Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography—An In-Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
- Group A—Swiss Tech resin composite (Coltenewhaledent Pvt Ltd., Wazirpur, New Delhi, India)
- Group B—Ceram X (Dentsply Sirona, De-Trey-Straße 1, 78467 Konstanz, Germany)
- Group C—Beautifil Injectable (Shofu Inc., Fukuine, Higashiyama-ku, Kyoto, Japan)
2.1. Sample Preparation
2.2. High-Performance Liquid Chromatography (HPLC) Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Strength, Limitations, and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldberg, M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008, 12, 1–8. [Google Scholar] [CrossRef]
- Ortengren, U.; Wellendorf, H.; Karlsson, S.; Ruyter, I.E. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. J. Oral Rehabil. 2001, 28, 1106–1115. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Huang, X.; Li, M.; Peng, X.; Wang, S.; Zhou, X.; Cheng, L. Development and status of resin composite as dental restorative materials. J. Appl. Polym. Sci. 2019, 136, 48180. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Cai, Q.; Zhang, X.; Wei, Y.; Xu, M.; Yang, X.; Ma, Q.; Cheng, Y.; Deng, X. Improved performance of Bis-GMA/TEGDMA dental composites by net-like structures formed from SiO2 nanofiber fillers. Mater. Sci. Eng. C 2016, 59, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Balagopal, S.; Geethapriya, N.; Anisha, S.; Hemasathya, B.A.; Vandana, J.; Dhatshayani, C. Comparative evaluation of the degree of conversion of four different composites polymerized using ultrafast photopolymerization technique: An in vitro study. J. Conserv. Dent. 2021, 24, 77. [Google Scholar] [CrossRef]
- Lempel, E.; Őri, Z.; Kincses, D.; Lovász, B.V.; Kunsági-Máté, S.; Szalma, J. Degree of conversion and in vitro temperature rise of pulp chamber during polymerization of flowable and sculptable conventional, bulk-fill and short-fibre reinforced resin composites. Dent. Mater. 2021, 37, 983–997. [Google Scholar] [CrossRef]
- Taher, R.M.; Moharam, L.M.; Amin, A.E.; Zaazou, M.H.; El-Askary, F.S.; Ibrahim, M.N. The effect of radiation exposure and storage time on the degree of conversion and flexural strength of different resin composites. Bull. Natl. Res. Cent. 2021, 45, 146. [Google Scholar] [CrossRef]
- Witzel, M.F.; Calheiros, F.C.; Gonçalves, F.; Kawano, Y.; Braga, R.R. Influence of photoactivation method on conversion, mechanical properties, degradation in ethanol and contraction stress of resin-based materials. J. Dent. 2005, 33, 773–779. [Google Scholar] [CrossRef]
- Leprince, J.G.; Palin, W.M.; Hadis, M.A.; Devaux, J.; Leloup, G. Progress in dimethacrylate-based dental composite technology and curing efficiency. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2013, 29, 139–156. [Google Scholar] [CrossRef]
- Unsal, K.A.; Karaman, E. Effect of Additional Light Curing on Colour Stability of Composite Resins. Int. Dent. J. 2021. Available online: https://www.sciencedirect.com/science/article/pii/S0020653921001325 (accessed on 2 December 2021). [CrossRef]
- Schulz, S.D.; Laquai, T.; Kümmerer, K.; Bolek, R.; Mersch-Sundermann, V.; Polydorou, O. Elution of Monomers from Provisional Composite Materials. Int. J. Polym. Sci. 2015, 2015, e617407. [Google Scholar] [CrossRef]
- Spahl, W.; Budzikiewicz, H.; Geurtsen, W. Determination of leachable components from four commercial dental composites by gas and liquid chromatography/mass spectrometry. J. Dent. 1998, 26, 137–145. [Google Scholar] [CrossRef]
- Ferracane, J.L.; Condon, J.R. Rate of elution of leachable components from composite. Dent. Mater. Off. Publ. Acad. Dent. Mater. 1990, 6, 282–287. [Google Scholar] [CrossRef]
- Geurtsen, W.; Leyhausen, G. Chemical-Biological Interactions of the resin monomer triethyleneglycol-dimethacrylate (TEGDMA). J. Dent. Res. 2001, 80, 2046–2050. [Google Scholar] [CrossRef]
