Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Ag Particles
2.3. Fabrication of Si–Ag Thin Films
2.4. Characterisation of Si–Ag Thin Films
2.4.1. Film Thickness Measurement
2.4.2. Observation of Morphology, Elemental Composition, and Ag Diameter
2.4.3. Electrical Conductivity Measurement
2.4.4. Mechanical Characteristics
2.5. Antibacterial Function
3. Results and Discussion
3.1. Fabrication of Si–Ag Thin Films
3.2. Electrical Conductivity of Si–Ag Thin Films
3.3. Crystallinity-Structural Study
3.4. Morphological Analysis of Si–Ag Thin Films
3.5. Mechanical Properties of Si–Ag Thin Films
3.6. Antibacterial Activities of Si–Ag Thin Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furno, F.; Morley, K.S.; Wong, B.; Sharp, B.L.; Arnold, P.L.; Howdle, S.M.; Bayston, R.; Brown, P.D.; Winship, P.D.; Reid, H.J. Silver nanoparticles and polymeric medical devices: A new approach to prevention of infection? J. Antimicrob. Chem. 2004, 54, 1019–1024. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865. [Google Scholar] [CrossRef] [Green Version]
- Murphy, M.; Ting, K.; Zhang, X.; Soo, C.; Zheng, Z. Current development of silver nanoparticle preparation, investigation, and application in the field of medicine. J. Nanomater. 2015, 2015, 12. [Google Scholar] [CrossRef] [Green Version]
- Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomed. 2020, 15, 2555–2562. [Google Scholar] [CrossRef] [Green Version]
- Bruna, T.; Maldonado-Bravo, F.; Jara, P.; Caro, N. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021, 22, 7202. [Google Scholar] [CrossRef]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018, 11, 1645. [Google Scholar] [CrossRef] [Green Version]
- Uygur, B.; Craig, G.; Mason, M.D.; Ng, A.K. Cytotoxicity and genotoxicity of silver nanomaterials. NSTI-Nanotech 2019, 2, 383–386. [Google Scholar]
- Korani, M.; Ghazizadeh, E.; Korani, S.; Hami, Z.; Mohammadi-Bardbori, A. Effects of silver nanoparticles on human health. Eur. J. Nanomed. 2015, 7, 51–62. [Google Scholar] [CrossRef]
- Dakal, T.C.; Kumar, A.; Majumdar, R.S.; Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front. Microbiol. 2016, 7, 1831. [Google Scholar] [CrossRef] [Green Version]
- Baldino, L.; Aragón, J.; Mendoza, G.; Irusta, S.; Cardea, S.; Reverchon, E. Production, characterization and testing of antibacterial PVA membranes loaded with HA-Ag3PO4 nanoparticles, produced by SC-CO2 phase inversion. J. Chem. Tech. Biotech. 2019, 94, 98–108. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Maruthapandi, M.; Saravanan, A.; Natan, M.; Jacobi, G.; Banin, E.; Gedanken, A. Carbon dots for heavy-metal sensing, pH-sensitive cargo delivery, and antibacterial applications. ACS Appl. Nano Mater. 2020, 3, 11777–11790. [Google Scholar] [CrossRef]
- Sim, W.; Barnard, R.T.; Blaskovich, M.A.T.; Ziora, Z.M. Antimicrobial silver in medicinal and consumer applications: A patent review of the past decade (2007–2017). Antibiotics 2018, 7, 93. [Google Scholar] [CrossRef] [Green Version]
- Firdhouse, M.J.; Lalitha, P. Biosynthesis of silver nanoparticles and its applications. J. Nanobiotechnol. 2015, 2015, 829526. [Google Scholar] [CrossRef] [Green Version]
- Slavin, Y.N.; Asnis, J.; Häfeli, U.O.; Bach, H. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 2017, 15, 65. [Google Scholar] [CrossRef]
