The Process of Pasting and Gelling Modified Potato Starch with LF-NMR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Potato Starch
2.2. Microwave Modification
2.3. Biopolymer System
2.4. Temperature Research
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Przetaczek-Rożnowska, I.; Fortuna, T.; Wodniak, M.; Łabanowska, M.; Pająk, P.; Królikowska, K. Properties of potato starch treated with microwave radiation and enriched with mineral additives. Int. J. Biol. Macromol. 2019, 124, 229–234. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Liu, Y.; Wang, S.; Zhang, X.; Yang, J.; Du, C. The relationship between amylopectin fine structure and the physicochemical properties of starch during potato growth. Int. J. Biol. Macromol. 2021, 182, 1047–1055. [Google Scholar] [CrossRef]
- Sun, Y.; Lin, Z.; Jiang, X.; Hou, L. Synergism Effect of Surfactant and Inorganic Salt on the Properties of Starch/Poly(Vinyl Alcohol) Film. Starch Stärke 2018, 70, 1700146. [Google Scholar] [CrossRef]
- Corre, D.L.; Bras, J.; Dufresne, A. Starch Nanoparticles: A Review. Biomacromolecules 2010, 11, 1139–1153. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Yang, J.; Ni, S.; Wang, X.; Bian, H.; Dai, H. Resource utilization and ionization modification of waste starch from the recycling process of old corrugated cardboard paper. J. Environ. Manag. 2020, 271, 111031. [Google Scholar] [CrossRef]
- Zheng, L.; Ren, A.; Liu, R.; Xing, Y.; Yu, X.; Jiang, H. Effect of sodium chloride solution on quality of 3D-printed samples molded using wheat starch gel. Food Hydrocoll. 2022, 123, 107197. [Google Scholar] [CrossRef]
- Gałkowska, D.; Juszczak, L. Effects of amino acids on gelatinization, pasting and rheological properties of modified potato starches. Food Hydrocoll. 2019, 92, 143–154. [Google Scholar] [CrossRef]
- Agyemang, P.N.; Akonor, P.T.; Tortoe, C.; Johnsona, P.N.T.; Manu-Aduening, J. Effect of the use of starches of three new Ghanaian cassava varieties as a thickener on the physicochemical, rheological and sensory properties of yoghurt. Sci. Afr. 2020, 9, e00521. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K.; Wawrzyniak, J.; Gierz, L. Artificial neural networks and electron microscopy to evaluate the quality of fruit and vegetable spray-dried powders. Case study: Strawberry powder. Comput. Electron. Agric. 2018, 155, 314–323. [Google Scholar] [CrossRef]
- Przybył, K.; Samborska, K.; Koszela, K.; Masewicz, Ł.; Pawlak, T. Artificial neural networks in the evaluation of the influence of the type and content of carrier on selected quality parameters of spray dried raspberry powders. Measurement 2021, 186, 110014. [Google Scholar] [CrossRef]
- Przybył, K.; Gawałek, J.; Koszela, K. Application of artificial neural network for the quality-based classification of spray-dried rhubarb juice powders. J. Food Sci. Technol. 2020, 1–11. [Google Scholar] [CrossRef]
- Đorđević, V.; Paraskevopoulou, A.; Mantzouridou, F.; Lalou, S.; Pantić, M.; Bugarski, B.; Nedović, V. Encapsulation Technologies for Food Industry. Food Eng. Ser. 2016, 329–382. [Google Scholar] [CrossRef]
- Lemos, P.V.F.; Marcelino, H.R.; Cardoso, L.G.; de Souza, C.O.; Druzian, J.I. Starch chemical modifications applied to drug delivery systems: From fundamentals to FDA-approved raw materials. Int. J. Biol. Macromol. 2021, 184, 218–234. [Google Scholar] [CrossRef] [PubMed]
- Lewandowicz, G.; Fornal, J.; Walkowski, A. Effect of microwave radiation on physico-chemical properties and structure of potato and tapioca starches. Carbohydr. Polym. 1997, 34, 213–220. [Google Scholar] [CrossRef]
