Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Isolation of Lignin
2.3. Characterization of Lignin
2.4. Preparation of PVOH–Lignin–Hexamine-Based Adhesive
2.5. Characterization of Adhesive
2.6. Fabrication of Plywood Bonded with PVOH–Lignin–Hexamine-Based Adhesive
2.7. Examination of Plywood Properties
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Lignin
3.2. Properties of Adhesive
3.3. Performance of Plywood
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bekhta, P.; Sedliačik, J.; Noshchenko, G.; Kačík, F.; Bekhta, N. Characteristics of Beech Bark and Its Effect on Properties of UF Adhesive and on Bonding Strength and Formaldehyde Emission of Plywood Panels. Eur. J. Wood Wood Prod. 2021, 79, 423–433. [Google Scholar] [CrossRef]
- FAO Forest Products 2019; FAO: Rome, Italy, 2019; ISBN 9789251331279.
- FAO Forest Products Annual Market Review, 2018–2019; FAO: Rome, Italy, 2019; ISBN 9788578110796.
- Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Siuda, J. The Reduction of Adhesive Application in Plywood Manufacturing by Using Nanocellulose-Reinforced Urea-Formaldehyde Resin. J. Appl. Polym. Sci. 2021, 138, 49834. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Bekhta, N. Effect of Veneer-Drying Temperature on Selected Properties and Formaldehyde Emission of Birch Plywood. Polymers 2020, 12, 593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lubis, M.A.R.; Park, B.-D. Influence of Initial Molar Ratios on the Performance of Low Molar Ratio Urea-Formaldehyde Resin Adhesives. J. Korean Wood Sci. Technol. 2020, 48, 136–153. [Google Scholar] [CrossRef]
- Antov, P.; Savov, V.; Trichkov, N.; Krišťák, Ľ.; Réh, R.; Papadopoulos, A.N.; Taghiyari, H.R.; Pizzi, A.; Kunecová, D.; Pachikova, M. Properties of High-Density Fiberboard Bonded with Urea–Formaldehyde Resin and Ammonium Lignosulfonate as a Bio-Based Additive. Polymers 2021, 13, 2775. [Google Scholar] [CrossRef]
- Savov, V.; Valchev, I.; Antov, P.; Yordanov, I.; Popski, Z. Effect of the Adhesive System on the Properties of Fiberboard Panels Bonded with Hydrolysis Lignin and Phenol-Formaldehyde Resin. Polymers 2022, 14, 1768. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Park, B.D.; Lee, S.M. Microencapsulation of Polymeric Isocyanate for the Modification of Urea-Formaldehyde Resins. Int. J. Adhes. Adhes. 2020, 100, 102599. [Google Scholar] [CrossRef]
- Salthammer, T. Formaldehyde Sources, Formaldehyde Concentrations and Air Exchange Rates in European Housings. Build. Environ. 2019, 150, 219–232. [Google Scholar] [CrossRef]
- Ghani, A.; Ashaari, Z.; Bawon, P.; Lee, S.H. Reducing Formaldehyde Emission of Urea Formaldehyde-Bonded Particleboard by Addition of Amines as Formaldehyde Scavenger. Build. Environ. 2018, 142, 188–194. [Google Scholar] [CrossRef]
- Yadav, S.M.; Lubis, M.A.R.; Park, B.-D. Modification of Nanoclay with Different Methods and Its Application in Urea-Formaldehyde Bonded Plywood Panels. Wood Mater. Sci. Eng. 2021, 1–10. [Google Scholar] [CrossRef]
- Silva, D.A.L.; Firmino, A.S.; Ferro, F.S.; Christoforo, A.L.; Leite, F.R.; Lahr, F.A.R.; Kellens, K. Life Cycle Assessment of a Hot-Pressing Machine to Manufacture Particleboards: Hotspots, Environmental Indicators, and Solutions. Int. J. Life Cycle Assess. 2020, 25, 1059–1077. [Google Scholar] [CrossRef]
