Development of Narrow-Bore C18 Column for Fast Separation of Peptides and Proteins in High-Performance Liquid Chromatography
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Apparatus
2.2. Preparation of Stationary Phase for Peptide and Protein Separation
2.2.1. Preparation of SM Particles
2.2.2. C18 Modification of SM Particles
2.3. Characterization
2.4. Packing HPLC Column
2.5. Checking the Performance of Packed Column
3. Results and Discussions
3.1. Surface Morphology of SP
3.2. Particle-Size Analysis of SP
3.3. Pore-Size Distribution of Stationary Phase
3.4. Chromatographic Performance of C18-Bound SM Column
3.4.1. Separation of Peptides
3.4.2. Separation of Proteins
3.4.3. Limit of Detection (DL) and Limit of Quantification (QL) for Analytes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wu, N.; Clausen, A.M. Fundamental and practical aspects of ultrahigh pressure liquid chromatography for fast separations. J. Sep. Sci. 2007, 30, 1167–1182. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.W. Ultrahigh-pressure LC in pharmaceutical analysis: Performance and practical issues. LC GC N. Am. 2007, 25, 89. [Google Scholar]
- Majors, R.E. Historical developments in HPLC and UHPLC column technology: The past 25 years. LC-GC N. Am. 2015, 33, 818–835. [Google Scholar]
- Wren, S.A.; Tchelitcheff, P. Use of ultra-performance liquid chromatography in pharmaceutical development. J. Chromatogr. A 2006, 1119, 140–146. [Google Scholar] [CrossRef]
- Fekete, S.; Schappler, J.; Veuthey, J.-L.; Guillarme, D. Current and future trends in UHPLC. TrAC Trends Anal. Chem. 2014, 63, 2–13. [Google Scholar] [CrossRef]
- MacNair, J.E.; Lewis, K.C.; Jorgenson, J.W. Ultrahigh-Pressure Reversed-Phase Liquid Chromatography in Packed Capillary Columns. Anal. Chem. 1997, 69, 983–989. [Google Scholar] [CrossRef]
- Jerkovich, A.; Mellors, J.S.; Jorgenson, J.W. The use of micron-sized particles in ultrahigh-pressure liquid chromatography. Lc Gc Eur. 2003, 16, 20–23. [Google Scholar]
- Lippert, J.A.; Xin, B.; Wu, N.; Lee, M.L. Fast ultrahigh-pressure liquid chromatography: On-column UV and time-of-flight mass spectrometric detection. J. Microcolumn Sep. 1999, 11, 631–643. [Google Scholar] [CrossRef]
- Mazzeo, J.R.; Neue, U.D.; Kele, M.; Plumb, R.S. Advancing LC Performance with Smaller Particles and Higher Pressure. Anal. Chem. 2005, 77, 460A–467A. [Google Scholar] [CrossRef] [Green Version]
- Majors, R.E. Fast and Ultrafast HPLC on sub-2 μm Porous Particles—Where Do We Go from Here? 2006. Available online: https://www.chromatographyonline.com/view/fast-and-ultrafast-hplc-sub-2-m-porous-particles-where-do-we-go-here-0 (accessed on 12 May 2022).
- Nguyen, D.T.-T.; Guillarme, D.; Rudaz, S.; Veuthey, J.-L. Fast analysis in liquid chromatography using small particle size and high pressure. J. Sep. Sci. 2006, 29, 1836–1848. [Google Scholar] [CrossRef]
- Wu, N.; Bradley, A.C. Effect of column dimension on observed column efficiency in very high pressure liquid chromatography. J. Chromatogr. A 2012, 1261, 113–120. [Google Scholar] [CrossRef]
- Ma, Y.; Chassy, A.W.; Miyazaki, S.; Motokawa, M.; Morisato, K.; Uzu, H.; Ohira, M.; Furuno, M.; Nakanishi, K.; Minakuchi, H.; et al. Efficiency of short, small-diameter columns for reversed-phase liquid chromatography under practical operating conditions. J. Chromatogr. A 2015, 1383, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, A.C.; Friedlander, G.; Fekete, S.; Anspach, J.; Guillarme, D.; Chitty, M.; Farkas, T. Pushing the performance limits of reversed-phase ultra high performance liquid chromatography with 1.3μm core–shell particles. J. Chromatogr. A 2013, 1311, 90–97. [Google Scholar] [CrossRef] [PubMed]
- DeStefano, J.J.; Boyes, B.E.; Schuster, S.A.; Miles, W.L.; Kirkland, J.J. Are sub-2 μm particles best for separating small molecules? An alternative. J. Chromatogr. A 2014, 1368, 163–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broeckhoven, K.; Desmet, G. Considerations for the use of ultra-high pressures in liquid chromatography for 2.1 mm inner diameter columns. J. Chromatogr. A 2017, 1523, 183–192. [Google Scholar] [CrossRef]
- Hicks, M.B.; Farrell, W.; Aurigemma, C.; Lehmann, L.; Weisel, L.; Nadeau, K.; Lee, H.; Moraff, C.; Wong, M.; Huang, Y.; et al. Making the move towards modernized greener separations: Introduction of the analytical method greenness score (AMGS) calculator. Green Chem. 2019, 21, 1816–1826. [Google Scholar] [CrossRef]
- de la Guardia, M.; Garrigues, S. Past, Present and Future of Green Analytical Chemistry. Challenges in Green Analytical Chemistry. Available online: https://pubs.rsc.org/en/content/chapterhtml/2020/bk9781788015370-00001?isbn=978-1-78801-537-0&sercode=bk, (accessed on 12 May 2022).