- Oyeyinka, S.A.; Akintayo, O.A.; Adebo, O.A.; Kayitesi, E.; Njobeh, P.B. A review on the physicochemical properties of starches modified by microwave alone and in combination with other methods. Int. J. Biol. Macromol. 2021, 176, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Lukasiewicz, M.; Bednarz, S.; Ptaszek, A. Environmental friendly polysaccharide modification—Microwave-assisted oxidation of starch. Starch Stärke 2011, 63, 268–273. [Google Scholar] [CrossRef]
- Yang, Q.; Qi, L.; Luo, Z.; Kong, X.; Xiao, Z.; Wang, P.; Peng, X. Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocoll. 2017, 69, 473–482. [Google Scholar] [CrossRef]
- Fan, D.; Ma, S.; Wang, L.; Zhao, J.; Zhang, H.; Chen, W. Effect of microwave heating on optical and thermal properties of rice starch. Starch Stärke 2012, 64, 740–744. [Google Scholar] [CrossRef]
- Chen, D.; Fang, F.; Federici, E.; Campanella, O.; Jones, O.G. Rheology, microstructure and phase behavior of potato starch-protein fibril mixed gel. Carbohydr. Polym. 2020, 239, 116247. [Google Scholar] [CrossRef]
- Jiang, J.; Gao, H.; Zeng, J.; Zhang, L.; Wang, F.; Su, T.; Li, G. Determination of subfreezing temperature and gel retrogradation characteristics of potato starch gel. LWT 2021, 149, 112037. [Google Scholar] [CrossRef]
- Jiang, Y.; Xu, G.; Bi, H.; Shi, Y.; Gao, Y.; Han, X.; Zeng, X. A new method to determine surface relaxivity of tight sandstone cores based on LF-NMR and high-speed centrifugation measurements. J. Pet. Sci. Eng. 2021, 196, 108096. [Google Scholar] [CrossRef]
- Nestle, N. NMR relaxometry study of cement hydration in the presence of different oxidic fine fraction materials. Solid State Nucl. Magn. Reson. 2004, 25, 80–83. [Google Scholar] [CrossRef]
- Scopus Preview—Scopus—Document Details—NMR Relaxometry Study of Cement Hydration in the Presence of Different Oxidic Fine Fraction Materials. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-0347354815&origin=inward&txGid=f1f5e3632e7d3482a2c5ca03e5a51ed5 (accessed on 8 October 2021).
- Zhao, H.; Ding, J.; Huang, Y.; Xu, G.; Li, W.; Zhang, S.; Wang, P. Investigation on sorptivity and capillarity coefficient of mortar and their relationship based on microstructure. Constr. Build. Mater. 2020, 265, 120332. [Google Scholar] [CrossRef]
- Gao, F.; Tian, W.; Cheng, X. Investigation of moisture migration of MWCNTs concrete after different heating-cooling process by LF-NMR. Constr. Build. Mater. 2021, 288, 123146. [Google Scholar] [CrossRef]
- Krystyjan, M.; Adamczyk, G.; Sikora, M.; Tomasik, P. Long-term storage stability of selected potato starch—Non-starchy hydrocolloid binary gels. Food Hydrocoll. 2013, 31, 270–276. [Google Scholar] [CrossRef]
- Collar, C.; Santos, E.; Rosell, C.M. Significance of dietary fiber on the viscometric pattern of pasted and gelled flour-fiber blends. Cereal Chem. 2006, 83, 370–376. [Google Scholar] [CrossRef]
- Thanh-Blicharz, J.L.; Lewandowicz, J. Functionality of Native Starches in Food Systems: Cluster Analysis Grouping of Rheological Properties in Different Product Matrices. Foods 2020, 9, 1073. [Google Scholar] [CrossRef]
- Ai, Y.; Jane, J. Gelatinization and rheological properties of starch. Starch Stärke 2015, 67, 213–224. [Google Scholar] [CrossRef]
- Xie, Z.; Guan, J.; Chen, L.; Jin, Z.; Tian, Y. Effect of Drying Processes on the Fine Structure of A-, B-, and C-Type Starches. Starch Stärke 2018, 70, 1700218. [Google Scholar] [CrossRef]
- Luo, J.; Li, M.; Zhang, Y.; Zheng, M.; Ling, C.M. The low-field NMR studies the change in cellular water in tilapia fillet tissue during different drying conditions. Food Sci. Nutr. 2021, 9, 2644–2657. [Google Scholar] [CrossRef]
