Composite Aramid Membranes with High Strength and pH-Response
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Membrane
2.2.1. Preparation of the Solution of ANF
2.2.2. Preparation of the ANF Hydrogel
2.2.3. Preparation of the HANF Hydrogel
2.2.4. Preparation of the ANF/HANF Composite Membranes
2.3. Characterization
2.3.1. Fourier-Transform Infrared (FTIR) Spectroscopy
2.3.2. Atomic Force Microscope (AFM) Observation
2.3.3. Scanning Electron Microscope (SEM) Observation
2.3.4. Water Flux at Different pH Values
2.3.5. BSA Retention Tests of Membranes at Different pH Values
2.3.6. Thermogravimetric Analysis (TGA)
2.3.7. Tensile Strength Tests
2.3.8. Chemical Resistance Tests
2.3.9. Transparency Measurements
3. Results and Discussion
3.1. Preparation of the ANFs, HANFs, and ANF/HANF Membranes
3.1.1. Preparation of the ANF and ANF Hydrogels
3.1.2. Preparation of the HANF Hydrogel
3.1.3. Preparation of the ANF/HANF Membranes
3.2. Performance of the ANF/HANF Membranes
3.2.1. pH-Responsive Characteristics of the Membranes
3.2.2. Morphology of the ANF/HANF Membranes
3.2.3. Mechanical Properties
3.2.4. Physical and Chemical Stabilities
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, X.-X.; Xie, R.; Zhao, Q.; Li, X.-Y.; Ju, X.-J.; Wang, W.; Liu, Z.; Chu, L.-Y. Dual pH-responsive smart gating membranes. J. Membr. Sci. 2018, 555, 20–29. [Google Scholar] [CrossRef]
- Mondal, P.; Samanta, N.S.; Meghnani, V.; Purkait, M.K. Selective glucose permeability in presence of various salts through tunable pore size of pH responsive PVaDF-co-HFP membrane. Sep. Purif. Technol. 2019, 221, 249–260. [Google Scholar] [CrossRef]
- Passos Gibson, V.; Fauquignon, M.; Ibarboure, E.; Leblond Chain, J.; Le Meins, J.F. Switchable Lipid Provides pH-Sensitive Properties to Lipid and Hybrid Polymer/Lipid Membranes. Polymers 2020, 12, 637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.-Y.; Li, W.; Zhou, J.; Gu, J.-S.; Huang, L.; Tang, Z.-Q.; Wei, X.-W. Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. J. Membr. Sci. 2009, 343, 82–89. [Google Scholar] [CrossRef]
- Song, J.; Wei, Y.; Hu, J.; Liu, G.; Huang, Z.; Lin, S.; Liu, F.; Mo, Y.; Tu, Y.; Ou, M. pH-Responsive Porous Nanocapsules for Controlled Release. Chemistry 2018, 24, 212–221. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Zhu, X.L.; Xu, F.J.; Neoh, K.G.; Kang, E.T. Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-initiated atom transfer radical graft polymerizations. J. Membr. Sci. 2009, 342, 300–306. [Google Scholar] [CrossRef]
- Ulbricht, M.; Özdemir, S.; Geismann, C. Functionalized track-etched membranes as versatile tool to investigate stimuli-responsive polymers for “smart” nano- and microsystems. Desalination 2006, 199, 150–152. [Google Scholar] [CrossRef]
- Abetz, V.; Brinkmann, T.; Dijkstra, M.; Ebert, K.; Fritsch, D.; Ohlrogge, K.; Paul, D.; Peinemann, K.V.; Pereira-Nunes, S.; Scharnagl, N.; et al. Developments in Membrane Research: From Material via Process Design to Industrial Application. Adv. Eng. Mater. 2006, 8, 328–358. [Google Scholar] [CrossRef]
