Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication Process
2.2. Characterizations
2.3. Conjugations
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kuznicki, S.M.; Bell, V.A.; Nair, S.; Hillhouse, H.W.; Jacubinas, R.M.; Braunbarth, C.M.; Toby, B.H.; Tsapatsis, M. A titanosilicate molecular sieve with adjustable pores for size-selective adsorption of molecules. Nature 2001, 412, 720–724. [Google Scholar] [CrossRef]
- Simovic, S.; Losic, D.; Vasilev, K. Controlled drug release from porous materials by plasma polymer deposition. Chem. Commun. 2010, 46, 1317–1319. [Google Scholar] [CrossRef]
- Zhao, X.S.; Bao, X.Y.; Guo, W.; Lee, F.Y. Immobilizing catalysts on porous materials. Mater. Today 2006, 9, 32–39. [Google Scholar] [CrossRef]
- Luikov, A.V. Heat and mass transfer in capillary-porous bodies. In Advances in Heat Transfer; Elsevier: Amsterdam, The Netherlands, 1964; Volume 1, pp. 123–184. [Google Scholar]
- Zhang, R.; Ma, P.X. Poly(α-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology. J. Biomed. Mater. Res. 1999, 44, 446–455. [Google Scholar] [CrossRef]
- Sha, J.; Lippmann, E.S.; McNulty, J.; Ma, Y.; Ashton, R.S. Sequential nucleophilic substitutions permit orthogonal click functionalization of multicomponent PEG brushes. Biomacromolecules 2013, 14, 3294–3303. [Google Scholar] [CrossRef]
- Jiang, Z.; He, H.; Liu, H.; Thayumanavan, S. Azide-terminated RAFT polymers for biological applications. Curr. Protoc. Chem. Biol. 2020, 12, e85. [Google Scholar] [CrossRef]
- Presolski, S.I.; Hong, V.P.; Finn, M.G. Copper-catalyzed azide–alkyne click chemistry for bioconjugation. Curr. Protoc. Chem. Biol. 2011, 3, 153–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saxon, E.; Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 2000, 287, 2007–2010. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.; Lee, S.; Na, J.H.; Kim, S.H.; Hahn, S.K.; Choi, K.; Kwon, I.C.; Jeong, S.Y.; Kim, K. Bioorthogonal copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem. 2012, 124, 12006–12010. [Google Scholar] [CrossRef]
- Baskin, J.M.; Prescher, J.A.; Laughlin, S.T.; Agard, N.J.; Chang, P.V.; Miller, I.A.; Lo, A.; Codelli, J.A.; Bertozzi, C.R. Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. USA 2007, 104, 16793–16797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, N.K.; Weissleder, R.; Hilderbrand, S.A. Tetrazine-based cycloadditions: Application to pretargeted live cell imaging. Bioconjugate Chem. 2008, 19, 2297–2299. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Koo, H. Biomedical applications of copper-free click chemistry: In vitro, in vivo, and ex vivo. Chem. Sci. 2019, 10, 7835–7851. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.J.; Fernandes-Cunha, G.M.; Putra, I.; Koh, W.-G.; Myung, D. Tethering growth factors to collagen surfaces using copper-free click chemistry: Surface characterization and in vitro biological response. ACS Appl. Mater. Interfaces 2017, 9, 23389–23399. [Google Scholar] [CrossRef]
- Bi, Q.; Gan, X.; Yuan, R.; Xiang, Y. Copper-free click chemistry-mediated cyclic ligation amplification for highly sensitive and non-label electrochemical detection of gene mutation. J. Electrochem. Soc. 2020, 167, 027535. [Google Scholar] [CrossRef]