- Gabriela, Á.M.; Gabriela, M.D.O.V.; Luis, A.M.; Reinaldo, P.R.; Michael, H.M.; Rodolfo, G.P.; Roberto, V.B.J. Biosynthesis of silver nanoparticles using mint leaf extract (Mentha piperita) and their antibacterial activity. Adv. Sci. Eng. Med. 2017, 9, 914–923. [Google Scholar] [CrossRef]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of silver nanoparticle release, transformation and toxicity: A critical review of current knowledge and recommendations for future studies and applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [Green Version]
- Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res. 2018, 9, 1–16. [Google Scholar] [CrossRef]
- Yu, L.; Zhou, W.; Li, Y.; Zhou, Q.; Xu, H.; Gao, B.; Wang, Z. Antibacterial thin-film nanocomposite membranes incorporated with graphene oxide quantum dot-mediated silver nanoparticles for reverse osmosis application. ACS Sustain. Chem. Eng. 2019, 7, 8724–8734. [Google Scholar] [CrossRef]
- You, C.; Li, Q.; Wang, X.; Wu, P.; Ho, J.K.; Jin, R.; Zhang, L.; Shao, H.; Han, C. Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci. Rep. 2017, 7, 10489. [Google Scholar] [CrossRef] [Green Version]
- Pastar, I.; Stojadinovic, O.; Yin, N.C.; Ramirez, H.; Nusbaum, A.G.; Sawaya, A.; Patel, S.B.; Khalid, L.; Isseroff, R.R.; Tomic-Canic, M. Epithelialization in wound healing: A comprehensive review. Adv. Wound Care 2014, 3, 445–464. [Google Scholar] [CrossRef] [Green Version]
- Dong, Y.; Zhu, H.; Shen, Y.; Zhang, W.; Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS ONE 2019, 14, e0222322. [Google Scholar] [CrossRef] [Green Version]
- Saravia, S.G.G.D.; Rastelli, S.E.; Angulo-Pineda, C.; Palza, H.; Viera, M.R. Anti-adhesion and antibacterial activity of silver nanoparticles and graphene oxide-silver nanoparticle composites. Matéria 2020, 25, 12771. [Google Scholar] [CrossRef]
- Wahab, M.A.; Luming, L.; Matin, M.A.; Karim, M.R.; Aijaz, M.O.; Alharbi, H.F.; Abdala, A.; Haque, R. Silver micro-nanoparticle-based nanoarchitectures: Synthesis routes, biomedical applications, and mechanisms of action. Polymers 2021, 13, 2870. [Google Scholar] [CrossRef] [PubMed]
- Dawadi, S.; Katuwal, S.; Gupta, A.; Lamichhane, U.; Thapa, R.; Jaisi, S.; Lamichhane, G.; Bhattarai, D.P.; Parajuli, N. Current research on silver nanoparticles: Synthesis, characterization, and applications. J. Nanomater. 2021, 2021, 6687290. [Google Scholar] [CrossRef]
- Haider, A.; Haider, S.; Kang, I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018, 11, 1165–1188. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V.; Zolfaghari, B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014, 9, 385. [Google Scholar]
- Nzekwe, I.T.; Agubata, C.O.; Umeyor, C.E.; Okoye, I.T.; Ogwueleka, C.B. Synthesis of silver nanoparticles by sodium borohydride reduction method: Optimization of conditions for high anti-staphylococcal activity. Br. J. Pharm. Res. 2016, 14, 1–9. [Google Scholar] [CrossRef]
- Patil, R.S.; Kokate, M.R.; Salvi, P.P.; Kolekar, S.S. A novel one step synthesis of silver nanoparticles using room temperature ionic liquid and their biocidal activity. Comptes Rendus Chim. 2011, 14, 1122–1127. [Google Scholar] [CrossRef]
- Santos, T.S.; Silva, T.M.; Cardoso, J.C.; de Albuquerque-Júnior, R.L.; Zielinska, A.; Souto, E.B.; Severino, P.; Mendonça, M.D.C. Biosynthesis of silver nanoparticles mediated by entomopathogenic fungi: Antimicrobial resistance, nanopesticides, and toxicity. Antibiotics 2021, 10, 852. [Google Scholar] [CrossRef]
