Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Anion Exchange Membranes
2.2.1. Synthesis of Chloromethylated Polysulfones
2.2.2. Synthesis of Sulfonated Polysulfones
2.2.3. Functionalization of PSU with 1-Methylimidazole
2.2.4. Preparation of Polymer Blends: Ionic Crosslinking
2.2.5. Preparation of Membranes
2.3. Measurements
2.3.1. 1H-NMR
2.3.2. Thermogravimetric Analysis (TGA)
2.3.3. Mechanical Properties
2.3.4. Water Uptake (WU%)
2.3.5. Ion-Exchange Capacity (IEC)
2.3.6. Ionic Conductivity
2.3.7. Alkaline Stability
3. Results and Discussion
3.1. Strategy
3.2. Structural Characterization
3.2.1. Synthesis of Methylimidazolium-Functionalized Polysulfone Crosslinked with TMEDA
3.2.2. Sulfonation of PSU
3.3. Thermogravimetric Analysis (TGA)
3.4. Mechanical Properties
3.5. Water Uptake
3.6. Ion Exchange Capacity
3.7. Ionic Conductivity
3.8. Alkaline Stability: Effect of Ionic Crosslinking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PEMFC | Proton exchange membrane fuel cell |
AEMFC | Anion exchange membrane fuel cell |
AEM | Anion exchange membrane |
PEM | Proton exchange membrane |
DABCO | 1,4-diazabicyclo-[2,2,2]-octane |
PSU | Polysulfone |
TMEDA | N,N,N′,N′-tetramethylethylenediamine |
IPN | Interpenetrating polymer network |
PVA | Poly (vinyl alcohol) |
PAADDA | Poly (acrylamide-co-diallyldimethylammonium chloride |
sIPN | Semi-interpenetrating polymer network |
BTMA | Benzyltrimethylammonium |
PS | Poly (styrene) |
PPO | Poly (2,6-dimethyl-1,4-phenyleneoxide) |
PEG | Poly (ethylene glycol) |
SPEEK | Sulfonated poly (ketone ether ether ketone) |
TS | Tensile strength |
PEEK | Poly (ketone ether ether ketone) |
PAEK | Poly (aryl ether ketone) |
MIm-PSU | 1-Methylimidazolium-functionalized polysulfone |
DCE | 1,2-dichloroethane |
TMSCS | Trimethylsilyl chlorosulfonate |
DMF-d7 | N,N-Dimethylformamide-d7 |
DMSO-d6 | Dimethyl sulfoxide-d6 |
NMP | 1-methyl-2-pyrrolidone |
CMPSU | Chloromethylated polysulfone |
DC | Degree of chloromethylation |
SPSU | Sulfonated polysulfone |
MIm | Methylimidazole |
DCl | Degree of covalent crosslinking |
1H-NMR | Proton nuclear magnetic resonance spectroscopy |
TMS | Tetramethylsilane |
TGA | Thermogravimetric analysis |
TOD | Onset decomposition temperature |
TFD | Fastest decomposition temperature |
WU% | Water uptake |
IEC | Ion-exchange capacity |
EIS | Electrochemical impedance spectroscopy |
DS | Degree of sulfonation |
TMA | Trimethyl ammonium |
HFA | High frequency arc |
LFA | Low frequency arc |
Appendix A
Appendix B
References
- Merle, G.; Wessling, M.; Nijmeijer, K. Anion exchange membranes for alkaline fuel cells: A review. J. Membr. Sci. 2011, 377, 1–35. [Google Scholar] [CrossRef]
- Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B. Polymeric materials as anion-exchange membranes for alkaline fuel cells. Prog. Polym. Sci. 2011, 36, 1521–1557. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Z.; Tian, H.; Wang, S.; Zhang, B.; Cao, Y.; He, G.; Li, Z.; Wu, H. Preparing alkaline anion exchange membrane with enhanced hydroxide conductivity via blending imidazolium-functionalized and sulfonated poly(ether ether ketone). J. Power Sources 2015, 288, 384–392. [Google Scholar] [CrossRef]