- Tatiparti, K.; Sau, S.; Gawde, K.A.; Iyer, A.K. Copper-free ‘click’ chemistry-based synthesis and characterization of carbonic anhydrase-IX anchored albumin-paclitaxel nanoparticles for targeting tumor hypoxia. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [Green Version]
- Guerrouache, M.; Mahouche-Chergui, S.; Chehimi, M.M.; Carbonnier, B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol–yne click photopatterning approach. Chem. Commun. 2012, 48, 7486–7488. [Google Scholar] [CrossRef]
- Tung, H.-Y.; Sun, T.-P.; Sun, H.-Y.; Guan, Z.-Y.; Hu, S.-K.; Chao, L.; Chen, H.-Y. Construction and control of 3D porous structure based on vapor deposition on sublimation solids. Appl. Mater. Today 2017, 7, 77–81. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, K.; Zhang, Z.; Tao, X.; Chen, H.-Y.; Kingshott, P.; Wang, P.-Y. Decoration of material surfaces with complex physicochemical signals for biointerface applications. ACS Biomater. Sci. Eng. 2020, 6, 1836–1851. [Google Scholar] [CrossRef] [PubMed]
- Tung, H.-Y.; Guan, Z.-Y.; Liu, T.-Y.; Chen, H.-Y. Vapor sublimation and deposition to build porous particles and composites. Nat. Commun. 2018, 9, 2564. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lahann, J. Designable biointerfaces using vapor-based reactive polymers. Langmuir 2010, 27, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-Y.; Wu, C.-Y.; Chen, T.-Y.; Huang, S.-T.; Chiang, Y.-C.; Chen, H.-Y. Clickable and photo-erasable surface functionalities by using vapor-deposited polymer coatings. ACS Biomater. Sci. Eng. 2019, 5, 1753–1761. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-Y.; Wu, C.-Y.; Chen, H.-Y. Stepwise and programmable cell differentiation pathways of controlled functional biointerfaces. ACS Biomater. Sci. Eng. 2017, 3, 1815–1821. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.-P.; Tai, C.-H.; Wu, J.-T.; Wu, C.-Y.; Liang, W.-C.; Chen, H.-Y. Multifaceted and route-controlled “click” reactions based on vapor-deposited coatings. Biomater. Sci. 2016, 4, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-Y.; Wu, C.-Y.; Li, Y.-J.; Chen, H.-Y. Switching the biointerface of displaceable poly-p-xylylene coatings. ACS Appl. Mater. Interfaces 2015, 7, 14431–14438. [Google Scholar] [CrossRef] [PubMed]
- Tsai, M.-Y.; Chen, Y.-C.; Lin, T.-J.; Hsu, Y.-C.; Lin, C.-Y.; Yuan, R.-H.; Yu, J.; Teng, M.-S.; Hirtz, M.; Chen, M.H.-C.; et al. Vapor-based multicomponent coatings for antifouling and biofunctional synergic modifications. Adv. Funct. Mater. 2014, 24, 2281–2287. [Google Scholar] [CrossRef]
- Sun, H.-Y.; Fang, C.-Y.; Lin, T.-J.; Chen, Y.-C.; Lin, C.-Y.; Ho, H.-Y.; Chen, M.H.C.; Yu, J.; Lee, D.-J.; Chang, C.-H.; et al. Thiol-reactive parylenes as a robust coating for biomedical materials. Adv. Mater. Interfaces 2014, 1, 1400093. [Google Scholar] [CrossRef]
- Wu, J.-T.; Huang, C.-H.; Liang, W.-C.; Wu, Y.-L.; Yu, J.; Chen, H.-Y. Reactive polymer coatings: A general route to thiol-ene and thiol-yne click reactions. Macromol. Rapid Commun. 2012, 33, 922–927. [Google Scholar] [CrossRef]
- Tsai, M.-Y.; Lin, C.-Y.; Huang, C.-H.; Gu, J.-A.; Huang, S.-T.; Yu, J.; Chen, H.-Y. Vapor-based synthesis of maleimide-functionalized coating for biointerface engineering. Chem. Commun. 2012, 48, 10969–10971. [Google Scholar] [CrossRef]
