Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, B.; Chen, D.; Hayward, R.C. Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films. Adv. Mater. 2014, 26, 4381–4385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayward, R.C.; Chen, D.; Xu, B. Mechanically gated electrical switches by creasing of patterned metal/elastomer bilayer films. U.S. Patent No. 10,138,542, 27 November 2018. [Google Scholar]
- Wang, C.; Xu, B.B.; Terry, J.G.; Smith, S.; Walton, A.J.; Wang, S.; Lv, H.; Li, Y. Flexible, strain gated logic transducer arrays enabled by initializing surface instability on elastic bilayers. APL Mater. 2019, 7, 031509. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Lei, M.; Zhao, C.; Xu, B.; Leng, J.; Fu, Y.Q. Structural design of flexible Au electrode to enable shape memory polymer for electrical actuation. Smart Mater. Struct. 2015, 24, 045015. [Google Scholar] [CrossRef]
- Cao, W.; Liu, C.; Jia, P. Feature Extraction and Classification of Citrus Juice by Using an Enhanced L-KSVD on Data Obtained from Electronic Nose. Sensors 2019, 19, 916. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Belhaire, E.; Chappert, C.; Mazoyer, P. Power and area optimization for run-time reconfiguration system on programmable chip based on magnetic random access memory. IEEE Trans. Magn. 2009, 45, 776–780. [Google Scholar] [CrossRef]
- Wang, W. Magnetic random accessible memory based magnetic content addressable memory cell design. IEEE Trans. Magn. 2010, 46, 1967–1970. [Google Scholar] [CrossRef]
- Lee, M.J.; Park, Y.; Suh, D.S.; Lee, E.H.; Seo, S.; Kim, D.C.; Jung, R.; Kang, B.S.; Ahn, S.E.; Lee, C.B.; et al. Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 2007, 19, 3919–3923. [Google Scholar] [CrossRef]
- Lin, C.-Y.; Wu, C.-Y.; Wu, C.-Y.; Lee, T.-C.; Yang, F.-L.; Hu, C.; Tseng, T.-Y. Effect of Top Electrode Material on Resistive Switching Properties of ZrO2 Film Memory Devices. IEEE Electron Device Lett. 2007, 28, 366–368. [Google Scholar] [CrossRef]
- Ambrosi, E.; Bricalli, A.; Laudato, M.; Ielmini, D. Impact of oxide and electrode materials on the switching characteristics of oxide ReRAM devices. Faraday Discuss. 2019, 213, 87–98. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-C.; Chang, Y.P.; Ho, C.-C.; Shen, Y.-S.; Chiou, B.-S. Effect of Top Electrode Materials on the Nonvolatile Resistive Switching Characteristics of CCTO Films. IEEE Trans. Magn. 2011, 47, 633–636. [Google Scholar] [CrossRef]
- Ke, J.-J.; Wei, T.-C.; Tsai, D.-S.; Lin, C.-H.; He, J.-H. Surface effects of electrode-dependent switching behavior of resistive random-access memory. Appl. Phys. Lett. 2016, 109, 131603. [Google Scholar] [CrossRef] [Green Version]
- Si, W.; Lei, W.; Han, Z.; Zhang, Y.; Hao, Q.; Xia, M. Electrochemical sensing of acetaminophen based on poly(3,4-ethylenedioxythiophene)/graphene ox- ide composites. Sensors Actuators B Chem. 2014, 193, 823–829. [Google Scholar] [CrossRef]
- Chua, C.K.; Ambrosi, A.; Pumera, M. Graphene oxide reduction by standard industrial reducing agent: Thiourea dioxide. J. Mater. Chem. 2012, 22, 11054. [Google Scholar] [CrossRef]
- Moon, I.K.; Lee, J.; Ruoff, R.S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73. [Google Scholar] [CrossRef] [Green Version]
- Chang, Y.C.; Jian, J.C.; Hsu, Y.L.; Huang, W.Y.; Young, S.J. A Green Strategy for Developing a Self-Healing Gelatin Resistive Memory Device. ACS Appl. Polym. Mater. 2020, 11, 5318–5326. [Google Scholar] [CrossRef]
- Chang, Y.C.; Lee, C.J.; Wang, L.W.; Wang, Y.H. Highly Uniform Resistive Switching Properties of Solution-Processed Silver-Embedded Gelatin Thin Film. Small 2018, 13, 1703888. [Google Scholar] [CrossRef]
- Hwang, Y.H.; An, H.M.; Cho, W.J. Performance Improvement of the Resistive Memory Properties of InGaZnO Thin Films by Using Microwave Irradiation. Jpn. J. Appl. Phys. 2014, 53, 04EJ04. [Google Scholar] [CrossRef]