- Ullah, N.; Yasin, S.; Abro, Z.; Liu, L.; Wei, Q. Mechanically robust and antimicrobial cotton fibers loaded with silver nanoparticles: Synthesized via Chinese holly plant leaves. Int. J. Text. Sci. 2014, 3, 1–5. [Google Scholar]
- Yu, L.; Memon, H.; Bhavsar, P.; Yasin, S. Fabrication of alginate fibers loaded with silver nanoparticles biosynthesized via Dolcetto grape leaves (Vitis vinifera cv.): Morphological, antimicrobial characterization and in vitro release studies. Mater. Focus 2016, 5, 216–221. [Google Scholar] [CrossRef]
- Krithiga, N.; Rajalakshmi, A.; Jayachitra, A. Green synthesis of silver nanoparticles using leaf extracts of Clitoria ternatea and Solanum nigrum and study of its antibacterial effect against common nosocomial pathogens. J. Nanosci. 2015, 2015, 928204. [Google Scholar] [CrossRef] [Green Version]
- Javed, B.; Ikram, M.; Farooq, F.; Sultana, T.; Mashwani, Z.U.R.; Raja, N.I. Biogenesis of silver nanoparticles to treat cancer, diabetes, and microbial infections: A mechanistic overview. Appl. Microbiol. Biotech. 2021, 105, 2261–2275. [Google Scholar] [CrossRef]
- Nathanael, A.J.; Oh, T.H. Biopolymer coatings for biomedical applications. Polymers 2020, 12, 3061. [Google Scholar] [CrossRef]
- Xu, J.C.; Fu, Y.; Tsai, Y.L.; Wong, C.W.; Hsu, S.H. Thermoresponsive and conductive chitosan-polyurethane biocompatible thin films with potential coating application. Polymers 2021, 13, 326. [Google Scholar]
- Al-Dharrab, A.A.; Tayel, S.B.; Abodaya, M.H. The effect of different storage conditions on the physical properties of pigmented medical grade I silicone maxillofacial material. Int. Sch. Res. Not. 2013, 2013, 582051. [Google Scholar] [CrossRef]
- Shao, Y.; Brook, M.A. Structured metal films on silicone elastomers. J. Mater. Chem. 2010, 20, 8548–8556. [Google Scholar] [CrossRef]
- Okoshi, M.; Kuramatsu, M.; Inoue, N. Laser ablation of silicone rubber for fabricating SiO2 thin films. Jpn. J. Appl. Phys. 2001, 40, 41. [Google Scholar] [CrossRef]
- Al-Qahtani, M.; Safan, A.; Jassim, G.; Abadla, S. Efficacy of anti-microbial catheters in preventing catheter associated urinary tract infections in hospitalized patients: A review on recent updates. J. Infect. Pub. Health 2019, 12, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, Y.; Zhang, K.; Sasaki, O.; Tomita, M.; Rival, D.; Galipon, J. Manufacturing of biomimetic silicone rubber films for experimental fluid mechanics: 3D printed shark skin molds. J. Electrochem. Soc. 2019, 166, 3302. [Google Scholar] [CrossRef]
- Moreira, J.; Vale, A.C.; Alves, N.M. Spin-coated freestanding films for biomedical applications. J. Mater. Chem. B 2021, 9, 3778–3799. [Google Scholar] [CrossRef]
- Wortmann, M.; Frese, N.; Brikmann, J.; Ehrmann, A.; Moritzer, E.; Hüsgen, B. Silicone mold accuracy in polyurethane vacuum casting. Macromol. Symp. 2021, 395, 2000242. [Google Scholar] [CrossRef]
- Boyadzhieva, S.; Sorg, K.; Danner, M.; Fischer, S.C.; Hensel, R.; Schick, B.; Wenzel, G.; Arzt, E.; Kruttwig, K. A self-adhesive elastomeric wound scaffold for sensitive adhesion to tissue. Polymers 2019, 11, 942. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.A.; Baig, F.K.; Mehboob, R. Nosocomial infections: Epidemiology, prevention, control and surveillance. Asian Pac. J. Trop. Biomed. 2017, 7, 478–482. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, K.H.; Chen, W.; Yu, Y.; Feng, S.F. Epidemiology and risk factors for nosocomial infection in the respiratory intensive care unit of a teaching hospital in China: A prospective surveillance during 2013 and 2015. BMC Infect. Dis. 2019, 19, 145. [Google Scholar] [CrossRef] [Green Version]