- Yang, M.; Rosentrater, K.A. Life Cycle Assessment of Urea-Formaldehyde Adhesive and Phenol-Formaldehyde Adhesives. Environ. Processes 2020, 7, 553–561. [Google Scholar] [CrossRef]
- Pędzik, M.; Janiszewska, D.; Rogoziński, T. Alternative Lignocellulosic Raw Materials in Particleboard Production: A Review. Ind. Crops Prod. 2021, 174, 114162. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Siuda, J.; Sedliačik, J. Microcellulose as A Modifier For UF And PF Resins Allowing The Reduction of Adhesive Application In Plywood Manufacturing. Acta Fac. Xylologiae Zvolen Res. Publica Slovaca 2021, 63, 31–38. [Google Scholar] [CrossRef]
- Bekhta, P.; Sedliačik, J.; Kačík, F.; Noshchenko, G.; Kleinová, A. Lignocellulosic Waste Fibers and Their Application as a Component of Urea-Formaldehyde Adhesive Composition in the Manufacture of Plywood. Eur. J. Wood Wood Prod. 2019, 77, 495–508. [Google Scholar] [CrossRef]
- Mantanis, G.I.; Athanassiadou, E.T.; Barbu, M.C.; Wijnendaele, K. Adhesive Systems Used in the European Particleboard, MDF and OSB Industries. Wood Mater. Sci. Eng. 2018, 13, 104–116. [Google Scholar] [CrossRef]
- Barbu, M.C.; Montecuccoli, Z.; Förg, J.; Barbeck, U.; Klímek, P.; Petutschnigg, A.; Tudor, E.M. Potential of Brewer’s Spent Grain as a Potential Replacement of Wood in PMDI, UF or MUF Bonded Particleboard. Polymers 2021, 13, 319. [Google Scholar] [CrossRef]
- Islam, M.N.; Rahman, F.; Das, A.K.; Hiziroglu, S. An Overview of Different Types and Potential of Bio-Based Adhesives Used for Wood Products. Int. J. Adhes. Adhes. 2022, 112, 102992. [Google Scholar] [CrossRef]
- Arias, A.; González-Rodríguez, S.; Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M.; Moreira, M.T. Recent Developments in Bio-Based Adhesives from Renewable Natural Resources. J. Clean. Prod. 2021, 314, 127892. [Google Scholar] [CrossRef]
- He, Z. Bio-Based Wood Adhesives; CRC Press: New York, NY, USA, 2017; ISBN 9781498740746. [Google Scholar] [CrossRef]
- Ganewatta, M.S.; Lokupitiya, H.N.; Tang, C. Lignin Biopolymers in the Age of Controlled Polymerization. Polymers 2019, 11, 1176. [Google Scholar] [CrossRef] [Green Version]
- Garlapati, V.K.; Chandel, A.K.; Kumar, S.J.; Sharma, S.; Sevda, S.; Ingle, A.P.; Pant, D. Circular Economy Aspects of Lignin: Towards a Lignocellulose Biorefinery. Renew. Sustain. Energy Rev. 2020, 130, 109977. [Google Scholar] [CrossRef]
- Rico-García, D.; Ruiz-Rubio, L.; Pérez-Alvarez, L.; Hernández-Olmos, S.L.; Guerrero-Ramírez, G.L.; Vilas-Vilela, J.L. Lignin-Based Hydrogels: Synthesis and Applications. Polymers 2020, 12, 81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siahkamari, M.; Emmanuel, S.; Hodge, D.B.; Nejad, M. Lignin-Glyoxal: A Fully Biobased Formaldehyde-Free Wood Adhesive for Interior Engineered Wood Products. ACS Sustain. Chem. Eng. 2022, 10, 3430–3441. [Google Scholar] [CrossRef]
- Bajwa, D.S.; Pourhashem, G.; Ullah, A.H.; Bajwa, S.G. A Concise Review of Current Lignin Production, Applications, Products and Their Environmental Impact. Ind. Crops Prod. 2019, 139, 111526. [Google Scholar] [CrossRef]
- Aro, T.; Fatehi, P. Production and Application of Lignosulfonates and Sulfonated Lignin. ChemSusChem 2017, 10, 1861–1877. [Google Scholar] [CrossRef]
- Dunky, M. Wood Adhesives Based on Natural Resources: A Critical Review Part V. Wood Welding and Binderless Boards. Rev. Adhes. Adhes. 2021, 9, 308–367. [Google Scholar] [CrossRef]