- Hansel, C.; Leyhausen, G.; Mai, U.E.; Geurtsen, W. Effects of various resin composite (co)monomers and extracts on two caries-associated micro-organisms in vitro. J. Dent. Res. 1998, 77, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Schweikl, H.; Spagnuolo, G.; Schmalz, G. Genetic and cellular toxicology of dental resin monomers. J. Dent. Res. 2006, 85, 870–877. [Google Scholar] [CrossRef] [PubMed]
- Tauböck, T.T.; Marovic, D.; Zeljezic, D.; Steingruber, A.D.; Attin, T.; Tarle, Z. Genotoxic potential of dental bulk-fill resin composites. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2017, 33, 788–795. [Google Scholar] [CrossRef] [Green Version]
- Sarrett, D.C. Clinical challenges and the relevance of materials testing for posterior composite restorations. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2005, 21, 9–20. [Google Scholar] [CrossRef]
- Becher, R.; Kopperud, H.; Al, R.; Samuelsen, J.; Morisbak, E.; Dahlman, H.; Lilleaas, E.; Dahl, J. Pattern of cell death after in vitro exposure to GDMA, TEGDMA, HEMA and two compomer extracts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 630–640. [Google Scholar] [CrossRef] [PubMed]
- De Nys, S.; Putzeys, E.; Vervliet, P.; Covaci, A.; Boonen, I.; Elskens, M.; Vanoirbeek, J.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L.; et al. A novel high sensitivity UPLC-MS/MS method for the evaluation of bisphenol A leaching from dental materials. Sci. Rep. 2018, 8, 6981. [Google Scholar] [CrossRef]
- Sonkaya, E.; Kürklü, Z.G.B.; Bakır, Ş. Effect of Polymerization Time on Residual Monomer Release in Dental Composite: In Vitro Study. Int. J. Polym. Sci. 2021, 2021, e8101075. [Google Scholar] [CrossRef]
- Łagocka, R.; Mazurek-Mochol, M.; Jakubowska, K.; Bendyk-Szeffer, M.; Chlubek, D.; Buczkowska-Radlińska, J. Analysis of Base Monomer Elution from 3 Flowable Bulk-Fill Composite Resins Using High Performance Liquid Chromatography (HPLC). Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2018, 24, 4679–4690. [Google Scholar] [CrossRef]
- Pongprueksa, P.; De Munck, J.; Duca, R.C.; Poels, K.; Covaci, A.; Hoet, P.; Godderis, L.; Van Meerbeek, B.; Van Landuyt, K.L. Monomer elution in relation to degree of conversion for different types of composite. J. Dent. 2015, 43, 1448–1455. [Google Scholar] [CrossRef] [PubMed]
- Tuna, E.B.; Aktoren, O.; Oshida, Y.; Gencay, K. Elution of residual monomers from dental composite materials. Eur. J. Paediatr. Dent. 2010, 11, 110–114. [Google Scholar]
- Darmani, H.; Al-Hiyasat, A.S. The effects of BIS-GMA and TEG-DMA on female mouse fertility. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2006, 22, 353–358. [Google Scholar] [CrossRef]
- Moharamzadeh, K.; Van Noort, R.; Brook, I.M.; Scutt, A.M. Cytotoxicity of resin monomers on human gingival fibroblasts and HaCaT keratinocytes. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2007, 23, 40–44. [Google Scholar] [CrossRef] [PubMed]
- Issa, Y.; Watts, D.C.; Brunton, P.A.; Waters, C.M.; Duxbury, A.J. Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2004, 20, 12–20. [Google Scholar] [CrossRef]
- Schneider, T.R.; Hakami-Tafreshi, R.; Tomasino-Perez, A.; Tayebi, L.; Lobner, D. Effects of dental composite resin monomers on dental pulp cells. Dent. Mater. J. 2019, 38, 579–583. [Google Scholar] [CrossRef] [Green Version]
- Walters, N.J.; Xia, W.; Salih, V.; Ashley, P.F.; Young, A.M. Poly(propylene glycol) and urethane dimethacrylates improve conversion of dental composites and reveal complexity of cytocompatibility testing. Dent. Mater. 2016, 32, 264–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krifka, S.; Spagnuolo, G.; Schmalz, G.; Schweikl, H. A review of adaptive mechanisms in cell responses towards oxidative stress caused by dental resin monomers. Biomaterials 2013, 34, 4555–4563. [Google Scholar] [CrossRef]
- Cytotoxic and Biological Effects of Bulk Fill Composites on Rat Cortical Neuron Cells|SpringerLink [Internet]. Available online: https://link.springer.com/article/10.1007%2Fs10266-018-0354-5 (accessed on 2 December 2021).