- Walkowiak, K.; Masewicz, Ł.; Baranowska, H.M. lf nmr studies of microwave modified starch witch lysozyme. Sci. Nat. Technol./Nauk. Przyr. Technol. 2018, 12, 341–351. [Google Scholar]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Smarzyński, K.; Thanh-Blicharz, J.L.; Kačániová, M.; Baranowska, H.M. LF NMR spectroscopy analysis of water dynamics and texture of Gluten-Free bread with cricket powder during storage. Food Sci. Technol. Int. 2021, 27, 776–785. [Google Scholar] [CrossRef]
- Kowalczewski, P.Ł.; Walkowiak, K.; Masewicz, Ł.; Duda, A.; Poliszko, N.; Różańska, M.B.; Jeżowski, P.; Tomkowiak, A.; Mildner-Szkudlarz, S.; Baranowska, H.M. Wheat bread enriched with raspberry and strawberry oilcakes: Effects on proximate composition, texture and water properties. Eur. Food Res. Technol. 2019, 245, 2591–2600. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska-Gras, J.; Cais-Sokolińska, D.; Bierzuńska, P.; Kaczyński, Ł.K.; Walkowiak, K.; Baranowska, H.M. Behaviour of water in different types of goats’ cheese. Int. Dairy J. 2019, 95, 18–24. [Google Scholar] [CrossRef]
- Rahman, M.S.; Suresh, S.; Al-Habsi, N. Proton relaxation in freeze-dried broccoli as measured by low-frequency nuclear magnetic resonance (LF-NMR) and its relationship with the thermal glass transition. J. Therm. Anal. Calorim. 2020, 143, 3147–3159. [Google Scholar] [CrossRef]
- Zhang, N.; Chen, H.; Ma, L.; Zhang, Y. Physical modifications of polysaccharide from Inonotus obliquus and the antioxidant properties. Int. J. Biol. Macromol. 2013, 54, 209–215. [Google Scholar] [CrossRef]
- Pawlak, T.; Ryniecki, A.; Siatkowski, I. Optimization of process parameters for microwave-vacuum puffing of black radish slices using the response surface method. Acta Sci. Pol. Technol. Aliment. 2013, 12, 253–262. Available online: https://www.food.actapol.net/volume12/issue3/abstract-2.html (accessed on 9 October 2021). [PubMed]
- Pawlak, T.; Ryniecki, A.; Stangierski, J. Puffing of pork: Effects of process conditions on expansion ratio. Przem. Spożywczy 2016, 1, 15–17. [Google Scholar] [CrossRef]
- Koszela, K.; Gawałek, J.; Boniecki, P.; Kujawa, S.; Mueller, W.; Gierz, Ł.; Przybył, K.; Przybył, J.; Zaborowicz, M. Computer image analysis in evaluating the quality of dried meat, case study: Poultry meat. In Proceedings of the SPIE—The International Society for Optical Engineering, Guangzhou, China, 10–13 May 2019; Volume 11179. [Google Scholar]
- Dobosz, A.; Sikora, M.; Krystyjan, M. Retrogradacja skrobi z dodatkiem i bez dodatku nieskrobiowych hydrokoloidów polisacharydowych—metody pomiaru i ich zastosowanie. Żywność Nauk. Technol. Jakość 2014, 21, 5–20. [Google Scholar] [CrossRef]
- Colnago, L.A.; Wiesman, Z.; Pages, G.; Musse, M.; Monaretto, T.; Windt, C.W.; Rondeau-Mouro, C. Low field, time domain NMR in the agriculture and agrifood sectors: An overview of applications in plants, foods and biofuels. J. Magn. Reson. 2021, 323, 106899. [Google Scholar] [CrossRef] [PubMed]
- Carr, H.Y.; Purcell, E.M. Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments. Phys. Rev. 1954, 94, 630. [Google Scholar] [CrossRef]
- Han, M.; Wang, P.; Xu, X.; Zhou, G.; Han, M.; Wang, P.; Xu, X.; Zhou, G. Low-field NMR study of heat-induced gelation of pork myofibrillar proteins and its relationship with microstructural characteristics. Food Res. Int. 2014, 62, 1175–1182. [Google Scholar] [CrossRef]
- Meiboom, S.; Gill, D.; Meiboom, S.; Gill, D. Modified Spin-Echo Method for Measuring Nuclear Relaxation Times. RScI 1958, 29, 688–691. [Google Scholar] [CrossRef] [Green Version]
- Scopus Preview—Scopus—Document Details—Low-Resolution NMR—An Analytical Tool in Foods Characterization and Traceability. Available online: https://www.scopus.com/record/display.uri?eid=2-s2.0-84942297195&origin=inward&txGid=4831ac47dfd45e20415c4536da24d2d9 (accessed on 9 December 2021).