- Mable, C.J.; Canton, I.; Mykhaylyk, O.O.; Ustbas Gul, B.; Chambon, P.; Themistou, E.; Armes, S.P. Targeting triple-negative breast cancer cells using Dengue virus-mimicking pH-responsive framboidal triblock copolymer vesicles. Chem. Sci. 2019, 10, 4811–4821. [Google Scholar] [CrossRef] [Green Version]
- Li, C.Y.; Wang, W.C.; Xu, F.J.; Zhang, L.Q.; Yang, W.T. Preparation of pH-sensitive membranes via dopamine-initiated atom transfer radical polymerization. J. Membr. Sci. 2011, 367, 7–13. [Google Scholar] [CrossRef]
- Yi, Z.; Zhu, L.-P.; Xu, Y.-Y.; Li, X.-L.; Yu, J.-Z.; Zhu, B.-K. F127-based multi-block copolymer additives with poly(N,N-dimethylamino-2-ethyl methacrylate) end chains: The hydrophilicity and stimuli-responsive behavior investigation in polyethersulfone membranes modification. J. Membr. Sci. 2010, 364, 34–42. [Google Scholar] [CrossRef]
- Zhu, L.J.; Song, H.M.; Wang, G.; Zeng, Z.X.; Xue, Q.J. Dual stimuli-responsive polysulfone membranes with interconnected networks by a vapor-liquid induced phase separation strategy. J. Colloid Interface Sci. 2018, 531, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.; Tu, Y.; Yang, Y.; Lin, S.; Hu, J.; Zhang, M.; Li, Y.; Li, F.; Mo, Y. Robust Stimuli-Responsive Membranes Prepared from a Blend of Polysulfone and a Graft Copolymer Bearing Binary Side Chains with Thermo- and pH-Responsive Switching Behavior. Chemistry 2017, 23, 7737–7747. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Cao, K.; Sui, L.; Qi, Y.; Zhu, J.; Waas, A.; Arruda, E.M.; Kieffer, J.; Thouless, M.D.; Kotov, N.A. Dispersions of aramid nanofibers: A new nanoscale building block. ACS Nano 2011, 5, 6945–6954. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Han, X.; Zong, L.; Li, M.; You, J.; Wu, X.; Li, C. Biomimetic Hybridization of Kevlar into Silk Fibroin: Nanofibrous Strategy for Improved Mechanic Properties of Flexible Composites and Filtration Membranes. ACS Nano 2017, 11, 8178–8184. [Google Scholar] [CrossRef] [PubMed]
- Sweeney, D.J.; Newell, J.A. A Mechanistic Approach to the Modeling of the Fracture of Kevlar-29 Fiber in Recoil Compression. High Perform. Polym. 2016, 17, 277–292. [Google Scholar] [CrossRef]
- Mourad, A.H.I.; Cherupurakal, N.; Hafeez, F.; Barsoum, I.; Genena, F.A.; Al Mansoori, M.S.; Al Marzooqi, L.A. Impact Strengthening of Laminated Kevlar/Epoxy Composites by Nanoparticle Reinforcement. Polymers 2020, 12, 2814. [Google Scholar] [CrossRef] [PubMed]
- Neves Monteiro, S.; Salgado de Assis, F.; Ferreira, C.L.; Tonini Simonassi, N.; Ponde Weber, R.; Souza Oliveira, M.; Colorado, H.A.; Camposo Pereira, A. Fique Fabric: A Promising Reinforcement for Polymer Composites. Polymers 2018, 10, 246. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Zhu, J.; Li, S.; Guo, Z.; Van der Bruggen, B. Flexible Aliphatic-Aromatic Polyamide Thin Film Composite Membrane for Highly Efficient Organic Solvent Nanofiltration. ACS Appl. Mater. Inter. 2020, 12, 31962–31974. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Shen, J.; Gao, C.; Van der Bruggen, B. The Potential of Kevlar Aramid Nanofibers Composite Membranes. J. Mater. Chem. A 2020. [Google Scholar] [CrossRef]