- Chen, Y.; Gong, X.; Yang, G.; Li, Q.; Zhou, N. Preparation and Characterization of a Nanolignin Phenol Formaldehyde Resin by Replacing Phenol Partially with Lignin Nanoparticles. RSC Adv. 2019, 9, 29255–29262. [Google Scholar] [CrossRef]
- Antov, P.; Mantanis, G.I.; Savov, V. Development of Wood Composites from Recycled Fibres Bonded with Magnesium Lignosulfonate. Forests 2020, 11, 613. [Google Scholar] [CrossRef]
- Antov, P.; Savov, V.; Mantanis, G.I.; Neykov, N. Calcium Lignosulfonate as an Eco-Friendly Additive Medium-Density Fibreboards Bonded with Phenol-Formaldehyde Resin and Calcium Lignosulfonate as an Eco-Friendly Additive. Wood Mater. Sci. Eng. 2020, 16, 42–48. [Google Scholar] [CrossRef]
- Hart, W.E.S.; Harper, J.B.; Aldous, L. The effect of changing the components of an ionic liquid upon the solubility of lignin. Green Chem. 2015, 17, 214–218. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Liu, Y.; Wang, C.; Chu, F.; Xu, F.; Zhang, D. Synthesis of Lignin-Based Polyacid Catalyst and Its Utilization to Improve Water Resistance of Urea–Formaldehyde Resins. Polymers 2020, 12, 175. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dunky, M. Wood Adhesives Based on Natural Resources: A Critical Review: Part III. Tannin- and Lignin-Based Adhesives. In Progress in Adhesion and Adhesives; Mittal, K.L., Ed.; Wiley: Hoboken, NJ, USA, 2021; Volume 6, pp. 383–529. ISBN 978-1-119-84665-9. [Google Scholar] [CrossRef]
- Santos, J.; Delgado, N.; Fuentes, J.; Fuentealba, C.; Vega-Lara, J.; García, D.E. Exterior Grade Plywood Adhesives Based on Pine Bark Polyphenols and Hexamine. Ind. Crops Prod. 2018, 122, 340–348. [Google Scholar] [CrossRef]
- Frihart, C.R. Wood Adhesives: Past, Present, and Future. For. Prod. J. 2015, 65, 4–8. [Google Scholar] [CrossRef]
- Frihart, C.R. Wood Adhesives: Vital for Producing Most Wood Products. For. Prod. J. 2011, 61, 4–12. [Google Scholar] [CrossRef]
- Aung, M.M.; Yaakob, Z.; Kamarudin, S.; Abdullah, L.C. Synthesis and characterization of Jatropha (Jatropha curcas L.) oil-based polyurethane wood adhesive. Ind. Crops Prod. 2014, 60, 177–185. [Google Scholar] [CrossRef]
- Li, Q.; Pang, Y.; Liu, X.; Xi, E.; Mao, A.; Wan, H. Addition of Polyurethane Foam Waste to Polymeric Diphenyl Methane Diisocyanate to Improve Plywood Binder Performance. For. Prod. J. 2020, 70, 262–267. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Kasbe, P.S.; Mahanwar, P.A.; Gadekar, P.T. Synthesis and characterization of lignin-polyurethane based wood adhesive. Int. J. Adhes. Adhes. 2019, 95, 102427. [Google Scholar] [CrossRef]
- Jasiunas, L.; Peck, G.; Bridziuviene, D.; Miknius, L. Mechanical, Thermal Properties And Stability of High Renewable Content Liquefed Residual Biomass Derived Bio-Polyurethane Wood Adhesives. Int. J. Adhes. Adhes. 2020, 101, 102618. [Google Scholar] [CrossRef]
- JAS. Japanese Agricultural Standard for Plywood; JAS No. 233; Japanese Agricultural Standar Association: Tokyo, Japan, 2003. [Google Scholar]
- Shu, Y.; Luo, Q.; Wang, M.; Ouyang, Y.; Lin, H.; Sheng, L.; Su, S. Preparation and properties of poly(lactic acid)/lignin-modified polyvinyl acetate composites. J. Appl. Polym. Sci. 2020, 138, 49844. [Google Scholar] [CrossRef]
- Wang, W.; Gong, Y.; Sun, Q.; Li, L.; Xu, A.; Liu, R. High performance polyvinyl alcohol/polylactic acid materials: Facile preparation and improved properties. J. Appl. Polym. Sci. 2022, 139, e52470. [Google Scholar] [CrossRef]