- Din, Z.-U.; Xiong, H.; Fei, P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [CrossRef]
- Zhu, F. Barley Starch: Composition, Structure, Properties, and Modifications. Compr. Rev. Food Sci. Food Saf. 2017, 16, 558–579. [Google Scholar] [CrossRef] [Green Version]
- Zheng, M.Z.; Xiao, Y.; Yang, S.; Liu, H.; Liu, M.; Yaqoob, S.; Xu, X.; Liu, J. Effects of heat–moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Sci. Nutr. 2020, 8, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Obadi, M.; Xu, B. Review on the physicochemical properties, modifications, and applications of starches and its common modified forms used in noodle products. Food Hydrocoll. 2021, 112, 106286. [Google Scholar] [CrossRef]
- Małyszek, Z.; Lewandowicz, J.; Thanh-Blicharz, J.L.; Walkowiak, K.; Kowalczewski, P.Ł.; Baranowska, H.M. Water Behavior of Emulsions Stabilized by Modified Potato Starch. Polymers 2021, 13, 2200. [Google Scholar] [CrossRef]
- Jayakody, L.; Hoover, R. Effect of annealing on the molecular structure and physicochemical properties of starches from different botanical origins—A review. Carbohydr. Polym. 2008, 74, 691–703. [Google Scholar] [CrossRef]
Name | Modification Time (min) | Power (W/g) | Moisture (%) |
---|---|---|---|
Native starch | - | - | 34.48 |
1 | 1 | 50 | 35.02 |
2 | 150 | 22.41 | |
3 | 2 | 50 | 21.69 |
4 | 150 | 5.99 | |
5 | 3 | 50 | 21.53 |
6 | 150 | 7.35 | |
7 | 4 | 50 | 14.19 |
8 | 150 | 4.21 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walkowiak, K.; Przybył, K.; Baranowska, H.M.; Koszela, K.; Masewicz, Ł.; Piątek, M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers 2022, 14, 184. https://doi.org/10.3390/polym14010184
Walkowiak K, Przybył K, Baranowska HM, Koszela K, Masewicz Ł, Piątek M. The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers. 2022; 14(1):184. https://doi.org/10.3390/polym14010184
Chicago/Turabian StyleWalkowiak, Katarzyna, Krzysztof Przybył, Hanna Maria Baranowska, Krzysztof Koszela, Łukasz Masewicz, and Michał Piątek. 2022. "The Process of Pasting and Gelling Modified Potato Starch with LF-NMR" Polymers 14, no. 1: 184. https://doi.org/10.3390/polym14010184
APA StyleWalkowiak, K., Przybył, K., Baranowska, H. M., Koszela, K., Masewicz, Ł., & Piątek, M. (2022). The Process of Pasting and Gelling Modified Potato Starch with LF-NMR. Polymers, 14(1), 184. https://doi.org/10.3390/polym14010184