Rice Bran-Based Bioplastics: Effects of Biopolymer Fractions on Their Mechanical, Functional and Microstructural Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Defatted Rice Bran (DRB) and Fiber-Free Rice Bran (FRB)
2.3. Chemical Composition
2.4. Sample Preparation
2.5. Bioplastics Characterization
2.5.1. Dynamic Mechanical Thermal Analysis (DMTA)
2.5.2. Tensile Tests
2.5.3. Water Uptake Capacity and Soluble Matter Loss
2.5.4. Scanning Electron Microscopy (SEM)
2.6. Statistical Analyses
3. Results
3.1. Chemical Composition
3.2. Dynamic Mechanical Thermal Analyses (DMTA)
3.3. Tensile Tests
3.4. Water Uptake Capacity and Soluble Matter Loss
3.5. Scanning Electron Microscopy (SEM)
4. Discussion
4.1. Chemical Composition
4.2. Dynamic Mechanical Thermal Analyses (DMTA)
4.3. Tensile Tests
4.4. Water Uptake Capacity and Soluble Matter Loss
4.5. Scanning Electron Microscopy (SEM)
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barnes, S.J. Understanding plastics pollution: The role of economic development and technological research. Environ. Pollut. 2019, 249, 812–821. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.P.S.A.; Davoudpour, Y.; Saurabh, C.K.; Hossain, M.S.; Adnan, A.S.; Dungani, R.; Paridah, M.T.; Mohamed, Z.I.S.; Fazita, M.R.N.; Syakir, M.I.; et al. A review on nanocellulosic fibres as new material for sustainable packaging: Process and applications. Renew. Sustain. Energy Rev. 2016, 64, 823–836. [Google Scholar] [CrossRef]
- Sabbagh, F.; Muhamad, I.I. Production of poly-hydroxyalkanoate as secondary metabolite with main focus on sustainable energy. Renew. Sustain. Energy Rev. 2017, 72, 95–104. [Google Scholar] [CrossRef]
- Law, K.L. Plastics in the Marine Environment. Ann. Rev. Mar. Sci. 2017, 9, 205–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Posnack, N.G. Plastics and cardiovascular disease. Nat. Rev. Cardiol. 2020, 18, 69–70. [Google Scholar] [CrossRef]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- George, A.; Sanjay, M.R.; Srisuk, R.; Parameswaranpillai, J.; Siengchin, S. A comprehensive review on chemical properties and applications of biopolymers and their composites. Int. J. Biol. Macromol. 2020, 154, 329–338. [Google Scholar] [CrossRef]
- Muhamad, I.I.; Sabbagh, F.; Karim, N.A. Polyhydroxyalkanoates: A Valuable Secondary Metabolite Produced in Microorganisms and Plants. In Plant Secondary Metabolites; Apple Academic Press: Oakville, ON, Canada, 2016; pp. 185–214. [Google Scholar] [CrossRef]
- Kalia, S.; Avérous, L. Biopolymers: Biomedical and Environmental Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Omran, A.A.B.; Mohammed, A.A.B.A.; Sapuan, S.M.; Ilyas, R.A.; Asyraf, M.R.M.; Koloor, S.S.R.; Petrů, M. Micro- and Nanocellulose in Polymer Composite Materials: A Review. Polymers 2021, 13, 231. [Google Scholar] [CrossRef]
- Guilbert, S.; Gontard, N.; Cuq, B. Technology and applications of edible protective films. Packag. Technol. Sci. 1995, 8, 339–346. [Google Scholar] [CrossRef]
- Singh, T.P.; Sogi, D.S. Comparison of Physico-Chemical Properties of Starch Isolated From Bran and Endosperm of Rice (Oryza sativa L.). Starch/Staerke 2018, 70, 1700242. [Google Scholar] [CrossRef]
- Alonso-González, M.; Felix, M.; Guerrero, A.; Romero, A. Effects of Mould Temperature on Rice Bran-Based Bioplastics Obtained by Injection Moulding. Polymers 2021, 13, 398. [Google Scholar] [CrossRef]
- Alonso-González, M.; Felix, M.; Guerrero, A.; Romero, A. Rice bran-based bioplastics: Effects of the mixing temperature on starch plastification and final properties. Int. J. Biol. Macromol. 2021, 188, 932–940. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Alonso-González, M.; Rubio-Valle, J.F.; Perez-Puyana, V.; Romero, A. Biodegradable soy protein-based matrices for the controlled release of zinc in horticulture. J. Appl. Polym. Sci. 2020, 137, 49187. [Google Scholar] [CrossRef]