- Srivastava, K.C.; Shrivastava, D. Analysis of plasma lipid peroxidation and antioxidant enzymes status in patients of oral leukoplakia: A case control study. J. Int. Soc. Prev. Community Dent. 2016, 6 (Suppl. 3), S213–S218. [Google Scholar] [CrossRef]
- Thompson, L.R.; Miller, E.G.; Bowles, W.H. Leaching of unpolymerized materials from orthodontic bonding resin. J. Dent. Res. 1982, 61, 989–992. [Google Scholar] [CrossRef]
- Geurtsen, W. Substances released from dental resin composites and glass ionomer cements. Eur. J. Oral Sci. 1998, 106 Pt 2, 687–695. [Google Scholar] [CrossRef]
- Tanaka, K.; Taira, M.; Shintani, H.; Wakasa, K.; Yamaki, M. Residual monomers (TEGDMA and Bis-GMA) of a set visible-light-cured dental composite resin when immersed in water. J. Oral Rehabil. 1991, 18, 353–362. [Google Scholar] [CrossRef]
- Cebe, M.A.; Cebe, F.; Cengiz, M.F.; Cetin, A.R.; Arpag, O.F.; Ozturk, B. Elution of monomer from different bulk fill dental composite resins. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2015, 31, e141–e149. [Google Scholar] [CrossRef] [PubMed]
- Paula, A.B.; Toste, D.; Marinho, A.; Amaro, I.; Marto, C.-M.; Coelho, A.; Marques-Ferreira, M.; Carrilho, E. Once Resin Composites and Dental Sealants Release Bisphenol-A, How Might This Affect Our Clinical Management?—A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tabatabaee, M.H.; Arami, S.; Ghavam, M.; Rezaii, A. Monomer Release from Nanofilled and Microhybrid Dental Composites after Bleaching. J. Dent. 2014, 11, 56–66. [Google Scholar]
- Yap, A.U.J.; Han, V.T.S.; Soh, M.S.; Siow, K.S. Elution of leachable components from composites after LED and halogen light irradiation. Oper. Dent. 2004, 29, 448–453. [Google Scholar] [PubMed]
- Polydorou, O.; Trittler, R.; Hellwig, E.; Kümmerer, K. Elution of monomers from two conventional dental composite materials. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2007, 23, 1535–1541. [Google Scholar] [CrossRef]
- Komurcuoglu, E.; Olmez, S.; Vural, N. Evaluation of residual monomer elimination methods in three different fissure sealants in vitro. J. Oral Rehabil. 2005, 32, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Stansbury, J.W.; Dickens, S.H. Determination of double bond conversion in dental resins by near infrared spectroscopy. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2001, 17, 71–79. [Google Scholar] [CrossRef]
Composite | Manufacturer | Polymer | Filler Content % vol | Filler Content % wt |
---|---|---|---|---|
Swiss Tech (Group A) | Coltene | Bis-GMA UDMA, TEGDMA, HEMA | 89 | 73 |
Ceram X (Group B) | Injectable Liechtenstein | Bis-GMA UDMA, TEGDMA, HEMA | 62 | 81 |
Injectable (Group C) | Shofu | Bis-GMA UDMA, TEGDMA, HEMA | 68.6 | 83.3 |
Study Group | Polymers | 24 h | 7th Day |
---|---|---|---|
% of Monomer Release | % of Monomer Release | ||
Ceram X | HEMA | 24.4 | 0 |
TEGDMA | 28.8 | 42.8 | |
UDMA | 6.28 | 3.5 | |
Bis-GMA | 12.8 | 49.0 | |
Swiss Tech | HEMA | 10.1 | 0 |
TEGDMA | 61.5 | 37.0 | |
UDMA | 0.6 | 3.6 | |
