Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Synthesis and Functionalization of Gold Nanoparticles
2.3. Seeded Precipitation Polymerization
2.4. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hutter, E.; Fendler, J.H. Exploitation of localized surface plasmon resonance. Adv. Mater. 2004, 16, 1685–1706. [Google Scholar] [CrossRef]
- Karg, M. Multifunctional inorganic/organic hybrid microgels: An overview of recent developments in synthesis, characterization, and application. Colloid Polym. Sci. 2012, 290, 673–688. [Google Scholar] [CrossRef]
- Sierra-Martin, B.; Fernandez-Barbero, A. Inorganic/polymer hybrid nanoparticles for sensing applications. Adv. Colloid Interface Sci. 2016. [Google Scholar] [CrossRef] [PubMed]
- Karg, M.; Kö Nig, T.A.F.; Retsch, M.; Stelling, C.; Reichstein, P.M.; Honold, T.; Thelakkat, M.; Fery, A. Colloidal self-assembly concepts for light management in photovoltaics. Mater. Today 2015, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhu, C.; Han, J.; Han, N.; Xi, J.; Fan, L.; Guo, R. Controllable Synthesis of Gold Nanorod/Conducting Polymer Core/Shell Hybrids Toward in Vitro and in Vivo near-Infrared Photothermal Therapy. ACS Appl. Mater. Interfaces 2018, 10, 12323–12330. [Google Scholar] [CrossRef]
- Zhou, W.; Dridi, M.; Yong Suh, J.; Hoon Kim, C.; Co, D.T.; Wasielewski, M.R.; Schatz, G.C.; Odom, T.W. Lasing action in strongly coupled plasmonic nanocavity arrays. Nat. Nanotechnol. 2013, 8, 506. [Google Scholar] [CrossRef]
- Volk, K.; Deißenbeck, F.; Mandal, S.; Löwen, H.; Karg, M. Moiré and honeycomb lattices through self-assembly of hard-core/soft-shell microgels: Experiment and simulation. Phys. Chem. Chem. Phys. 2019, 21, 19153–19162. [Google Scholar] [CrossRef]
- Pastoriza-Santos, I.; Kinnear, C.; Pérez-Juste, J.; Mulvaney, P.; Liz-Marzán, L.M. Plasmonic polymer nanocomposites. Nat. Rev. Mater. 2018, 3, 375–391. [Google Scholar] [CrossRef]
- Karg, M. Functional Materials Design through Hydrogel Encapsulation of Inorganic Nanoparticles: Recent Developments and Challenges. Macromol. Chem. Phys. 2016, 217, 242–255. [Google Scholar] [CrossRef]
- Kim, D.J.; Kang, S.M.; Kong, B.; Kim, W.J.; Paik, H.J.; Choi, H.; Choi, I.S. Formation of thermoresponsive gold nanoparticle/PNIPAAm hybrids by surface-initiated, atom transfer radical polymerization in aqueous media. Macromol. Chem. Phys. 2005, 206, 1941–1946. [Google Scholar] [CrossRef]
- Singh, N.; Lyon, L.A. Au nanoparticle templated synthesis of pNIPAm nanogels. Chem. Mater. 2007, 19, 719–726. [Google Scholar] [CrossRef]
- Contreras-Cáceres, R.; Sánchez-Iglesias, A.; Karg, M.; Pastoriza-Santos, I.; Pérez-Juste, J.; Pacifico, J.; Hellweg, T.; Fernández-Barbero, A.; Liz-Marzán, L.M. Encapsulation and Growth of Gold Nanoparticles in Thermoresponsive Microgels. Adv. Mater. 2008, 20, 1666–1670. [Google Scholar] [CrossRef]
