Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bondar, V.I.; Freeman, B.D.; Pinnau, I. Gas sorption and characterization of poly(ether-b-amide) segmented block copolymers. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 2463–2475. [Google Scholar] [CrossRef]
- Bondar, V.I.; Freeman, B.D.; Pinnau, I. Gas transport properties of poly(ether-b-amide) segmented block copolymers. J. Polym. Sci. Part B Polym. Phys. 2000, 38, 2051–2062. [Google Scholar] [CrossRef]
- Rahman, M.M.; Abetz, C.; Shishatskiy, S.; Martin, J.; Müller, A.J.; Abetz, V. CO2 Selective PolyActive Membrane: Thermal Transitions and Gas Permeance as a Function of Thickness. ACS Appl. Mater. Interfaces 2018, 10, 26733–26744. [Google Scholar] [CrossRef] [PubMed]
- Metz, S.J.; Mulder, M.H.V.; Wessling, M. Gas-Permeation Properties of Poly(ethylene oxide) Poly(butylene terephthalate) Block Copolymers. Macromolecules 2004, 37, 4590–4597. [Google Scholar] [CrossRef]
- Okamoto, K.-i.; Fuji, M.; Okamyo, S.; Suzuki, H.; Tanaka, K.; Kita, H. Gas permeation properties of poly(ether imide) segmented copolymers. Macromolecules 1995, 28, 6950–6956. [Google Scholar] [CrossRef]
- Semsarzadeh, M.A.; Sadeghi, M.; Barikani, M. Effect of Chain Extender Length on Gas Permeation Properties of Polyurethane Membranes. Iran. Polym. J. 2008, 17, 431–440. [Google Scholar]
- Reijerkerk, S.R.; Arun, A.; Gaymans, R.J.; Nijmeijer, K.; Wessling, M. Tuning of mass transport properties of multi-block copolymers for CO2 capture applications. J. Membr. Sci. 2010, 359, 54–63. [Google Scholar] [CrossRef]
- Chen, H.; Xiao, Y.; Chung, T.-S. Synthesis and characterization of poly (ethylene oxide) containing copolyimides for hydrogen purification. Polymer 2010, 51, 4077–4086. [Google Scholar] [CrossRef]
- Sahin, O.; Magonov, S.; Su, C.; Quate, C.F.; Solgaard, O. An atomic force microscope tip designed to measure time-varying nanomechanical forces. Nat. Nano 2007, 2, 507–514. [Google Scholar] [CrossRef]
- Husken, D.; Feijen, J.; Gaymans, R.J. Hydrophilic segmented block copolymers based on poly(ethylene oxide) and monodisperse amide segments. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 4522–4535. [Google Scholar] [CrossRef]
- Husken, D.; Krijgsman, J.; Gaymans, R.J. Segmented blockcopolymers with uniform amide segments. Polymer 2004, 45, 4837–4843. [Google Scholar] [CrossRef]
- Gaymans, R.J. Segmented copolymers with monodisperse crystallizable hard segments: Novel semi-crystalline materials. Prog. Polym. Sci. 2011, 36, 713–748. [Google Scholar] [CrossRef]
- Husken, D.; Feijen, J.; Gaymans, R.J. Segmented Block Copolymers with Terephthalic-Extended Poly(ethylene oxide) Segments. Macromol. Chem. Phys. 2008, 209, 525–534. [Google Scholar] [CrossRef]
- Krijgsman, J.; Gaymans, R.J. Tensile and elastic properties of thermoplastic elastomers based on PTMO and tetra-amide units. Polymer 2004, 45, 437–446. [Google Scholar] [CrossRef]
- Husken, D.; Visser, T.; Wessling, M.; Gaymans, R.J. CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers. J. Membr. Sci. 2010, 346, 194–201. [Google Scholar] [CrossRef]
- Reijerkerk, S.R.; Ijzer, A.C.; Nijmeijer, K.; Arun, A.; Gaymans, R.J.; Wessling, M. Subambient Temperature CO2 and Light Gas Permeation through Segmented Block Copolymers with Tailored Soft Phase. ACS Appl. Mater. Interfaces 2010, 2, 551–560. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Khan, M.M.; Neumann, S.; Abetz, V. Influence of Poly(ethylene glycol) Segment Length on CO2 Permeation and Stability of PolyActive Membranes and Their Nanocomposites with PEG POSS. ACS Appl. Mater. Interfaces 2015, 7, 12289–12298. [Google Scholar] [CrossRef]
- Rahman, M.M.; Filiz, V.; Shishatskiy, S.; Abetz, C.; Neumann, S.; Bolmer, S.; Khan, M.M.; Abetz, V. PEBAX® with PEG Functionalized POSS as Nanocomposite Membranes for CO2 Separation. J. Membr. Sci. 2013, 437, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Shishatskiy, S.; Abetz, C.; Georgopanos, P.; Neumann, S.; Khan, M.M.; Filiz, V.; Abetz, V. Influence of Temperature upon Properties of Tailor-Made PEBAX® MH 1657 Nanocomposite Membranes for Post-Combustion CO2 Capture. J. Membr. Sci. 2014, 469, 344–354. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; Filiz, V.; Khan, M.M.; Gacal, B.N.; Abetz, V. Functionalization of POSS nanoparticles and fabrication of block copolymer nanocomposite membranes for CO2 separation. React. Funct. Polym. 2015, 86, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Yave, W.; Szymczyk, A.; Yave, N.; Roslaniec, Z. Design, synthesis, characterization and optimization of PTT-b-PEO copolymers: A new membrane material for CO2 separation. J. Membr. Sci. 2010, 362, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Park, H.B.; Kim, C.K.; Lee, Y.M. Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. J. Membr. Sci. 2002, 204, 257–269. [Google Scholar] [CrossRef]