- Li, Y.; Wong, E.; Mai, Z.; Van der Bruggen, B. Fabrication of composite polyamide/Kevlar aramid nanofiber nanofiltration membranes with high permselectivity in water desalination. J. Membr. Sci. 2019, 592. [Google Scholar] [CrossRef]
- Nasser, J.; Lin, J.; Steinke, K.; Sodano, H.A. Enhanced interfacial strength of aramid fiber reinforced composites through adsorbed aramid nanofiber coatings. Compos. Sci. Technol. 2019, 174, 125–133. [Google Scholar] [CrossRef]
- Shiju, J.; Al-Sagheer, F.; Ahmad, Z. Thermal Mechanical Properties of Graphene Nano-Composites with Kevlar-Nomex Copolymer: A Comparison of the Physical and Chemical Interactions. Polymers 2020, 12, 2740. [Google Scholar] [CrossRef]
- Teng, C.; Li, H.; Liu, J.; Gu, H.; Kong, H.; Yu, M. Effect of High Molecular Weight PPTA on Liquid Crystalline Phase and Spinning Process of Aramid Fibers. Polymers 2020, 12, 1206. [Google Scholar] [CrossRef]
- Miao, L.; Wu, Y.; Hu, J.; Wang, P.; Liu, G.; Lin, S.; Tu, Y. Hierarchical aramid nanofibrous membranes from a nanofiber-based solvent-induced phase inversion process. J. Membr. Sci. 2019, 578, 16–26. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, M.; Lu, Z.; Luo, J.; Song, S.; Zhang, Q. From Poly(p-phenylene terephthalamide) Broken Paper: High-Performance Aramid Nanofibers and Their Application in Electrical Insulating Nanomaterials with Enhanced Properties. ACS Sustain. Chem. Eng. 2018, 6, 8954–8963. [Google Scholar] [CrossRef]
- Agmon, N.; Huppert, D.; Masad, A.; Pines, E. Excited-state proton transfer to methanol-water mixtures. J. Phys. Chem. 1991, 25. [Google Scholar] [CrossRef]
- Sha, L.; Zhao, H. Effect of Surface Modification Process Conditions on Properties of Aramid Paper. Polym. Korea 2013, 37, 196–203. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, Y.; Su, Z.; Zhang, M.; Yang, B. The Effect of Phosphoric Acid Functionalization of Para-aramid Fiber on the Mechanical Property of Para-aramid Sheet. J. Eng. Fiber Fabr. 2018, 13, 155892501801300303. [Google Scholar] [CrossRef] [Green Version]
- Abdi, S.; Nasiri, M. Enhanced Hydrophilicity and Water Flux of Poly(ether sulfone) Membranes in the Presence of Aluminum Fumarate Metal-Organic Framework Nanoparticles: Preparation and Characterization. ACS Appl. Mater. Inter. 2019, 11, 15060–15070. [Google Scholar] [CrossRef] [PubMed]
- McCutcheon, J.R.; Elimelech, M. Influence of membrane support layer hydrophobicity on water flux in osmotically driven membrane processes. J. Membr. Sci. 2008, 318, 458–466. [Google Scholar] [CrossRef]
- Tang, W.; Ng, H.Y. Concentration of brine by forward osmosis: Performance and influence of membrane structure. Desalination 2008, 224, 143–153. [Google Scholar] [CrossRef]
- Wang, L.; Pan, K.; Li, L.; Cao, B. Surface Hydrophilicity and Structure of Hydrophilic Modified PVDF Membrane by Nonsolvent Induced Phase Separation and Their Effect on Oil/Water Separation Performance. Ind. Eng. Chem. Res. 2014, 53, 6401–6408. [Google Scholar] [CrossRef]
- Miao, A.; Wei, M.; Xu, F.; Wang, Y. Influence of membrane hydrophilicity on water permeability: An experimental study bridging simulations. J. Membr. Sci. 2020, 604. [Google Scholar] [CrossRef]