- Contreras-Cáceres, R.; Pacifico, J.; Pastoriza-Santos, I.; Pérez-Juste, J.; Fernández-Barbero, A.; Liz-Marzán, L.M. Au@pNIPAM thermosensitive nanostructures: Control over shell cross-linking, overall dimensions, and core growth. Adv. Funct. Mater. 2009, 19, 3070–3076. [Google Scholar] [CrossRef]
- Contreras-Cµceres, R.; Pastoriza-Santos, I.; Alvarez-Puebla, R.A.; PØrez-Juste, J.; Fernµndez-Barbero, A.; Liz-Marzµn, L.M.; Pastoriza-Santos, I.; Alvarez-Puebla, R.A.; PØrez-Juste, J.; Liz-Marzµn, L.M.; et al. Growing Au/Ag Nanoparticles within Microgel Colloids for Improved Surface-Enhanced Raman Scattering Detection. Chem. Eur. J. 2010, 16, 9462–9467. [Google Scholar] [CrossRef]
- Karg, M.; Jaber, S.; Hellweg, T.; Mulvaney, P. Surface plasmon spectroscopy of gold-poly-N-isopropylacrylamide core-shell particles. Langmuir 2011, 27, 820–827. [Google Scholar] [CrossRef]
- Fernández-López, C.; Pérez-Balado, C.; Pérez-Juste, J.; Pastoriza-Santos, I.; De Lera, Á.R.; Liz-Marzán, L.M. A general LbL strategy for the growth of pNIPAM microgels on Au nanoparticles with arbitrary shapes. Soft Matter 2012, 8, 4165–4170. [Google Scholar] [CrossRef]
- Pelton, R.H.; Chibante, P. Preparation of aqueous latices with N-isopropylacrylamide. Colloids Surfaces 1986, 20, 247–256. [Google Scholar] [CrossRef]
- Dulle, M.; Jaber, S.; Rosenfeldt, S.; Radulescu, A.; Förster, S.; Mulvaney, P.; Karg, M. Plasmonic gold-poly(N-isopropylacrylamide) core-shell colloids with homogeneous density profiles: A small angle scattering study. Phys. Chem. Chem. Phys. 2015, 17, 1354–1367. [Google Scholar] [CrossRef] [Green Version]
- Rauh, A.; Honold, T.; Karg, M. Seeded precipitation polymerization for the synthesis of gold-hydrogel core-shell particles: The role of surface functionalization and seed concentration. Colloid Polym. Sci. 2016, 294, 37–47. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Wan, Y.; Guo, Z.; Jiang, X.; Fang, K.; Lu, X.; Zhang, Y.; Gu, N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface 2012, 394, 263–268. [Google Scholar] [CrossRef] [PubMed]
- Asselin, J.; Legros, P.; Grégoire, A.; Boudreau, D. Correlating Metal-Enhanced Fluorescence and Structural Properties in Ag@SiO2 Core-Shell Nanoparticles. Plasmonics 2016, 11, 1369–1376. [Google Scholar] [CrossRef]
- Nayak, S.; Andrew Lyon, L. Soft nanotechnology with soft nanoparticles. Angew. Chem. Int. Ed. 2005, 44, 7686–7708. [Google Scholar] [CrossRef]
- Wu, X.; Pelton, R.H.; Hamielec, A.E.; Woods, D.R.; McPhee, W. The kinetics of poly(N-isopropylacrylamide) microgel latex formation. Colloid Polym. Sci. 1994, 272, 467–477. [Google Scholar] [CrossRef]
- Fernández-Barbero, A.; Fernández-Nieves, A.; Grillo, I.; López-Cabarcos, E. Structural modifications in the swelling of inhomogeneous microgels by light and neutron scattering. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 2002, 66, 10. [Google Scholar] [CrossRef] [PubMed]