- Kaoutar, B.; Joly, C.; L’Hériteau, F.; Barbut, F.; Robert, J.; Denis, M.; Espinasse, F.; Merrer, J.; Doit, C.; Costa, Y.; et al. Nosocomial infections and hospital mortality: A multicentre epidemiological study. J. Hosp. Infect. 2004, 58, 268–275. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, F.; Abolghasemi, S.; Parhizgari, N.; Moradpour, F. Effect of silver nanoparticles on common bacteria in hospital surfaces. Jundishapur J. Microbiol. 2013, 6, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Roy, A.; Srivastava, S.K.; Shrivastava, S.L.; Mandal, A.K. Hierarchical assembly of nanodimensional silver-silver oxide physical gels controlling nosocomial infections. ACS Omega 2020, 5, 32617–32631. [Google Scholar] [CrossRef]
- Dellinger, E.P. Prevention of hospital-acquired infections. Surg. Infect. 2016, 17, 422–426. [Google Scholar] [CrossRef]
- Khan, H.A.; Ahmad, A.; Mehboob, R. Nosocomial infections and their control strategies. Asian Pac. J. Trop. Biomed. 2015, 5, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Kamurai, B.; Mombeshora, M.; Mukanganyama, S. Repurposing of drugs for antibacterial activities on selected ESKAPE bacteria staphylococcus aureus and pseudomonas aeruginosa. Int. J. Microbiol. 2020, 2020, 8885338. [Google Scholar] [CrossRef]
- Kamaruzzaman, N.F.; Tan, L.P.; Hamdan, R.H.; Choong, S.S.; Wong, W.K.; Gibson, A.J.; Chivu, A.; Pina, M.D.F. Antimicrobial polymers: The potential replacement of existing antibiotics? Int. J. Mol. Sci. 2019, 20, 2747. [Google Scholar] [CrossRef] [Green Version]
- Ishida, T. Antibacterial mechanism of Ag+ ions for bacteriolyses of bacterial cell walls via peptidoglycan autolysins, and DNA damages. MOJ Toxicol. 2018, 4, 345–350. [Google Scholar] [CrossRef] [Green Version]
- Kumari, R.; Rana, N. Particle size and shape analysis using Imagej with customized tools for segmentation of particles. Int. J. Eng. Res. 2015, 4, 23–28. [Google Scholar]
- Igathinathane, C.; Pordesimo, L.O.; Columbus, E.P.; Batchelor, W.D.; Methuku, S.R. Shape identification and particles size distribution from basic shape parameters using ImageJ. Comput. Electron. Agric. 2008, 63, 168–182. [Google Scholar] [CrossRef]
- Kumara, G.H.A.J.J.; Hayano, K.; Ogiwara, K. Image analysis techniques on evaluation of particle size distribution of gravel. Int. J. Geomate 2012, 3, 290–297. [Google Scholar] [CrossRef]
- Aizamddin, M.F.; Mahat, M.M.; Nawawi, M.A. Morphological, structural and electrochemical studies of conductive polyaniline coated polyester fabrics. Proceed. Int. Exc. Innov. Conf. Eng. Sci. 2019, 5, 53–57. [Google Scholar]
- Aizamddin, M.F.; Roslan, N.C.; Kamarudin, M.A.; Omar, S.N.I.; Safian, M.F.; Halim, M.I.A.; Mahat, M.M. Study of conductivity and thermal properties of polyaniline doped with p-toluene sulfonic acid. Malays. J. Anal. Sci. 2020, 24, 413–421. [Google Scholar]
- Roslan, N.C.; Aizamddin, M.F.; Omar, S.N.I.; Jani, N.A.; Halim, M.I.A.; Ariffin, Z.Z.; Mahat, M.M. Morphological and conductivity studies of polyaniline fabric doped phosphoric acid. Malays. J. Anal. Sci. 2020, 24, 698–706. [Google Scholar]