- Rao, X.; Ou, Z.; Zhou, Q.; Fu, L.; Gong, Y.; Wen, Q.; Du, X.; Liang, C. Green cross-linked coir cellulose nanocrystals/poly (vinyl alcohol) composite films with enhanced water resistance, mechanical properties, and thermal stability. J. Appl. Polym. Sci. 2022, 139, 52361. [Google Scholar] [CrossRef]
- Wang, W.; Zammarano, M.; Shields, J.R.; Knowlton, E.D.; Kim, I.; Gales, J.A.; Hoehler, M.S.; Li, J. A novel application of silicone-based flame-retardant adhesive in plywood. Contsruction Build. Mater. 2018, 189, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Bortolatto, R.; Bittencourt, P.R.S.; Yamashita, F. Biodegradable composites of starch/polyvinyl alcohol/soybean hull (Glycine max L.) produced by thermoplastic injection. J. Appl. Polym. Sci. 2022, 139, 52288. [Google Scholar] [CrossRef]
- Handika, S.O.; Lubis, M.A.R.; Sari, R.K.; Laksana, R.P.B.; Antov, P.; Savov, V.; Gajtanska, M.; Iswanto, A.H. Enhancing Thermal and Mechanical Properties of Ramie Fiber via Impregnation by Lignin-Based Polyurethane Resin. Materials 2021, 14, 6850. [Google Scholar] [CrossRef] [PubMed]
- Tappi. T211 Ash in Wood, Pulp, Paper and Paperboard: Combustion at 525 °C; TAPPI Peachtree Corners: Atlanta, GA, USA, 2007; p. 5. [Google Scholar]
- Templeton, D.; Ehrman, T. Determination Fo Acid-Insoluble Lignin in Biomass—LAP-003; National Renewable Energy Laboratory: Golden, CO, USA, 1995; p. 14. [Google Scholar]
- Ehrman, T. Determination of Acid-Soluble Lignin in Biomass; LAP-004; NREL Chemical Analysis and Testing Task Laboratory: Golden, CO, USA, 1996; p. 8. [Google Scholar]
- Lubis, M.A.R.; Falah, F.; Harini, D.; Sudarmanto; Kharisma, A.; Tjahyono, B.; Fatriasari, W.; Subiyanto, B.; Suryanegara, L.; Iswanto, A.H. Enhancing the Performance of Natural Rubber Latex with Polymeric Isocyanate as Cold-Pressing and Formaldehyde Free Adhesive for Plywood. J. Adhes. 2021, 1–16. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Sari, F.P.; Laksana, R.P.B.; Fatriasari, W.; Hermiati, E. Ambient Curable Natural Rubber Latex Adhesive Cross-Linked with Polymeric Isocyanate for Bonding Wood. Polym. Bull. 2021, 1–13. [Google Scholar] [CrossRef]
- Gellerstedt, G. Softwood kraft lignin: Raw material for the future. Ind. Crops Prod. 2015, 77, 845–854. [Google Scholar] [CrossRef]
- Cardoso, M.; de Oliveira, É.D.; Passos, M.L. Chemical Composition and Physical Properties of Black Liquors and Their Effects on Liquor Recovery Operation in Brazilian Pulp Mills. Fuel 2009, 88, 756–763. [Google Scholar] [CrossRef]
- Nikolskaya, E.; Janhunen, P.; Haapalainen, M.H.Y. Applied Sciences Solids Content of Black Liquor Measured by Online. Appl. Sci. 2019, 9, 2169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Bai, Y.; Yu, B.; Liu, X.; Chen, F. A Practicable Process for Lignin Color Reduction: Fractionation of Lignin Using Methanol/Water as a Solvent. Green Chem. 2017, 19, 5152–5162. [Google Scholar] [CrossRef]
- Gordobil, O.; Moriana, R.; Zhang, L.; Labidi, J.; Sevastyanova, O. Assesment of Technical Lignins for Uses in Biofuels and Biomaterials: Structure-Related Properties, Proximate Analysis and Chemical Modification. Ind. Crops Prod. 2016, 83, 155–165. [Google Scholar] [CrossRef]