- Díaz, M.; Ortiz, A.; Ortiz, I. Progress in the use of ionic liquids as electrolyte membranes in fuel cells. J. Membr. Sci. 2014, 469, 379–396. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Wang, S.; Li, J.; Liu, F.; Tian, X.; Wang, X.; Mao, T.; Xu, J.; Wang, Z. Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications. J. Taiwan Inst. Chem. Eng. 2019, 95, 185–194. [Google Scholar] [CrossRef]
- Liang, M.; Liu, Y.; Xiao, B.; Yang, S.; Wang, Z.; Han, H. An analytical model for the transverse permeability of gas diffusion layer with electrical double layer effects in proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2018, 43, 17880–17888. [Google Scholar] [CrossRef]
- Xiao, B.; Wang, W.; Zhang, X.; Long, G.; Chen, H.; Cai, H.; Deng, L. A novel fractal model for relative permeability of gas diffusion layer in proton exchange membrane fuel cell with capillary pressure effect. Fractals 2019, 27, 27. [Google Scholar] [CrossRef]
- Wang, K.; Wu, Q.; Yan, X.; Liu, J.; Gao, L.; Hu, L.; Zhang, N.; Pan, Y.; Zheng, W.; He, G. Branched poly(ether ether ketone) based anion exchange membrane for H2/O2 fuel cell. Int. J. Hydrogen Energy 2019, 44, 23750–23761. [Google Scholar] [CrossRef]
- Dai, P.; Mo, Z.-H.; Xu, R.-W.; Zhang, S.; Wu, Y.-X. Cross-Linked Quaternized Poly(styrene-b-(ethylene-co-butylene)-b-styrene) for Anion Exchange Membrane: Synthesis, Characterization and Properties. ACS Appl. Mater. Interfaces 2016, 8, 20329–20341. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; An, L.; Zhao, T.; Tang, Z. Advances and challenges in alkaline anion exchange membrane fuel cells. Prog. Energy Combust. Sci. 2018, 66, 141–175. [Google Scholar] [CrossRef]
- Vijayakumar, V.; Nam, S.Y. Recent advancements in applications of alkaline anion exchange membranes for polymer electrolyte fuel cells. J. Ind. Eng. Chem. 2019, 70, 70–86. [Google Scholar] [CrossRef]
- Lu, S.; Pan, J.; Huang, A.; Zhuang, L.; Lu, J. Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts. Proc. Natl. Acad. Sci. USA 2008, 105, 20611–20614. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zuo, P.; Liu, Y.; Yang, Z.; Xu, T. Ion exchange membranes from poly(2,6-dimethyl-1,4-phenylene oxide) and related applications. Sci. China Ser. B Chem. 2018, 61, 1062–1087. [Google Scholar] [CrossRef]
- Cheng, J.; He, G.; Zhang, F. A mini-review on anion exchange membranes for fuel cell applications: Stability issue and addressing strategies. Int. J. Hydrogen Energy 2015, 40, 7348–7360. [Google Scholar] [CrossRef]
- Yokota, N.; Ono, H.; Miyake, J.; Nishino, E.; Asazawa, K.; Watanabe, M.; Miyatake, K. Anion Conductive Aromatic Block Copolymers Containing Diphenyl Ether or Sulfide Groups for Application to Alkaline Fuel Cells. ACS Appl. Mater. Interfaces 2014, 6, 17044–17052. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, H.; Qu, C. Influence of Solvent on Polymer Prequaternization toward Anion-Conductive Membrane Fabrication for All-Vanadium Flow Battery. J. Phys. Chem. B 2012, 116, 9016–9022. [Google Scholar] [CrossRef]