- Mahat, M.M.; Aizamddin, M.F.; Roslan, N.C.; Kamarudin, M.A.; Omar, S.N.I.; Halim, M.I.A.; Mazo, M.M. Conductivity, morphology and thermal studies of polyaniline fabrics. Aust. J. Mech. Eng. 2020, 9, 137–150. [Google Scholar]
- Omar, S.N.I.; Ariffin, Z.Z.; Zakaria, A.; Safian, M.F.; Abd Halim, M.I.; Ramli, R.; Sofian, Z.M.; Zulkifli, M.F.; Aizamddin, M.F.; Mahat, M.M. Electrically conductive fabric coated with polyaniline: Physicochemical characterisation and antibacterial assessment. Emergent Mater. 2020, 2020, 469–477. [Google Scholar] [CrossRef]
- Kiruba, D.S.; Mahalakshmi, N.; Sandhiya, J.; Kasi, N.; Muthusamy, S. Rapid synthesis of Ag nanoparticles using Henna extract for the fabrication of Photoabsorption Enhanced Dye Sensitized Solar Cell (PE-DSSC). Adv. Mater. Res. 2013, 678, 349–360. [Google Scholar] [CrossRef]
- Vanaja, M.; Gnanajobitha, G.; Paulkumar, K.; Rajeshkumar, S.; Malarkodi, C.; Annadurai, G. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: Influence of physicochemical factors. J. Nanostruc. Chem. 2013, 3, 17. [Google Scholar] [CrossRef] [Green Version]
- Arasu, T. Stable silver nanoparticle synthesizing methods and its applications. J. Biosci. Res. 2010, 1, 259–270. [Google Scholar]
- Hassanien, A.S.; Khatoon, U.T. Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Phys. B Condens. Matter 2018, 554, 21–30. [Google Scholar] [CrossRef]
- Saeb, A.T.M.; Alshammari, A.S.; Al-Brahim, H.; Al-Rubeaan, K.A. Production of silver nanoparticles with strong and stable antimicrobial activity against highly pathogenic and multidrug-resistant bacteria. Sci. World J. 2014, 2014, 704708. [Google Scholar] [CrossRef]
- Ganguly, S.; Mondal, S.; Das, P.; Bhawal, P.; Kanti, D.T.; Bose, M.; Choudhary, S.; Gangopadhyay, S.; Das, A.K.; Das, N.C. Natural saponin stabilized nano-catalyst as efficient dye-degradation catalyst. Nano-Struct. Nano-Objects 2018, 16, 86–95. [Google Scholar] [CrossRef]
- Thanh, N.T.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.C.; Chen, W.M.; Chen, C.Y.; Xiong, S.X.; Yu, A.B. Role of temperature in the growth of silver nanoparticles through a synergetic reduction approach. Nanoscale Res. Lett. 2011, 6, 32. [Google Scholar] [CrossRef] [Green Version]
- Eslamian, M. Inorganic and organic solution-processed thin film devices. Nano-Micro Lett. 2017, 9, 3. [Google Scholar] [CrossRef] [Green Version]
- Arnaud, D.; Pandey, R.K.; Miyajima, S.; Nagamatsu, S.; Prakash, R.; Takashima, W.; Hayase, S.; Kaneto, K. Fabrication of large-scale drop-cast films of π-conjugated polymers with floating-film transfer method. Trans. Mater. Res. Soc. Jpn. 2013, 38, 305–308. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Eilers, H. From silver nanoparticles to thin films: Evolution of microstructure and electrical conduction on glass substrates. J. Phys. Chem. Solids 2009, 70, 459–465. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, A.; Mashak, A. Review on rubbers in medicine: Natural, silicone and polyurethane rubbers. Plast. Rubber Compos. 2013, 42, 223–230. [Google Scholar] [CrossRef]
- Mustafa, F.; Razwan, M.; Shabbir, S. Microstructure and resistivity analysis of silver nanoparticle-based crystalline conductive films synthesized using PEG surfactant. Processes 2019, 7, 245. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef]
