Fabrication of TiO2-Embedded Polyimide Layer with High Transmittance and Improved Reliability for Liquid Crystal Displays
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Functional Hybrid Polyimide Layer
2.2. Fabrication of the LC Cell Containing the Functional Hybrid Polyimide Alignment Layer
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Wu, S.-T. Advanced liquid crystal displays with supreme image qualities. Liq. Cryst. Today 2019, 28, 4–11. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Peng, F.; Luo, Z.; Xu, D.; Wu, S.; Li, M.; Lee, S.; Tsai, W. High performance liquid crystal displays with a low dielectric constant material. Opt. Mater. Express 2014, 4, 2262–2273. [Google Scholar] [CrossRef]
- Chen, H.-W.; Lee, J.-H.; Lin, B.-Y.; Chen, S.; Wu, S.-T. Liquid crystal display and organic light-emitting diode display: Present status and future perspectives. Light Sci. Appl. 2018, 7, 17168. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Tseng, M.C.; Lee, C.Y.; Sun, J.; Tang, S.T.; Cheung, Y.L.; Srivastava, A.; Chigrinov, V.; Kwok, H.S. P-76: Polarization-Controllable Light-Printer for Optically Rewritable (ORW) Liquid Crystal Displays. SID Symp. Dig. Tech. Pap. 2016, 47, 1421–1423. [Google Scholar] [CrossRef]
- Lee, C.; Moon, S.; Lee, S.; Yoo, D.; Hong, J.; Lee, B. Compact three-dimensional head-mounted display system with Savart plate. Opt. Express 2016, 24, 19531–19544. [Google Scholar] [CrossRef]
- Nishimoto, N.; Yamada, Y.; Ohnishi, Y.; Imawaka, N.; Yoshino, K. Effect of temperature on the electrical properties of ITO in a TiO2/ITO film. Phys. Status Solidi 2013, 210, 589–593. [Google Scholar] [CrossRef]
- Mahdiyar, R.; Fadavieslam, M.R. The effects of chemical treatment on ITO properties and performance of OLED devices. Opt. Quant. Electron. 2020, 52, 262. [Google Scholar] [CrossRef]
- Yu, J.Y.; Cho, S.H.; Park, J.K.; Yoon, J.W.; Whang, K.R.; Sugioka, K.; Hong, J.W.; Heo, W.R.; Boehme, D.; Park, J.H. Selective Removal of Thin Film on Glass Using Femtosecond Laser. J. Korean Soc. Laser Process. 2011, 14, 17–23. [Google Scholar]
- Yu, S.-Y.; Chang, J.-H.; Wang, P.-S.; Wu, C.-I.; Tao, Y.-T. Effect of ITO Surface Modification on the OLED Device Lifetime. Langmuir 2014, 30, 7369–7376. [Google Scholar] [CrossRef]
- Bi, H.-S.; Zhi, X.-X.; Wu, P.-H.; Zhang, Y.; Wu, L.; Tan, Y.-Y.; Jia, Y.-J.; Liu, J.-G.; Zhang, X.-M. Preparation and Characterization of Semi-Alicyclic Polyimide Resins and the Derived Alignment Layers for Liquid Crystal Display Technology. Polymers 2020, 12, 217. [Google Scholar] [CrossRef] [Green Version]
- Yoon, T.; Park, B.W.; Kim, K.; Kim, H.; Shin, K.; Kim, H.S. Multi-domain vertical alignment of nematic liquid crystals for reduced off-axis gamma shift. In Proceedings of the Emerging Liquid Crystal Technologies VIII, San Francisco, CA, USA, 5 March 2013; Volume 8642, p. 86420D. [Google Scholar]
- Choi, S.; Jin, H.; Kim, K.; Lee, J.; Kim, H.; Shin, K.; Kim, H.; Yoon, T. Formation of dual threshold in a vertical alignment liquid crystal device. J. Opt. Soc. Korea 2012, 16, 170–173. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y.; Park, S.U.; Yang, S.M.; Kim, S.Y. Ellipsometric Characterization of Rubbed Polyimide Alignment Layer in Relation with Distribution of Liquid Crystal Molecules in Twisted Nematic Cell. Curr. Opt. Photonics 2018, 2, 185–194. [Google Scholar]
- Chigrinov, V.; Sun, J.; Wang, X. Photoaligning and Photopatterning: New LC Technology. Crystals 2020, 10, 323. [Google Scholar] [CrossRef] [Green Version]
- Shang, X.; Cuypers, D.; Baghdasaryan, T.; Vervaeke, M.; Thienpont, H.; Beeckman, J.; Neyts, K.; Li, Q.; Wu, C.; Li, H.; et al. Active Optical Beam Shaping Based on Liquid Crystals and Polymer Micro-Structures. Crystals 2020, 10, 977. [Google Scholar] [CrossRef]
- Kasyanova, I.V.; Gorkunov, M.V.; Artemov, V.V.; Geivandov, A.R.; Mamonova, A.V.; Palto, S.P. Liquid crystal metasurfaces on micropatterned polymer substrates. Opt. Express 2018, 26, 20258–20269. [Google Scholar] [CrossRef]
- Basu, R.; Lee, A. Ion trapping by the graphene electrode in a graphene-ITO hybrid liquid crystal cell. Appl. Phys. Lett. 2017, 111, 161905. [Google Scholar] [CrossRef]
- Rahman, M.; Lee, W. Scientific duo of carbon nanotubes and nematic liquid crystals. J. Phys. D 2009, 42, 063001. [Google Scholar] [CrossRef]