- Cachet, N.; Camy, S.; Benjelloun-Mlayah, B.; Condoret, J.S.; Delmas, M. Esterification of Organosolv Lignin under Supercritical Conditions. Ind. Crops Prod. 2014, 58, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Ľalíková, S.; Pajtášová, M.; Chromčíková, M.; Liška, M.; Šutinská, V.; Olšovský, M.; Ondrušová, D.; Mojumdar, S.C. Investigation of natural rubber composites with addition of montmorillonite fillers using thermal analysis. J. Therm. Anal. Calorim. 2011, 104, 969–973. [Google Scholar] [CrossRef]
- Sen, S.; Patil, S.; Argyropulos, D.S. Thermal properties of lignin in copolymers, blends, and composites: A review. Green Chem. 2015, 17, 4862–4887. [Google Scholar] [CrossRef]
- Park, B.; Kim, J. Dynamic Mechanical Analysis of Urea-Formaldehyde Resin Adhesives with Different Formaldehyde-to-Urea Molar Ratios. J. Appl. Phys. 2008, 108, 2045–2051. [Google Scholar] [CrossRef]
- Wibowo, E.S.; Lubis, M.A.R.; Park, B.D. In-Situ Modification of Low Molar Ratio Urea–Formaldehyde Resins with Cellulose Nanofibrils for Plywood. J. Adhes. Sci. Technol. 2021, 35, 2452–2465. [Google Scholar] [CrossRef]
- Trinh, H.M.; Militz, H.; Mai, C. Modification of beech veneers with N-methylol melamine compounds for the production of plywood: Natural weathering. Eur. J. Wood Wood Prod. 2012, 70, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Lubis, M.A.R.; Park, B.D.; Hong, M.K. Tuning of Adhesion and Disintegration of Oxidized Starch Adhesives for the Recycling of Medium Density Fiberboard. BioResources 2020, 15, 5156–5178. [Google Scholar] [CrossRef]
- Makovicka Osvaldova, L.; Kadlicova, P.; Rychly, J. Fire Characteristics of Selected Tropical Woods without and with Fire Retardant. Coatings 2020, 10, 527. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Park, B.-D.; Lee, S.-M. Performance of Hybrid Adhesives of Blocked-PMDI / Melamine-Urea-Formaldehyde Resins for the Surface Lamination on Plywood. J. Korean Wood Sci. Technol. 2019, 47, 200–209. [Google Scholar] [CrossRef]
- Yadav, S.M.; Lubis, M.A.R.; Wibowo, E.S.; Park, B. Effects of Nanoclay Modification with Transition Metal Ion on the Performance of Urea–Formaldehyde Resin Adhesives. Polym. Bull. 2020, 78, 2375–2388. [Google Scholar] [CrossRef]
- Lubis, M.A.R.; Jeong, B.; Park, B.-D.; Lee, S.-M.; Kang, E.-C. Effect of Synthesis Method and Melamine Content of Melamine-Urea-Formaldehyde Resins on Bond-Line Features in Plywood. J. Korean Wood Sci. Technol. 2019, 47, 579–586. [Google Scholar] [CrossRef]
- Ali, R.A.; Ashaari, Z.; Lee, S.H.; Uyup, M.K.; Bakar, E.S.; Azmi, N.I. Low Viscosity Melamine Urea Formaldehyde Resin as a Bulking Agent in Reducing Formaldehyde Emission of Treated Wood. BioResources. 2020, 15, 2195–2211. [Google Scholar] [CrossRef]
- Kawalerczyk, J.; Dziurka, D.; Mirski, R.; Trocinski, A. Flour Fillers with Urea-Formaldehyde Resin in Plywood. BioResources 2019, 14, 6727–6735. [Google Scholar] [CrossRef]
- Tasooji, M.; Wan, G.; Lewis, G.; Wise, H.; Frazier, C.E. Biogenic Formaldehyde: Content and Heat Generation in the Wood of Three Tree Species. ACS Sustain. Chem. Eng. 2017, 5, 4243–4248. [Google Scholar] [CrossRef]
- Tasooji, M.; Frazier, C.E. Simple Milligram-Scale Extraction of Formaldehyde from Wood. ACS Sustain. Chem. Eng. 2016, 4, 5041–5045. [Google Scholar] [CrossRef]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N.; et al. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
Lignin Content (%) | Chemicals | Total | ||
---|---|---|---|---|
PVOH * | Lignin ** | Hexamine *** | ||
10 | 100.0 | 15.0 | 15.0 | 130.0 |
15 | 100.0 | 22.5 | 15.0 | 137.5 |