- Xue, J.; Liu, L.; Liao, J.; Shen, Y.; Li, N. Semi-interpenetrating polymer networks by azide–alkyne cycloaddition as novel anion exchange membranes. J. Mater. Chem. A 2018, 6, 11317–11326. [Google Scholar] [CrossRef]
- Pérez-Prior, M.T.; Ureña, N.; Tannenberg, M.; Del Río, C.; Levenfeld, B. DABCO-functionalized polysulfones as anion-exchange membranes for fuel cell applications: Effect of crosslinking. J. Polym. Sci. Part B Polym. Phys. 2017, 55, 1326–1336. [Google Scholar] [CrossRef]
- Park, J.-S.; Park, S.-H.; Yim, S.-D.; Yoon, Y.-G.; Lee, W.-Y.; Kim, C.-S. Performance of solid alkaline fuel cells employing anion-exchange membranes. J. Power Sources 2008, 178, 620–626. [Google Scholar] [CrossRef]
- Zhao, D.; Kim, J.F.; Ignacz, G.; Pogany, P.; Lee, Y.M.; Szekely, G. Bio-Inspired Robust Membranes Nanoengineered from Interpenetrating Polymer Networks of Polybenzimidazole/Polydopamine. ACS Nano 2019, 13, 125–133. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Z.; Yang, F.; Wang, J. Improving the permselectivity and antifouling performance of reverse osmosis membrane based on a semi-interpenetrating polymer network. Desalination 2021, 502, 114910. [Google Scholar] [CrossRef]
- Li, H.Q.; Liu, X.J.; Wang, H.; Yang, H.; Wang, Z.; He, J. Proton exchange membranes with cross-linked interpenetrating network of sulfonated polyvinyl alcohol and poly(2-acrylamido-2-methyl-1-propanesulfonic acid): Excellent relative selectivity. J. Membr. Sci. 2020, 595, 117511. [Google Scholar] [CrossRef]
- Qiao, J.; Fu, J.; Liu, L.; Liu, Y.; Sheng, J. Highly stable hydroxyl anion conducting membranes poly(vinyl alcohol)/poly(acrylamide-co-diallyldimethylammonium chloride) (PVA/PAADDA) for alkaline fuel cells: Effect of cross-linking. Int. J. Hydrogen Energy 2012, 37, 4580–4589. [Google Scholar] [CrossRef]
- Alemán, J.V.; Chadwick, A.V.; He, J.; Hess, M.; Horie, K.; Jones, R.G.; Kratochvíl, P.; Meisel, I.; Mita, I.; Moad, G.; et al. Definitions of terms relating to the structure and processing of sols, gels, networks, and inorganic-organic hybrid materials (IUPAC Recommendations 2007). Pure Appl. Chem. 2007, 79, 1801–1829. [Google Scholar] [CrossRef]
- He, S.S.; Strickler, A.L.; Frank, C.W. A Semi-Interpenetrating Network Approach for Dimensionally Stabilizing Highly-Charged Anion Exchange Membranes for Alkaline Fuel Cells. ChemSusChem 2015, 8, 1472–1483. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Zhu, L.; Han, J.; Hickner, M.A. Mechanically Tough and Chemically Stable Anion Exchange Membranes from Rigid-Flexible Semi-Interpenetrating Networks. Chem. Mater. 2015, 27, 6689–6698. [Google Scholar] [CrossRef]
- Tashvigh, A.A.; Luo, L.; Chung, T.-S.; Weber, M.; Maletzko, C. A novel ionically cross-linked sulfonated polyphenylsulfone (sPPSU) membrane for organic solvent nanofiltration (OSN). J. Membr. Sci. 2018, 545, 221–228. [Google Scholar] [CrossRef]
- Xu, Y.; Ye, N.; Zhang, D.; Yang, J.; He, R. Ionic crosslinking of imidazolium functionalized poly(aryl ether ketone) by sulfonated poly(ether ether ketone) for anion exchange membranes. J. Coll. Interface Sci. 2017, 497, 333–342. [Google Scholar] [CrossRef]