Bis-GMA | 24.25 | 57.3 | |
Injectable | HEMA | 0 | 0 |
TEGDMA | 42.1 | 38.7 | |
UDMA | 5.3 | 3.5 | |
Bis-GMA | 43.2 | 51.3 |
Study Group | Time Interval | p Value (Interpretation) | |
---|---|---|---|
24 h | 7th Day | ||
Ceram X | 10.01 ± 5.7 | 10.02 ± 5.7 | p > 0.05; (NS) |
Swiss Tech | 13.02 ± 7.5 | 13.04 ± 7.5 | p > 0.05; (NS) |
Injectable | 11.3 ± 6.5 | 13.3 ± 9.5 | p < 0.000; (VHS) |
Time Period | Groups | Sum of Squares | df | Mean Square | p Value |
---|---|---|---|---|---|
24 h | Between the groups | 12,822.49 | 2 | 6411.246 | 0.0005 *** |
Within group | 374,781.90 | 8254 | 45.406 | ||
Total | 387,604.39 | 8256 | |||
7th Day | Between the groups | 12,809.68 | 2 | 6404.842 | 0.0005 *** |
Within group | 374,781.90 | 8254 | 45.406 | ||
Total | 387,591.59 | 8256 |
Time Interval | Study Group | Comparison Study Group | p Value | 95% Confidence Interval | |
---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||
Day 7 | Ceram X | Swiss Tech | 0.0005 *** | −3.457266 | −2.601068 |
Injectable | 0.0005 *** | −1.729678 | −0.845322 | ||
Swiss Tech | Ceram X | 0.0005 *** | 2.601068 | 3.457266 | |
Injectable | 0.0005 *** | 1.327570 | 2.155763 | ||
Injectable | Ceram X | 0.0005 *** | 0.845322 | 1.729678 | |
Swiss Tech | 0.0005 *** | −2.155763 | −1.327570 | ||
Day 24 | Ceram X | Swiss Tech | 0.0005 *** | −3.457266 | −2.601068 |
Injectable | 0.0005 *** | −1.738011 | −0.853656 | ||
Swiss Tech | Ceram X | 0.0005 *** | 2.601068 | 3.457266 | |
Injectable | 0.0005 *** | 1.319237 | 2.147430 | ||
Injectable | Ceram X | 0.0005 *** | 0.853656 | 1.738011 | |
Swiss Tech | 0.0005 *** | −2.147430 | −1.319237 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janani, K.; Teja, K.V.; Sandhya, R.; Alam, M.K.; Al-Qaisi, R.K.; Shrivastava, D.; Alnusayri, M.O.; Alkhalaf, Z.A.; Sghaireen, M.G.; Srivastava, K.C. Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography—An In-Vitro Study. Polymers 2021, 13, 4395. https://doi.org/10.3390/polym13244395
Janani K, Teja KV, Sandhya R, Alam MK, Al-Qaisi RK, Shrivastava D, Alnusayri MO, Alkhalaf ZA, Sghaireen MG, Srivastava KC. Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography—An In-Vitro Study. Polymers. 2021; 13(24):4395. https://doi.org/10.3390/polym13244395
Chicago/Turabian StyleJanani, Krishnamachari, Kavalipurapu Venkata Teja, Raghu Sandhya, Mohammad Khursheed Alam, Ruba K. Al-Qaisi, Deepti Shrivastava, Mohammed Odhayd Alnusayri, Zainab Ali Alkhalaf, Mohammed G. Sghaireen, and Kumar Chandan Srivastava. 2021. "Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography—An In-Vitro Study" Polymers 13, no. 24: 4395. https://doi.org/10.3390/polym13244395
APA StyleJanani, K., Teja, K. V., Sandhya, R., Alam, M. K., Al-Qaisi, R. K., Shrivastava, D., Alnusayri, M. O., Alkhalaf, Z. A., Sghaireen, M. G., & Srivastava, K. C. (2021). Monomer Elution from Three Resin Composites at Two Different Time Interval Using High Performance Liquid Chromatography—An In-Vitro Study. Polymers, 13(24), 4395. https://doi.org/10.3390/polym13244395