- Jiménez-Rosado, M.; Zarate-Ramírez, L.S.; Romero, A.; Bengoechea, C.; Partal, P.; Guerrero, A. Bioplastics based on wheat gluten processed by extrusion. J. Clean. Prod. 2019, 239, 117994. [Google Scholar] [CrossRef]
- Karmakar, A.; Karmakar, S.; Mukherjee, S. Properties of various plants and animals feedstocks for biodiesel production. Bioresour. Technol. 2010, 101, 7201–7210. [Google Scholar] [CrossRef]
- Punia, S.; Kumar, M.; Siroha, A.K.; Purewal, S.S. Rice Bran Oil: Emerging Trends in Extraction, Health Benefit, and Its Industrial Application. Rice Sci. 2021, 28, 217–232. [Google Scholar] [CrossRef]
- Orthoefer, F.T. Rice Bran Oil. Bailey’s Ind. Oil Fat Prod. 2020, 68, 1–25. [Google Scholar] [CrossRef]
- Wang, Y. Applications of Rice Bran Oil. In Rice Bran and Rice Bran Oil Chemistry, Processing and Utilization; Elsevier: Amsterdam, The Netherlands; pp. 159–168. [CrossRef]
- AOAC International. Official Methods of Analysis of AOAC International; AOAC International: Rockville, MD, USA, 2005. [Google Scholar]
- López-Bascón-Bascon, M.A.; de Castro, M.D.L. Soxhlet extraction in Liquid-Phase Extraction. In Liquid Extraction; Elsevier: Amsterdam, The Netherlands, 2019; pp. 327–354. [Google Scholar] [CrossRef]
- Mariotti, F.; Tomé, D.; Mirand, P.P. Converting nitrogen into protein—Beyond 6.25 and Jones’ factors. Crit. Rev. Food Sci. Nutr. 2008, 48, 177–184. [Google Scholar] [CrossRef]
- ISO. ISO 527:2012 Plastics—Determination of Tensile Properties; International Organization for Standardization—ISO: Geneva, Switzerland, 2006. [Google Scholar] [CrossRef]
- D570, ASTM D 570—98—Standard Test Method for Water Absorption of Plastics. ASTM Stand. 1985. [CrossRef]
- Klanwan, Y.; Kunanopparat, T.; Menut, P.; Siriwattanayotin, S. Valorization of industrial by-products through bioplastic production: Defatted rice bran and kraft lignin utilization. J. Polym. Eng. 2016, 36, 529–536. [Google Scholar] [CrossRef] [Green Version]
- Silventoinen, P.; Rommi, K.; Holopainen-Mantila, U.; Poutanen, K.; Nordlund, E. Biochemical and Techno-Functional Properties of Protein- and Fibre-Rich Hybrid Ingredients Produced by Dry Fractionation from Rice Bran. Food Bioprocess Technol. 2019, 12, 1487–1499. [Google Scholar] [CrossRef] [Green Version]
- Kunanopparat, T.; Menut, P.; Srichumpoung, W.; Siriwattanayotin, S. Characterization of Defatted Rice Bran Properties for Biocomposite Production. J. Polym. Environ. 2014, 22, 559–568. [Google Scholar] [CrossRef]
- Gibbs, J.H.; DiMarzio, E.A. Nature of the glass transition and the glassy state. J. Chem. Phys. 1958, 28, 373. [Google Scholar] [CrossRef]
- López-Castejón, M.L.; Bengoechea, C.; García-Morales, M.; Martínez, I. Effect of plasticizer and storage conditions on thermomechanical properties of albumen/tragacanth based bioplastics. Food Bioprod. Process. 2015, 95, 264–271. [Google Scholar] [CrossRef]
- Chiralt, A.; González-Martínez, C.; Vargas, M.; Atarés, L. Edible films and coatings from proteins. In Proteins Food Process, 2nd ed; Elsevier: Amsterdam, The Netherlands, 2018; pp. 477–500. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [Green Version]
- Ferry, J.D. Viscoelastic Properties of Polymers; Wiley: Hoboken, NJ, USA, 1980. [Google Scholar]
- Daniels, P.H.; Cabrera, A. Plasticizer compatibility testing: Dynamic mechanical analysis and glass transition temperatures. J. Vinyl Addit. Technol. 2015, 21, 7–11. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Compos. Part A Appl. Sci. Manuf. 2015, 77, 1–25. [Google Scholar] [CrossRef]
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers—An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Thomazine, M.; Carvalho, R.A.; Sobral, P.J.A. Physical Properties of Gelatin Films Plasticized by Blends of Glycerol and Sorbitol. J. Food Sci. 2005, 70, E172–E176. [Google Scholar] [CrossRef]