- Hande, V.R.; Rath, S.K.; Rao, S.; Praveen, S.; Sasane, S.; Patri, M. Effect of constrained amorphous region on properties of acid–base polyelectrolyte membranes based on sulphonated poly(ether ether ketone) and a nonconjugated diamine. J. Membr. Sci. 2016, 499, 1–11. [Google Scholar] [CrossRef]
- Pérez-Prior, M.T.; Varez, A.; Levenfeld, B. Synthesis and characterization of benzimidazolium-functionalized polysulfones as anion-exchange membranes. J. Polym. Sci. Part A Polym. Chem. 2015, 53, 2363–2373. [Google Scholar] [CrossRef]
- Iojoiu, C.; Genova-Dimitrova, P.; Maréchal, M.; Sanchez, J.-Y. Chemical and physicochemical characterizations of ionomers. Electrochim. Acta 2006, 51, 4789–4801. [Google Scholar] [CrossRef]
- Ureña, N.; Pérez-Prior, M.T.; del Río, C.; Várez, A.; Levenfeld, B. New Amphiphilic Semi-Interpenetrating Networks Based on Polysulfone for Anion-Exchange Membrane Fuel Cells with Improved Alkaline and Mechanical Stabilities. Polymer 2021. Accepted to publish. [Google Scholar]
- Benavente, J.; García, J.M.; Riley, R.; Lozano, A.E.; de Abajo, J. Sulfonated Poly(Ether Ether Sulfones). J. Membr. Sci. 2000, 175. [Google Scholar] [CrossRef]
- Jenkins, A.D.; Kratochvíl, P.; Stepto, R.F.T.; Suter, U.W. Glossary of Basic Terms in Polymers Science. Pure Appl. Chem. 1996, 68, 2287–2311. [Google Scholar] [CrossRef]
- Atkins, P.; Jones, L. Principios de Química: Los Caminos Del Descubrimiento, 5th ed.; Bookman: Porto Alegre, Brazil, 2012. [Google Scholar]
- Pantamas, N.; Khonkeng, C.; Krachodnok, S.; Chaisena, A. Ecofriendly and Simplified Synthetic Route for Polysulfone-Based Solid-State Alkaline Electrolyte Membrane. Am. J. Appl. Sci. 2012, 9, 1577–1582. [Google Scholar]
- Martos, A.M.; Sanchez, J.-Y.; Várez, A.; Levenfeld, B. Electrochemical and Structural Characterization of Sulfonated Polysulfone. Polym. Test. 2015, 45, 185–193. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Yan, X.; Liu, J.; Wu, X.; Gong, X.; Zhen, D.; Sun, S.; Chen, W.; He, G. Friedel-Crafts Alkylation Route for Preparation of Pendent Side Chain Imidazolium-Functionalized Polysulfone Anion Exchange Membranes for Fuel Cells. J. Membr. Sci. 2019, 573, 157–166. [Google Scholar] [CrossRef]
- Lu, W.; Shao, Z.-G.; Zhang, G.; Zhao, Y.; Yi, B. Crosslinked Poly(Vinylbenzyl Chloride) with a Macromolecular Crosslinker for Anion Exchange Membrane Fuel Cells. J. Power Sources 2014, 248, 905–914. [Google Scholar] [CrossRef]
- Yang, J.; Li, Q.; Jensen, J.O.; Pan, C.; Cleemann, L.N.; Bjerrum, N.J.; He, R. Phosphoric Acid Doped Imidazolium Polysulfone Membranes for High Temperature Proton Exchange Membrane Fuel Cells. J. Power Sources 2012, 205, 114–121. [Google Scholar] [CrossRef]
- Gong, Y.; Liao, X.; Xu, J.; Chen, D.; Zhang, H. Novel Anion-Conducting Interpenetrating Polymer Network of Quaternized Polysulfone and Poly(Vinyl Alcohol) for Alkaline Fuel Cells. Int. J. Hydrogen Energy 2016, 41, 5816–5823. [Google Scholar] [CrossRef]