- Golrokhi, Z.; Marshall, P.A.; Romani, S.; Rushworth, S.; Chalker, P.R.; Potter, R.J. The influence of tertiary butyl hydrazine as a co-reactant on the atomic layer deposition of silver. Appl. Surf. Sci. 2017, 399, 123–131. [Google Scholar] [CrossRef]
- Mohan, D.G.; Gopi, S. Induction assisted friction stir welding: A review. Aust. J. Mech. Eng. 2020, 18, 119–123. [Google Scholar] [CrossRef]
- Filoti, D.I.; Bedell, A.R.; Harper, J.M. Synergistic Ag (111) and Cu (111) texture evolution in phase-segregated Cu 1− x Ag x magnetron sputtered composite thin films. J. Vac. Sci. Tech. A Vac. Surf. Films 2010, 28, 838–841. [Google Scholar] [CrossRef]
- Kora, A.J.; Rastogi, L. Enhancement of antibacterial activity of capped silver nanoparticles in combination with antibiotics, on model gram-negative and gram-positive bacteria. Bioinorg. Chem. Appl. 2013, 2013, 871097. [Google Scholar] [CrossRef] [PubMed]
- Ziabka, M.; Dziadek, M. Long-Lasting examinations of surface and structural properties of medical polypropylene modified with silver nanoparticles. Polymers 2019, 11, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coetzee, D.; Venkataraman, M.; Militky, J.; Petru, M. Influence of nanoparticles on thermal and electrical conductivity of composites. Polymers 2020, 12, 742. [Google Scholar] [CrossRef] [Green Version]
- Godbole, R.; Godbole, V.P.; Alegaonkar, P.S.; Bhagwat, S. Effect of film thickness on gas sensing properties of sprayed WO3 thin films. New J. Chem. 2017, 41, 11807–11816. [Google Scholar] [CrossRef]
- Hann, D.B.; Cherdantsev, A.V.; Azzopardi, B.J. Study of bubbles entrapped into a gas-sheared liquid film. Int. J. Multiph. Flow 2018, 108, 181–201. [Google Scholar] [CrossRef]
- Malamatari, M.; Charisi, A.; Malamataris, S.; Kachrimanis, K.; Nikolakakis, I. Spray drying for the preparation of nanoparticle-based drug formulations as dry powders for inhalation. Processes 2020, 7, 788. [Google Scholar] [CrossRef]
- Öztaş, M.M. Influence of grain size on electrical and optical properties of InP films. Chin. Phys. Lett. 2008, 25, 4090–4092. [Google Scholar] [CrossRef]
- Ghaffari, T.; Hamedi-Rad, F. Effect of silver nano-particles on tensile strength of acrylic resins. J. Dent. Res. Dent. Clin. Dent. Prospect. 2015, 9, 40. [Google Scholar] [CrossRef]
- Su, C.H.; Chen, H.L.; Ju, S.P.; Chen, H.Y.; Shih, C.W.; Pan, C.T.; You, T.D. The mechanical behaviors of polyethylene/silver nanoparticle composites: An insight from molecular dynamics study. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- Rashid, S.; Sebastiani, M.; Mughal, M.Z.; Daniel, R.; Bemporad, E. Influence of the silver content on mechanical properties of Ti-Cu-Ag thin films. Nanomaterials 2021, 11, 435. [Google Scholar] [CrossRef]
- Kong, S.M.; Mariatti, M.; Busfield, J.J.C. Effects of types of fillers and filler loading on the properties of silicone rubber composites. J. Reinf. Plast. Comp. 2011, 30, 1087–1096. [Google Scholar] [CrossRef]
- Maragoni, L.; Carraro, P.A.; Quaresimin, M. Effect of voids on the crack formation in a [45/− 45/0]s laminate under cyclic axial tension. Comp. Part A Appl. Sci. Manuf. 2016, 91, 493–500. [Google Scholar] [CrossRef]