- Pacáková, V.; Virt, J. Plastics. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 180–187. [Google Scholar] [CrossRef]
- Félix, M.; Romero, A.; Martín-Alfonso, J.E.E.; Guerrero, A. Development of crayfish protein-PCL biocomposite material processed by injection moulding. Compos. Part B Eng. 2015, 78, 291–297. [Google Scholar] [CrossRef]
- Felix, M.; Carpintero, V.; Romero, A.; Guerrero, A. Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding. Polímeros 2016, 26, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Yu, D. Tensile, thermal and dynamic mechanical properties of hollow polymer particle-filled epoxy syntactic foam. Mater. Sci. Eng. A 2011, 528, 5177–5183. [Google Scholar] [CrossRef]
- Felix, M.; Martínez, I.; Aguilar, J.M.; Guerrero, A. Development of Biocomposite Superabsorbent Nanomaterials: Effect of Processing Technique. J. Polym. Environ. 2018, 26, 4013–4018. [Google Scholar] [CrossRef]
- Orliac, O.; Rouilly, A.; Silvestre, F.; Rigal, L. Effects of additives on the mechanical properties, hydrophobicity and water uptake of thermo-moulded films produced from sunflower protein isolate. Polymer (Guildf) 2002, 43, 5417–5425. [Google Scholar] [CrossRef]
- Fernández-Espada, L.; Bengoechea, C.; Cordobés, F.; Guerrero, A. Thermomechanical properties and water uptake capacity of soy protein-based bioplastics processed by injection molding. J. Appl. Polym. Sci. 2016, 133, 43524. [Google Scholar] [CrossRef]
- Ruen-Ngam, D.; Thawai, C.; Nokkoul, R.; Sukonthamut, S. Gamma-oryzanol extraction from upland rice bran. Int. J. Biosci. Biochem. Bioinforma. 2014, 4, 252. [Google Scholar] [CrossRef] [Green Version]
- Chaiyasat, A.; Jearanai, S.; Christopher, L.P.; Alam, M.N. Novel superabsorbent materials from bacterial cellulose. Polym. Int. 2019, 68, 102–109. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.; Tian, H.; Zhang, L.; Chang, P.R. Structure and Properties of Soy Protein Plastics with ε-Caprolactone/Glycerol as Binary Plasticizers. Ind. Eng. Chem. Res. 2008, 47, 9389–9395. [Google Scholar] [CrossRef]
Composition | RB | DRB | FRB |
---|---|---|---|
Moisture (%) | 12.5 ± 5.0 | 15.9 ± 5.0 | 16.8 ± 3.4 |
Ashes (%) | 10.5 ± 0.3 | 13.4 ± 0.5 | 24.6 ± 0.5 |
Lipids (%) | 22.8 ± 1.3 | 1.8 ± 0.6 | 5.8 ± 1.6 |
Proteins (%) | 13.2 ± 0.5 | 16.8 ± 0.5 | 15.7 ± 1.0 |
Fiber (%) | 22.0 ± 1.0 | 27.9 ± 1.0 | 3.0 ± 1.0 |
Starches (%) | 19.0 ± 1.0 | 24.2 ± 1.0 | 34.1 ± 1.0 |
System | YM (MPa) | MS (MPa) | DB (mm/mm) |
---|---|---|---|
RBS | 156 ± 6 C* | 1.00 ± 0.10 FG | 1.26 ± 0.18 J |
RBG | 53 ± 1 A | 0.42 ± 0.04 E | 2.03 ± 0.13 K |
DRBS | 227 ± 11 D | 2.30 ± 0.30 I | 1.82 ± 0.20 K |
DRBG | 104 ± 2 B | 1.17 ± 0.03 GH | 3.04 ± 0.26 L |
FRBS | 171 ± 17 C | 1.33 ± 0.06 H | 1.36 ± 0.23 J |
FRBG | 106 ± 9 B | 0.90 ± 0.09 F | 2.11 ± 0.13 K |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso-González, M.; Felix, M.; Romero, A. Rice Bran-Based Bioplastics: Effects of Biopolymer Fractions on Their Mechanical, Functional and Microstructural Properties. Polymers 2022, 14, 100. https://doi.org/10.3390/polym14010100
Alonso-González M, Felix M, Romero A. Rice Bran-Based Bioplastics: Effects of Biopolymer Fractions on Their Mechanical, Functional and Microstructural Properties. Polymers. 2022; 14(1):100. https://doi.org/10.3390/polym14010100
Chicago/Turabian StyleAlonso-González, María, Manuel Felix, and Alberto Romero. 2022. "Rice Bran-Based Bioplastics: Effects of Biopolymer Fractions on Their Mechanical, Functional and Microstructural Properties" Polymers 14, no. 1: 100. https://doi.org/10.3390/polym14010100
APA StyleAlonso-González, M., Felix, M., & Romero, A. (2022). Rice Bran-Based Bioplastics: Effects of Biopolymer Fractions on Their Mechanical, Functional and Microstructural Properties. Polymers, 14(1), 100. https://doi.org/10.3390/polym14010100