- Chen, M.; Li, J.-W.; Zhang, W.-J.; Hong, C.-Y.; Pan, C.-Y. pH- and Reductant-Responsive Polymeric Vesicles with Robust Membrane-Cross-Linked Structures: In Situ Cross-Linking in Polymerization-Induced Self-Assembly. Macromolecules 2019, 52, 1140–1149. [Google Scholar] [CrossRef]
- Abdel-Karim, A.; Gad-Allah, T.A.; El-Kalliny, A.S.; Ahmed, S.I.A.; Souaya, E.R.; Badawy, M.I.; Ulbricht, M. Fabrication of modified polyethersulfone membranes for wastewater treatment by submerged membrane bioreactor. Sep. Purif. Technol. 2017, 175, 36–46. [Google Scholar] [CrossRef]
- Zambare, R.S.; Dhopte, K.B.; Patwardhan, A.V.; Nemade, P.R. Polyamine functionalized graphene oxide polysulfone mixed matrix membranes with improved hydrophilicity and anti-fouling properties. Desalination 2017, 403, 24–35. [Google Scholar] [CrossRef]
- Wang, K.; Wu, Q.; Yan, X.; Liu, J.; Gao, L.; Hu, L.; Zhang, N.; Pan, Y.; Zheng, W.; He, G. Branched poly(ether ether ketone) based anion exchange membrane for H2/O2 fuel cell. Int. J. Hydrogen Energy 2019, 44, 23750–23761. [Google Scholar] [CrossRef]
- Guo, C.; Shi, H.; Wang, W.; Pei, X.; Teng, K.; Hu, Y.; Xu, Z.; Deng, H.; Qian, X. Improvement of PVDF nanofiltration membrane potential, separation and anti-fouling performance by electret treatment. Sci. Total Environ. 2020, 722, 137816. [Google Scholar] [CrossRef]
- Chung, T.-S.; Zhang, S.; Wang, K.Y.; Su, J.; Ling, M.M. Forward osmosis processes: Yesterday, today and tomorrow. Desalination 2012, 287, 78–81. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, B.; Du, S.; Yu, Y. Estimation of aramid fiber/epoxy interfacial properties by fiber bundle tests and multiscale modeling considering the fiber skin/core structure. Compos. Struct. 2017, 167, 1–10. [Google Scholar] [CrossRef]
- Le Phuong, H.A.; Izzati Ayob, N.A.; Blanford, C.F.; Mohammad Rawi, N.F.; Szekely, G. Nonwoven Membrane Supports from Renewable Resources: Bamboo Fiber Reinforced Poly(Lactic Acid) Composites. ACS Sustain. Chem. Eng. 2019, 7, 11885–11893. [Google Scholar] [CrossRef]
Rq (nm) | Ra (nm) | Rmax (nm) | |
---|---|---|---|
ANF membrane | 13.6 | 10.7 | 78.9 |
ANF/HANF membrane (HANFS: 10 wt%) | 15.2 | 12.4 | 82.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Li, S.; Tu, Y.; Hu, J.; Huang, Z.; Lin, S.; Gui, X. Composite Aramid Membranes with High Strength and pH-Response. Polymers 2021, 13, 621. https://doi.org/10.3390/polym13040621
Wang X, Li S, Tu Y, Hu J, Huang Z, Lin S, Gui X. Composite Aramid Membranes with High Strength and pH-Response. Polymers. 2021; 13(4):621. https://doi.org/10.3390/polym13040621
Chicago/Turabian StyleWang, Xiao, Shi Li, Yuanyuan Tu, Jiwen Hu, Zhenzhu Huang, Shudong Lin, and Xuefeng Gui. 2021. "Composite Aramid Membranes with High Strength and pH-Response" Polymers 13, no. 4: 621. https://doi.org/10.3390/polym13040621
APA StyleWang, X., Li, S., Tu, Y., Hu, J., Huang, Z., Lin, S., & Gui, X. (2021). Composite Aramid Membranes with High Strength and pH-Response. Polymers, 13(4), 621. https://doi.org/10.3390/polym13040621