- Stieger, M.; Richtering, W.; Pedersen, J.S.; Lindner, P. Small-angle neutron scattering study of structural changes in temperature sensitive microgel colloids. J. Chem. Phys. 2004, 120, 6197–6206. [Google Scholar] [CrossRef] [PubMed]
Samples | Number of Nucleation Points (×1012) | Overall Particle Surface (cm2) | Encapsulation (%) |
---|---|---|---|
S1: 50 nm AuNPs@pNIPAM-1 | 2.9 ± 0.1 | 305 ± 84 | 16 ± 3 |
S1: 50 nm AuNPs@pNIPAM-2 | 8.3 ± 0.1 | 599 ± 100 | 57 ± 2 |
S1: 50 nm AuNPs@pNIPAM-3 | 10.1 ± 0.2 | 1031 ± 290 | 66 ± 3 |
S1: 50 nm AuNPs@pNIPAM-4 | 12.6 ± 0.3 | 1284 ± 183 | 78 ± 3 |
S1: 50 nm AuNPs@pNIPAM-5 | 14.5 ± 0.8 | 1353 ± 210 | 94 ± 2 |
S2: 35 nm AuNPs@pNIPAM-1 | 2.9 ± 0.1 | 138 ± 50 | 17 ± 2 |
S2: 35 nm AuNPs@pNIPAM-2 | 10.1 ± 0.4 | 366 ± 130 | 68 ± 2 |
S3: 15 nm AuNPs@pNIPAM-1 | 2.9 ± 0.2 | 29 ± 13 | 91 ± 1 |
S3: 15 nm AuNPs@pNIPAM-2 | 14.5 ± 0.9 | 241 ± 85 | 99 ± 1 |
S4: 50/65 nm AuNPs@pNIPAM | 6.0 ± 0.2 | 583 ± 38 | 37 ± 2 |
S5: 25/65 nm AuNPs@pNIPAM | 14.6 ± 0.5 | 1006 ± 100 | 94 ± 2 |
Samples | Number of Nucleation Points (×1012) | DH at 15 °C (nm) ‡ | DH at 50 °C (nm) ‡ | Shrinking Ratio (%) |
---|---|---|---|---|
S1: 50 nm AuNPs@pNIPAM-1 | 2.9 ± 0.1 | 501 ± 6 | 339 ± 5 | 31.0 ± 0.5 |
S1: 50 nm AuNPs@pNIPAM-2 | 8.3 ± 0.1 | 370 ± 3 | 255 ± 1 | 32.8 ± 0.3 |
S1: 50 nm AuNPs@pNIPAM-3 | 10.1 ± 0.2 | 391 ± 7 | 264 ± 8 | 30.7 ± 1.0 |
S1: 50 nm AuNPs@pNIPAM-4 | 12.6 ± 0.3 | 345 ± 1 | 230 ± 3 | 29.7 ± 0.3 |
S1: 50 nm AuNPs@pNIPAM-5 | 14.5 ± 0.8 | 231 ± 4 | 146 ± 3 | 25.7 ± 0.5 |
S2: 35 nm AuNPs@pNIPAM-1 | 2.9 ± 0.1 | 378 ± 2 | 254 ± 6 | 30.6 ± 0.6 |
S2: 35 nm AuNPs@pNIPAM-2 | 10.1 ± 0.4 | 372 ± 3 | 253 ± 4 | 31.6 ± 0.5 |
S3: 15 nm AuNPs@pNIPAM-1 | 2.9 ± 0.2 | 305 ± 5 | 204 ± 3 | 29.7 ± 0.6 |
S3: 15 nm AuNPs@pNIPAM-2 | 14.5 ± 0.9 | 188 ± 4 | 120 ± 1 | 26.3 ± 0.4 |
pNIPAM microgels | - | 331 ± 6 | 243 ± 5 | 39.4 ± 1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sepúlveda, A.; Picard-Lafond, A.; Marette, A.; Boudreau, D. Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles. Polymers 2021, 13, 373. https://doi.org/10.3390/polym13030373
Sepúlveda A, Picard-Lafond A, Marette A, Boudreau D. Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles. Polymers. 2021; 13(3):373. https://doi.org/10.3390/polym13030373
Chicago/Turabian StyleSepúlveda, Adolfo, Audrey Picard-Lafond, André Marette, and Denis Boudreau. 2021. "Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles" Polymers 13, no. 3: 373. https://doi.org/10.3390/polym13030373
APA StyleSepúlveda, A., Picard-Lafond, A., Marette, A., & Boudreau, D. (2021). Nucleation Points: The Forgotten Parameter in the Synthesis of Hydrogel-Coated Gold Nanoparticles. Polymers, 13(3), 373. https://doi.org/10.3390/polym13030373