- Narducci, R.; Chailan, J.-F.; Fahs, A.; Pasquini, L.; di Vona, M.L.; Knauth, P. Mechanical Properties of Anion Exchange Membranes by Combination of Tensile Stress-Strain Tests and Dynamic Mechanical Analysis. J. Polym. Sci. Part B Polym. Phys. 2016, 54, 1180–1187. [Google Scholar] [CrossRef]
- Tuan, C.M.; Cong Tinh, V.D.; Kim, D. Anion Exchange Membranes Prepared from Quaternized Polyepichlorohydrin Cross-Linked with 1-(3-Aminopropyl)Imidazole Grafted Poly(Arylene Ether Ketone) for Enhancement of Toughness and Conductivity. Membranes 2020, 10, 138. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, K.H.; Chu, J.Y.; Kim, A.R.; Yoo, D.J. Enhanced Hydroxide Conductivity and Dimensional Stability with Blended Membranes Containing Hyperbranched PAES/Linear PPO as Anion Exchange Membranes. Polymers 2020, 12, 3011. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Lu, S.; Li, Y.; Huang, A.; Zhuang, L.; Lu, J. High-Performance Alkaline Polymer Electrolyte for Fuel Cell Applications. Adv. Funct. Mater. 2010, 20, 312–319. [Google Scholar] [CrossRef]
- Yan, X.; He, G.; Gu, S.; Wu, X.; Du, L.; Wang, Y. Imidazolium-Functionalized Polysulfone Hydroxide Exchange Membranes for Potential Applications in Alkaline Membrane Direct Alcohol Fuel Cells. Int. J. Hydrogen Energy 2012, 37, 5216–5224. [Google Scholar] [CrossRef]
- Serbanescu, O.S.; Voicu, S.I.; Thakur, V.K. Polysulfone Functionalized Membranes: Properties and Challenges. Mater. Today Chem. 2020, 17, 100302. [Google Scholar] [CrossRef]
Membrane | TS (MPa) | ε % |
---|---|---|
sIPN143,5-PSU | 15 ± 4 | 1.8 ± 0.9 |
sIPN143,5-SPSU | 12 ± 3 | 2.6 ± 0.4 |
sIPN75,5-PSU | 49 ± 3 | 5.3 ± 0.6 |
sIPN75,5-SPSU | 44 ± 2 | 3.5 ± 0.4 |
sIPN75,0-PSU | 58 ± 2 | 7 ± 3 |
sIPN75,0-SPSU | 52 ± 2 | 10 ± 2 |
Membrane | WU% | σm (mS·cm−1) a |
---|---|---|
sIPN143,5-PSU | 22.0 | 1.29 × 10−2 |
sIPN143,5-SPSU | 25.0 | 1.10 × 10−1 |
sIPN143,0 SPSU | - | - |
sIPN75,5-PSU | 8.8 | 1.24 × 10−3 |
sIPN75,5-SPSU | 5.0 | 2.21 × 10−4 |
sIPN75,0-PSU | 8.4 | 7.32 10−2 |
sIPN75,0-SPSU | 11.0 | 1.15 × 10−4 |
Membrane | Δσ % (96 h) | Δσ % (168 h) |
---|---|---|
sIPN143,5-PSU | −33.67 | −42.52 |
sIPN143,5-SPSU | −14.31 | −36.97 |
sIPN75,5-PSU | 0 | −11.97 |
sIPN75,5-SPSU | 0 | −11.88 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Swaby, S.; Ureña, N.; Pérez-Prior, M.T.; Várez, A.; Levenfeld, B. Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking. Polymers 2021, 13, 958. https://doi.org/10.3390/polym13060958
Swaby S, Ureña N, Pérez-Prior MT, Várez A, Levenfeld B. Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking. Polymers. 2021; 13(6):958. https://doi.org/10.3390/polym13060958
Chicago/Turabian StyleSwaby, Sydonne, Nieves Ureña, María Teresa Pérez-Prior, Alejandro Várez, and Belén Levenfeld. 2021. "Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking" Polymers 13, no. 6: 958. https://doi.org/10.3390/polym13060958
APA StyleSwaby, S., Ureña, N., Pérez-Prior, M. T., Várez, A., & Levenfeld, B. (2021). Synthesis and Characterization of Novel Anion Exchange Membranes Based on Semi-Interpenetrating Networks of Functionalized Polysulfone: Effect of Ionic Crosslinking. Polymers, 13(6), 958. https://doi.org/10.3390/polym13060958