. Met. Nano Metal Chem. 2016, 46, 1179–1188. [Google Scholar] [CrossRef]
- Diab, M.A.; El-Sonbati, A.Z.; El-Ghamaz, N.A.; Morgan, S.M.; El-Shahat, O. Conducting polymers X: Dielectric constant, conduction mechanism and correlation between theoretical parameters and electrical conductivity of poly (N, N′-bis-sulphinyl p-phenylenediamine-2, 6-diaminipyridine) and poly (N, N′-bis-sulphinyl p-phenylenediam. Eur. Polym. J. 2019, 115, 268–281. [Google Scholar] [CrossRef]
- El-Ghamaz, N.A.; El-Bindary, A.A.; Diab, M.A.; El-Sonbati, A.Z.; Nozha, S.G. Dielectrical properties and conduction mechanism of quinoline Schiff base and its complexes. Res. Chem. Intermed. 2016, 42, 2501–2523. [Google Scholar] [CrossRef]
- El-Ghamaz, N.A.; El-Bindary, A.A.; El-Sonbati, A.Z.; Beshry, N.M. Geometrical structures, thermal, optical and electrical properties of azo quinoline derivatives. J. Mol. Liq. 2015, 211, 628–639. [Google Scholar] [CrossRef]
- El-Ghamaz, N.A.; El-Sonbati, A.Z.; Diab, M.A.; El-Bindary, A.A.; Mohamed, G.G.; Morgan, S.M. Correlation between ionic radii of metal azodye complexes and electrical conductivity. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 147, 200–211. [Google Scholar] [CrossRef]
- Zoromba, M.S.; El-Ghamaz, N.A.; Alghool, S. Effect of doping with nickel ions on the electrical properties of poly (aniline-co-o-anthranilic acid) and doped copolymer as precursor of NiO nanoparticles. J. Inorg. Organomet. Polym. Mater. 2015, 25, 955–963. [Google Scholar] [CrossRef]
- El-Ghamaz, N.A.; Diab, M.A.; Zoromba, M.S.; El-Sonbati, A.Z.; El-Shahat, O. Conducting polymers. VI. Effect of doping with iodine on the dielectrical and electrical conduction properties of polyacrylonitrile. Solid State Sci. 2013, 24, 140–146. [Google Scholar] [CrossRef]
- El-Ghamaz, N.A.; Shoair, A.F.; El-Shobaky, A.R.; Abo-Yassin, H.R. Optical and dielectrical properties of 2-hydroxy-1-naphthylideneaniline and its derivatives. Phys. B Condens. Matter 2016, 495, 130–137. [Google Scholar] [CrossRef]
Polymer | E* a (KJ mol−1) | A′a (S−1) | ∆S* b J mol−1 K−1 | ∆H* b (KJ mol−1) | ∆G* b (KJ mol−1) |
---|---|---|---|---|---|
Poly(EDMA) | 58.55 | 66.13 | −214.88 | 54.14 | 168.02 |
Poly(EDMA-co-MMA) | 54.81 | 38.69 | −218.34 | 50.90 | 153.52 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elbayoumy, E.; El-Ghamaz, N.A.; Mohamed, F.S.; Diab, M.A.; Nakano, T. Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and Their Pd(OAc)2 Composites. Polymers 2021, 13, 3005. https://doi.org/10.3390/polym13173005
Elbayoumy E, El-Ghamaz NA, Mohamed FS, Diab MA, Nakano T. Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and Their Pd(OAc)2 Composites. Polymers. 2021; 13(17):3005. https://doi.org/10.3390/polym13173005
Chicago/Turabian StyleElbayoumy, Elsayed, Nasser A. El-Ghamaz, Farid Sh. Mohamed, Mostafa A. Diab, and Tamaki Nakano. 2021. "Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and Their Pd(OAc)2 Composites" Polymers 13, no. 17: 3005. https://doi.org/10.3390/polym13173005
APA StyleElbayoumy, E., El-Ghamaz, N. A., Mohamed, F. S., Diab, M. A., & Nakano, T. (2021). Dielectric Permittivity, AC Electrical Conductivity and Conduction Mechanism of High Crosslinked-Vinyl Polymers and Their Pd(OAc)2 Composites. Polymers, 13(17), 3005. https://doi.org/10.3390/polym13173005