- Yadav, G.; Katiyar, R.; Pathak, G.; Manohar, R. Effect of ion trapping behavior of TiO2 nanoparticles on different parameters of weakly polar nematic liquid crystal. J. Theor. Appl. Phys. 2018, 12, 191–198. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.P.; Manohar, R.; Singh, S. Effect of TiO2 nanoparticles dispersion on ionic behaviour in nematic liquid crystal. Liq. Cryst. 2015, 42, 1095–1101. [Google Scholar] [CrossRef]
- Garbovskiy, Y. Nanoparticle-enabled ion trapping and ion generation in liquid crystals. Adv. Condens. Matter Phys. 2018, 2018, 8914891. [Google Scholar] [CrossRef] [Green Version]
- Wu, P.; Yang, S.; Lee, W. Recovery of UV-degraded electrical properties of nematic liquid crystals doped with TiO2 nanoparticles. J. Mol. Liq. 2016, 218, 150–155. [Google Scholar] [CrossRef]
- Tong, F.; Guo, X. Image sticking study of negative LC for FFS mode. Chin. J. Liq. Cryst. Disp. 2015, 30, 393–398. [Google Scholar] [CrossRef]
- Liu, N.; Wang, M.; Gao, L.; Jing, S.; Gao, N.; Yang, Y.; Xing, H.; Meng, X.; He, Z.; Li, J. Evaluation and improvement of image sticking in in-plane switching liquid crystal display. J. Phys. D 2020, 53, 155303. [Google Scholar] [CrossRef]
- Jiao, F.; Wang, H.H. The theory and analysis of TFT-LCD image sticking (Basis). Adv. Disp. 2012, 23, 54–59. [Google Scholar]
- Liu, N.; Wang, M.; Tang, Z.; Gao, L.; Jing, S.; Gao, N.; Xing, H.; Meng, X.; He, Z.; Li, J.; et al. Influence of γ-Fe2O3 nanoparticles doping on the image sticking in VAN-LCD. Chin. Opt. Lett. 2020, 18, 033501. [Google Scholar] [CrossRef]
- Ye, W.; Yuan, R.; Dai, Y.; Gao, L.; Pang, Z.; Zhu, J.; Meng, X.; He, Z.; Li, J.; Cai, M. Improvement of image sticking in liquid crystal display doped with γ-Fe2O3 nanoparticles. J. Nanomater. 2018, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.; Tong, Q.; Lei, Y.; Xin, Z.; Zhang, X.; Ji, A.; Sang, H.; Xie, C. An arrayed liquid crystal Fabry–Perot infrared filter for electrically tunable spectral imaging detection. IEEE Sens. J. 2016, 16, 2397–2403. [Google Scholar] [CrossRef]
- Ren, W.; Hsieh, C.; Zhao, Y.; Zhao, R.; Song, Y.; Li, X.; Zhang, Y.; Yuan, C.; Chiu, C.; Lee, C. P-117: The Investigation of Photo Alignment Polyimide Material for Large Size IPS Display. SID Symp. Dig. Tech. Pap. 2016, 47, 1563–1565. [Google Scholar] [CrossRef]
- Son, I.; Kim, C.; Moon, G.; Lee, J.H. Photo-Tunable Supramolecular Ultrathin Surfaces for Simultaneous Homeotropic Anchoring and Superfast Switching of Liquid Crystals. Macromol. Chem. Phys. 2019, 220, 1900411. [Google Scholar] [CrossRef]
- Kim, C.; Son, I.; Kim, J.H.; Yoo, J.Y.; Lee, B.; Lee, J.H. New hydrogen-bonded comblike polyimides with mesogenic side chains for stable orientation and fast switching of liquid crystals. Liq. Cryst. 2020, 47, 761–767. [Google Scholar] [CrossRef]
- Ling, A.; Chen, J.; Wu, L.; Xie, H.; Shen, P.; Tseng, C. 63-1: High Transmittance and Fast Response Time Liquid Crystal Displays Using A Novel Electrode Pattern. SID Symp. Dig. Tech. Pap. 2016, 47, 851–853. [Google Scholar] [CrossRef]
- Son, I.; Lee, J.H. A superfast responsive and ultrathin self-constructed bilayer nanoarchitecture for automatic vertical orientation of liquid crystals. Appl. Mater. Today 2020, 20, 100790. [Google Scholar] [CrossRef]
- Yang, J.; Chen, H.P.; Huang, Y.; Chang, Y.; Lai, F.; Wu, S.; Hsu, C.; Tsai, R.; Hsu, R. 66-3: Submillisecond-Response 10-Megapixel 4K2K LCoS for Microdisplay and Spatial Light Modulator. SID Symp. Dig. Tech. Pap. 2019, 50, 933–936. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Son, S.-R.; An, J.; Choi, J.-W.; Lee, J.H. Fabrication of TiO2-Embedded Polyimide Layer with High Transmittance and Improved Reliability for Liquid Crystal Displays. Polymers 2021, 13, 376. https://doi.org/10.3390/polym13030376
Son S-R, An J, Choi J-W, Lee JH. Fabrication of TiO2-Embedded Polyimide Layer with High Transmittance and Improved Reliability for Liquid Crystal Displays. Polymers. 2021; 13(3):376. https://doi.org/10.3390/polym13030376
Chicago/Turabian StyleSon, Seung-Rak, Jongil An, Jin-Wook Choi, and Jun Hyup Lee. 2021. "Fabrication of TiO2-Embedded Polyimide Layer with High Transmittance and Improved Reliability for Liquid Crystal Displays" Polymers 13, no. 3: 376. https://doi.org/10.3390/polym13030376
APA StyleSon, S. -R., An, J., Choi, J. -W., & Lee, J. H. (2021). Fabrication of TiO2-Embedded Polyimide Layer with High Transmittance and Improved Reliability for Liquid Crystal Displays. Polymers, 13(3), 376. https://doi.org/10.3390/polym13030376