- Wakshlak, R.B.K.; Pedahzur, R.; Avnir, D. Antibacterial activity of silver-killed bacteria: The ‘zombies’ effect. Sci. Rep. 2015, 5, 9555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Mahat, M.M.; Sabere, A.S.M.; Azizi, J.; Amdan, N.A.N. Potential applications of conducting polymers to reduce secondary bacterial infections among COVID-19 patients: A review. Emergent Mater. 2021, 4, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Lok, C.N.; Ho, C.M.; Chen, R.; He, Q.Y.; Yu, W.Y.; Sun, H.; Tam, P.K.H.; Chiu, J.F.; Che, C.M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527–534. [Google Scholar] [CrossRef]
- Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomed. 2017, 12, 1227–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaniukov, E.Y.; Yakimchuk, D.V.; Bundyukova, V.D.; Shumskaya, A.E.; Amirov, A.A.; Demyanov, S.E. Peculiarities of charge transfer in SiO2(Ni)/Si nanosystems. Adv. Condens. Matter Phys. 2018, 2018, 4927829. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.C.; Lin, L.H.; Chen, C.W.; Chen, J.S. Hydrophobicities and antibacterial activities of silicone polyester/titanium dioxide composites on nylon fabrics after argon plasma treatment. J. Poly. Res. 2014, 21, 408. [Google Scholar] [CrossRef]
No. | Sample | Thickness (mm) |
---|---|---|
1. | Pristine Si film | 5.12 ± 0.03 |
2. | 10% Ag–Si film | 5.38 ± 0.14 |
3. | 20% Ag–Si film | 5.83 ± 0.03 |
4. | 30% Ag–Si film | 6.21 ± 0.02 |
5. | 40% Ag–Si film | 6.34 ± 0.03 |
6. | 50% Ag–Si film | 6.78 ± 0.03 |
No. | Concentration of Ag (%) | Conductivity (S cm−1) |
---|---|---|
1. | Pristine Si film | NIL |
2. | 10 | 2.05 × 10−6 ± 1.04 × 10−6 |
3. | 20 | 2.43 × 10−6 ± 1.63 × 10−6 |
4. | 30 | 5.03 × 10−6 ± 1.23 × 10−6 |
5. | 40 | 7.52 × 10−6 ± 1.89 × 10−6 |
6. | 50 | 1.40 × 10−5 ± 1.39 × 10−4 |
No. | Sample | Average Diameter of Ag Particles (µm) |
---|---|---|
1. | Pristine Si film | NIL |
2. | 30% Ag–Si film | 0.0054 |
3. | 40% Ag–Si film | 0.0046 |
4. | 50% Ag–Si film | 0.0656 |
No. | Sample | Tensile Stress (N) | Elongation Rate (%) |
---|---|---|---|
1. | Pristine Si film | 5.73 | 252.14 |
2. | 30% Ag–Si film | 3.96 | 195.92 |
3. | 40% Ag–Si film | 2.52 | 104.26 |
4. | 50% Ag–Si film | 1.82 | 80.06 |
Type of Bacteria | Antibiotic Disc | Inhibition Zone (mm) | Zone Diameter Breakpoints (mm) | ||
---|---|---|---|---|---|
Resistant | Intermediate | Susceptibility | |||
MRSA | Clindamycin | 11 ± 0 | ≤14 | 15–20 | ≥21 |
B. cereus | Streptomycin | 9 ± 1 | ≤11 | 12–14 | ≥15 |
K. pneumoniae | Amikacin | 12.3 ± 1 | ≤14 | 15–16 | ≥17 |
P. aeruginosa | Ciprofloxacin | 14 ± 0 | ≤15 | 16–20 | ≥21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aizamddin, M.F.; Mahat, M.M.; Zainal Ariffin, Z.; Samsudin, I.; Razali, M.S.M.; Amir, M.‘A. Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications. Polymers 2021, 13, 3822. https://doi.org/10.3390/polym13213822
Aizamddin MF, Mahat MM, Zainal Ariffin Z, Samsudin I, Razali MSM, Amir M‘A. Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications. Polymers. 2021; 13(21):3822. https://doi.org/10.3390/polym13213822
Chicago/Turabian StyleAizamddin, Muhammad Faiz, Mohd Muzamir Mahat, Zaidah Zainal Ariffin, Irwan Samsudin, Muhammad Syafiek Mohd Razali, and Muhammad ‘Abid Amir. 2021. "Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications" Polymers 13, no. 21: 3822. https://doi.org/10.3390/polym13213822
APA StyleAizamddin, M. F., Mahat, M. M., Zainal Ariffin, Z., Samsudin, I., Razali, M. S. M., & Amir, M. ‘A. (2021). Synthesis, Characterisation and Antibacterial Properties of Silicone–Silver Thin Film for the Potential of Medical Device Applications. Polymers, 13(21), 3822. https://doi.org/10.3390/polym13213822