20 | 100.0 | 30.0 | 15.0 | 145.0 |
Lignin Content (%) | Pressing Time (h) | Number of Plywood | |||
---|---|---|---|---|---|
3 | 6 | 12 | 24 | ||
Control * | 3 | - | - | - | 3 |
10 | 3 | 3 | 3 | 3 | 12 |
15 | 3 | 3 | 3 | 3 | 12 |
20 | 3 | 3 | 3 | 3 | 12 |
Parameters | Value | References |
---|---|---|
Solids content of black liquor (%) | 76.8 ± 0.64 | 65.0–85.0 [56,57] |
Yield of lignin (%) | 35.9 ± 1.81 | 35.0–46.0 [49,55] |
MC of lignin(%) | 5.1 ± 0.71 | 5.0–8.0 [49,55] |
Ash content of lignin (%) | 0.3 ± 0.19 | 8.3–19.2 [49,55] |
AIL (%) | 82.5 ± 0.96 | 53.1 [49,55] |
ASL (%) | 12.8 ± 0.67 | 7.3 [49,55] |
Purity of lignin (%) | 95.3 ± 0.61 | 60.4 [49,55] |
Lignin Content (%) | Solids Content (%) | Viscosity (mPa·s) | Gelation Time (min) |
---|---|---|---|
Control * | 96.52 ± 0.25 | 2056.5 ± 50.31 | 187.5 ± 2.0 |
10 | 25.96 ± 0.24 | 1894.6 ± 165.2 | nd ** |
15 | 22.98 ± 0.27 | 1309.9 ± 82.08 | nd |
20 | 19.31 ± 0.31 | 968.5 ± 65.59 | nd |
Lignin Content (%) | Pressing Time (h) | Density (g/cm3) | Moisture Content (%) ** | Delamination (%) *** |
---|---|---|---|---|
Control * | 3 | 0.42 ± 0.02 | 5.34 ± 0.09 | 0.0 ± 0.0 |
10 | 3 | 0.42 ± 0.01 | 8.95 ± 0.02 | 100.0 ± 0.0 |
6 | 0.42 ± 0.03 | 9.37 ± 0.07 | 100.0 ± 0.0 | |
12 | 0.42 ± 0.04 | 9.69 ± 0.05 | 100.0 ± 0.0 | |
24 | 0.42 ± 0.02 | 12.05 ± 0.06 | 100.0 ± 0.0 | |
15 | 3 | 0.42 ± 0.02 | 8.98 ± 0.08 | 100.0 ± 0.0 |
6 | 0.42 ± 0.05 | 9.37 ± 0.07 | 100.0 ± 0.0 | |
12 | 0.42 ± 0.04 | 9.71 ± 0.04 | 100.0 ± 0.0 | |
24 | 0.42 ± 0.07 | 12.82 ± 0.07 | 100.0 ± 0.0 | |
20 | 3 | 0.42 ± 0.06 | 9.27 ± 0.03 | 100.0 ± 0.0 |
6 | 0.42 ± 0.07 | 9.37 ± 0.03 | 100.0 ± 0.0 | |
12 | 0.42 ± 0.08 | 9.89 ± 0.04 | 100.0 ± 0.0 | |
24 | 0.42 ± 0.02 | 12.98 ± 0.09 | 100.0 ± 0.0 |
Properties | Variable | Mean Square | F-Value | p-Value |
---|---|---|---|---|
TSS | Lignin content | 0.347 | 10.601 | 0.001 * |
Pressing time | 0.116 | 2.212 | 0.014 | |
Interaction | 0.155 | 12.514 | 0.001 | |
MOR | Lignin content | 913.573 | 24.275 | 0.001 |
Pressing time | 78.337 | 0.717 | 0.048 | |
Interaction | 267.256 | 8.166 | 0.001 | |
MOE | Lignin content | 8,217,578.762 | 18.188 | 0.001 |
Pressing time | 1,721,046.403 | 1.706 | 0.018 | |
Interaction | 3,054,108.955 | 20.805 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lubis, M.A.R.; Labib, A.; Sudarmanto; Akbar, F.; Nuryawan, A.; Antov, P.; Kristak, L.; Papadopoulos, A.N.; Pizzi, A. Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers 2022, 14, 2111. https://doi.org/10.3390/polym14102111
Lubis MAR, Labib A, Sudarmanto, Akbar F, Nuryawan A, Antov P, Kristak L, Papadopoulos AN, Pizzi A. Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers. 2022; 14(10):2111. https://doi.org/10.3390/polym14102111
Chicago/Turabian StyleLubis, Muhammad Adly Rahandi, Ahmad Labib, Sudarmanto, Fazhar Akbar, Arif Nuryawan, Petar Antov, Lubos Kristak, Antonios Nikolaos Papadopoulos, and Antonio Pizzi. 2022. "Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine" Polymers 14, no. 10: 2111. https://doi.org/10.3390/polym14102111
APA StyleLubis, M. A. R., Labib, A., Sudarmanto, Akbar, F., Nuryawan, A., Antov, P., Kristak, L., Papadopoulos, A. N., & Pizzi, A. (2022). Influence of Lignin Content and Pressing Time on Plywood Properties Bonded with Cold-Setting Adhesive Based on Poly (Vinyl Alcohol), Lignin, and Hexamine. Polymers, 14(10), 2111. https://doi.org/10.3390/polym14102111