- Xiao, H.; Ping, Z.H.; Xie, J.W.; Yu, T.Y. Permeation of CO2 through polyurethane. J. Appl. Polym. Sci. 1990, 40, 1131–1139. [Google Scholar] [CrossRef]
- Huang, S.-L.; Lai, J.-Y. On the gas permeability of hydroxyl terminated polybutadiene based polyurethane membranes. J. Membr. Sci. 1995, 105, 137–145. [Google Scholar] [CrossRef]
- Galland, G.; Lam, T.M. Permeability and diffusion of gases in segmented polyurethanes: Structure–properties relations. J. Appl. Polym. Sci. 1993, 50, 1041–1058. [Google Scholar] [CrossRef]
- Hsieh, K.H.; Tsai, C.C.; Tseng, S.M. Vapor and gas permeability of polyurethane membranes. Part I. Structure-property relationship. J. Membr. Sci. 1990, 49, 341–350. [Google Scholar] [CrossRef]
- Hsieh, K.H.; Tsai, C.C.; Chang, D.M. Vapor and gas permeability of polyurethane membranes. Part II. Effect of functional group. J. Membr. Sci. 1991, 56, 279–287. [Google Scholar] [CrossRef]
- Yang, L.; Qian, S.; Wang, X.; Cui, X.; Chen, B.; Xing, H. Energy-efficient separation alternatives: Metal–organic frameworks and membranes for hydrocarbon separation. Chem. Soc. Rev. 2020, 49, 5359–5406. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Free Volume, Cohesive Energy Density, and Internal Pressure as Predictors of Polymer Miscibility. Macromolecules 2014, 47, 3959–3968. [Google Scholar] [CrossRef]
- Kubica, P.; Wolinska-Grabczyk, A. Correlation between Cohesive Energy Density, Fractional Free Volume, and Gas Transport Properties of Poly(ethylene-co-vinyl acetate) Materials. Int. J. Polym. Sci. 2015, 2015, 861979. [Google Scholar] [CrossRef] [Green Version]
- Dee, G.T.; Sauer, B.B. The cohesive energy density of polymers and its relationship to surface tension, bulk thermodynamic properties, and chain structure. J. Appl. Polym. Sci. 2017, 134, 44431. [Google Scholar] [CrossRef]
- Galin, M. Thermodynamic studies on polyether—Solvent systems by gas—liquid chromatography. Polymer 1995, 36, 3533–3539. [Google Scholar] [CrossRef]
- Rahman, M.M.; Lillepärg, J.; Neumann, S.; Shishatskiy, S.; Abetz, V. A thermodynamic study of CO2 sorption and thermal transition of PolyActive™ under elevated pressure. Polymer 2016, 93, 132–141. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Freeman, B.D. Gas Solubility, Diffusivity and Permeability in Poly(ethylene oxide). J. Membr. Sci. 2004, 239, 105–117. [Google Scholar] [CrossRef]
- Teplyakov, V.; Meares, P. Correlation aspects of the selective gas permeabilities of polymeric materials and membranes. Gas Sep. Purif. 1990, 4, 66–74. [Google Scholar] [CrossRef]
- Yampolskii, Y. 2—Fundamental science of gas and vapour separation in polymeric membranes. In Advanced Membrane Science and Technology for Sustainable Energy and Environmental Applications; Woodhead Publishing: Sawston, UK, 2011; pp. 22–55. [Google Scholar]
- Matteucci, S.; Yampolskii, Y.; Freeman, B.D.; Pinnau, I. Transport of Gases and Vapors in Glassy and Rubbery Polymers. In Materials Science of Membranes for Gas and Vapor Separationl; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2006; pp. 1–47. [Google Scholar]
- Li, J.-R.; Kuppler, R.J.; Zhou, H.-C. Selective gas adsorption and separation in metal–organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef] [PubMed]
- Michaels, A.S.; Parker, R.B. Sorption and flow of gases in polyethylene. J. Polym. Sci. 1959, 41, 53–71. [Google Scholar] [CrossRef]
- Michaels, A.S.; Bixler, H.J. Solubility of gases in polyethylene. J. Polym. Sci. 1961, 50, 393–412. [Google Scholar] [CrossRef]
- Michaels, A.S.; Bixler, H.J. Flow of gases through polyethylene. J. Polym. Sci. 1961, 50, 413–439. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M. Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block. Polymers 2021, 13, 4181. https://doi.org/10.3390/polym13234181
Rahman MM. Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block. Polymers. 2021; 13(23):4181. https://doi.org/10.3390/polym13234181
Chicago/Turabian StyleRahman, Md. Mushfequr. 2021. "Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block" Polymers 13, no. 23: 4181. https://doi.org/10.3390/polym13234181
APA StyleRahman, M. M. (2021). Membrane Separation of Gaseous Hydrocarbons by Semicrystalline Multiblock Copolymers: Role of Cohesive Energy Density and Crystallites of the Polyether Block. Polymers, 13(23), 4181. https://doi.org/10.3390/polym13234181