- Chen, H.Y.; Lahann, J. Vapor-assisted micropatterning in replica structures: A solventless approach towards topologically and chemically designable surfaces. Adv. Mater. 2007, 19, 3801–3808. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Friedmann, C.; Lahann, J. Bio-orthogonal “double-click” chemistry based on multifunctional coatings. Angew. Chem. Int. Ed. 2011, 50, 6522–6526. [Google Scholar] [CrossRef]
- Gorham, W.F. A new, general synthetic method for the preparation of linear poly-p-xylylenes. J. Polym. Sci. Part A-1 Polym. Chem. 1966, 4, 3027–3039. [Google Scholar] [CrossRef]
- Chiu, Y.-R.; Hsu, Y.-T.; Wu, C.-Y.; Lin, T.-H.; Yang, Y.-Z.; Chen, H.-Y. Fabrication of asymmetrical and gradient hierarchy structures of poly-p-xylylenes on multiscale regimes based on a vapor-phase sublimation and deposition process. Chem. Mater. 2020, 32, 1120–1130. [Google Scholar] [CrossRef]
- Sletten, E.M.; Nakamura, H.; Jewett, J.C.; Bertozzi, C.R. Difluorobenzocyclooctyne: Synthesis, reactivity, and stabilization by β-cyclodextrin. J. Am. Chem. Soc. 2010, 132, 11799–11805. [Google Scholar] [CrossRef]
- Guan, Z.-Y.; Huang, C.-W.; Huang, M.-C.; Wu, C.-Y.; Liu, H.-Y.; Ding, S.-T.; Chen, H.-Y. Controlling multi-function of biomaterials interfaces based on multiple and competing adsorption of functional proteins. Colloids Surf. B Biointerfaces 2017, 149, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-Y.; Lin, T.-J.; Tsai, M.-Y.; Su, C.-T.; Yuan, R.-H.; Hsieh, C.-C.; Yang, Y.-J.; Hsu, C.-C.; Hsiao, H.-M.; Hsu, Y.-C. Vapor-based tri-functional coatings. Chem. Commun. 2013, 49, 4531–4533. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-Y.; Chang, C.-W.; Yuan, R.-H.; Chiang, Y.-C.; Chen, J.-T.; Kang, D.-Y.; Chen, H.-Y. Multifunctional nanoparticles with controllable dimensions and tripled orthogonal reactivity. Nanoscale 2017, 9, 14787–14791. [Google Scholar] [CrossRef] [PubMed]
- Guan, Z.-Y.; Wu, C.-Y.; Wu, J.-T.; Tai, C.-H.; Yu, J.; Chen, H.-Y. Multifunctional and continuous gradients of biointerfaces based on dual reverse click reactions. ACS Appl. Mater. Interfaces 2016, 8, 13812–13818. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, C.-Y.; Hu, S.-M.; Xiao, J.-Q.; Chang, Y.-M.; Kusanagi, T.; Wu, T.-Y.; Chiu, Y.-R.; Yang, Y.-C.; Huang, C.-W.; Chen, H.-Y. Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry. Polymers 2021, 13, 786. https://doi.org/10.3390/polym13050786
Lee C-Y, Hu S-M, Xiao J-Q, Chang Y-M, Kusanagi T, Wu T-Y, Chiu Y-R, Yang Y-C, Huang C-W, Chen H-Y. Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry. Polymers. 2021; 13(5):786. https://doi.org/10.3390/polym13050786
Chicago/Turabian StyleLee, Chin-Yun, Shu-Man Hu, Jia-Qi Xiao, Yu-Ming Chang, Tatsuya Kusanagi, Ting-Ying Wu, Ya-Ru Chiu, Yen-Ching Yang, Chao-Wei Huang, and Hsien-Yeh Chen. 2021. "Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry" Polymers 13, no. 5: 786. https://doi.org/10.3390/polym13050786
APA StyleLee, C. -Y., Hu, S. -M., Xiao, J. -Q., Chang, Y. -M., Kusanagi, T., Wu, T. -Y., Chiu, Y. -R., Yang, Y. -C., Huang, C. -W., & Chen, H. -Y. (2021). Vapor Sublimation and Deposition to Fabricate a Porous Methyl Propiolate-Functionalized Poly-p-xylylene Material for Copper-Free Click Chemistry. Polymers, 13(5), 786. https://doi.org/10.3390/polym13050786