- Aburtoa, J.; Morana, M.; Galanob, A.; Torres-Garcíaa, E. Non-isothermal pyrolysis of pectin: A thermochemical and kinetic approach. J. Anal. Appl. Pyrolysis 2015, 112, 94–104. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, H.D.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Lampert, M.A. Simplified Theory of Space-Charge-Limited Currents in an Insulator with Traps. Phys. Rev. 1956, 103, 1648–1656. [Google Scholar] [CrossRef]
- Yang, Y.C.; Pan, F.; Zeng, F.; Liu, M. Switching mechanism transition induced by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From carrier trapping/detrapping to electrochemical metallization. J. Appl. Phys. 2009, 106, 123705. [Google Scholar] [CrossRef]
- Shi, T.; Yang, R.; Guo, X. Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ion. 2016, 296, 114–119. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Liu, J.; Hu, Z.; Wang, Q.; Zhang, Y.; Wei, M.; Hu, C. Resistive switching behavior in Pt/YSZ/Nb:SrTiO3 heterostructure for nonvolatile multilevel memories. J. Alloy. Compd. 2014, 612, 30–33. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Zhou, H.; Hu, Z.; Liu, X.; Liao, H. Improved bipolar resistive switching properties in CeO2/ZnO stacked hetero-structures. Semicond. Sci. Technol. 2013, 28, 015023. [Google Scholar] [CrossRef]
- Zhu, Y.; Li, M.; Zhou, H.; Hu, Z.; Liu, X.; Fang, X.; Sebo, B.; Fang, G.; Zhao, X. Nonvolatile bipolar resistive switching in an Ag/TiO2/Nb: SrTiO3/In device. J. Phys. D Appl. Phys. 2012, 45, 375303. [Google Scholar] [CrossRef]
- Wang, Z.S.; Zeng, F.; Yang, J.; Chen, C.; Yang, Y.C.; Pan, F. Reproducible and Controllable Organic Resistive Memory Based on Al/Poly(3,4-ethylene-dioxythiophene):Poly(styrenesulfonate)/Al Structure. Appl. Phys. Lett. 2010, 97, 253301. [Google Scholar] [CrossRef]
- Chang, Y.C.; Xue, R.Y.; Wang, Y.H. Multilayered Barium Titanate Thin Films by Sol-Gel Method for Nonvolatile Memory Application. Ieee Trans. Electron Devices 2014, 61, 4090–4097. [Google Scholar] [CrossRef]
- Chang, Y.C.; Wang, Y.H. Resistive Switching Behavior in Gelatin Thin Films for Nonvolatile Memory Application. ACS Appl. Mater. Interfaces 2014, 6, 5413–5421. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.C.; Hou, T.H.; Lin, K.L.; Lee, Y.J.; Lei, T.F. Reversible Transition of Resistive Switching Induced by Oxygen-Vacancy and Metal Filaments in HfO2. Solid-State Electron. 2013, 89, 167–170. [Google Scholar] [CrossRef]
- Kumari, N.; Pandey, M.; Hamada, K.; Hirotani, D.; Nagamatsu, S.; Hayase, S.; Pandey, S.S. Role of Device Architecture and AlOx Interlayer in Organic Schottky Diodes and Their Interpretation by Analytical Modeling. J. Appl. Phys. 2019, 126, 125501. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jian, J.C.; Chuang, M.Y.; Hsu, Y.L.; Huang, W.Y.; Young, S.J. Metal and Carbon Filaments in Bio-memory Device through Controlled the Al/Apple Pectin Interface. ACS Appl. Electron. Mater. 2020, 2, 2798–2805. [Google Scholar] [CrossRef]
- Chang, Y.C.; Jian, J.C.; Hsu, Y.L.; Huang, W.Y.; Chen, Z.C.; Liu, K.M. “Repeatable room-temperature self-healing memory device based on gelatin films. Flex. Print. Electron. 2020, 5, 045005. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, K.-W.; Wang, T.-Y.; Chang, Y.-C. Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films. Polymers 2021, 13, 710. https://doi.org/10.3390/polym13050710
Lin K-W, Wang T-Y, Chang Y-C. Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films. Polymers. 2021; 13(5):710. https://doi.org/10.3390/polym13050710
Chicago/Turabian StyleLin, Kai-Wen, Ting-Yun Wang, and Yu-Chi Chang. 2021. "Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films" Polymers 13, no. 5: 710. https://doi.org/10.3390/polym13050710
APA StyleLin, K.-W., Wang, T.-Y., & Chang, Y.-C. (2021). Impact of Top Electrodes on the Nonvolatile Resistive Switching Properties of Citrus Thin Films. Polymers, 13(5), 710. https://doi.org/10.3390/polym13050710