- Lestremau, F.; Wu, D.; Szücs, R. Evaluation of 1.0 mm id column performances on ultra high pressure liquid chromatography instrumentation. J. Chromatogr. A 2010, 1217, 4925–4933. [Google Scholar] [CrossRef]
- de Villiers, A.; Lauer, H.; Szucs, R.; Goodall, S.; Sandra, P. Influence of frictional heating on temperature gradients in ultra-high-pressure liquid chromatography on 2.1 mm ID columns. J. Chromatogr. A 2006, 1113, 84–91. [Google Scholar] [CrossRef]
- McCalley, D.V. The impact of pressure and frictional heating on retention, selectivity and efficiency in ultra-high-pressure liquid chromatography. TrAC Trends Anal. Chem. 2014, 63, 31–43. [Google Scholar] [CrossRef]
- Reising, A.E.; Schlabach, S.; Baranau, V.; Stoeckel, D.; Tallarek, U. Analysis of packing microstructure and wall effects in a narrow-bore ultrahigh pressure liquid chromatography column using focused ion-beam scanning electron microscopy. J. Chromatogr. A 2017, 1513, 172–182. [Google Scholar] [CrossRef]
- Ali, A.; Ali, F.; Cheong, W.J. Cheap C18-modified Silica Monolith Particles as HPLC Stationary Phase of Good Separation Efficiency. Bull. Korean Chem. Soc. 2015, 36, 1733–1736. [Google Scholar] [CrossRef]
- Ali, A.; Ali, F.; Cheong, W.J. Sedimentation assisted preparation of ground particles of silica monolith and their C18 modification resulting in a chromatographic phase of improved separation efficiency. J. Chromatogr. A 2017, 1525, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Sun, G.; Kim, J.S.; Cheong, W.J. Polystyrene bound silica monolith particles of reduced size as stationary phase of excellent separation efficiency in high performance liquid chromatograhy. J. Chromatogr. A 2019, 1594, 72–81. [Google Scholar] [CrossRef]
- Ali, A.; Cheong, W.J. Production of Raw and Ligand-modified Silica Monolith Particles in an Enhanced Scale and their Application in High Performance Liquid Chromatography. Bull. Korean Chem. Soc. 2017, 38, 919–927. [Google Scholar] [CrossRef]
- Sun, G.; Ali, A.; Kim, Y.S.; Kim, J.S.; An, H.J.; Cheong, W.J. An optimized mixed-mode stationary phase based on silica monolith particles for the separation of peptides and proteins in high-performance liquid chromatography. J. Sep. Sci. 2019, 42, 3621–3630. [Google Scholar] [CrossRef] [PubMed]
- Patel, D.C.; Wahab, M.F.; O’Haver, T.C.; Armstrong, D.W. Separations at the speed of sensors. Anal. Chem. 2018, 90, 3349–3356. [Google Scholar] [CrossRef]
- Wahab, M.F.; Roy, D.; Armstrong, D.W. The theory and practice of ultrafast liquid chromatography: A tutorial. Anal. Chim. Acta 2021, 1151, 238170. [Google Scholar] [CrossRef]
- Khundadze, N.; Pantsulaia, S.; Fanali, C.; Farkas, T.; Chankvetadze, B. On our way to sub-second separations of enantiomers in high-performance liquid chromatography. J. Chromatogr. A 2018, 1572, 37–43. [Google Scholar] [CrossRef]
- Stoll, D.R.; Carr, P.W. Fast, Comprehensive Two-Dimensional HPLC Separation of Tryptic Peptides Based on High-Temperature HPLC. J. Am. Chem. Soc. 2005, 127, 5034–5035. [Google Scholar] [CrossRef]
- Ali, A.; Alharthi, S.; Ahmad, B.; Naz, A.; Khan, I.; Mabood, F. Efficient Removal of Pb(II) from Aqueous Medium Using Chemically Modified Silica Monolith. Molecules 2021, 26, 6885. [Google Scholar] [CrossRef]
- Alharthi, S.; Ali, A.; Iqbal, M.; Ibrar, A.; Ahmad, B.; Nisa, S.; Mabood, F. Preparation of mixed-mode stationary phase for separation of peptides and proteins in high performance liquid chromatography. Sci. Rep. 2022, 12, 4061. [Google Scholar] [CrossRef] [PubMed]
Bare Silica Monolith Particles | C18-Bound Silica Monolith Particles | |||||
---|---|---|---|---|---|---|
d (0.1) | d (0.5) | d (0.9) | d (0.1) | d (0.5) | d (0.9) | |
Previous study [33] | 0.96 | 1.46 | 3.01 | 1.65 | 3.36 | 6.27 |
Current study | 1.23 | 2.02 | 5.22 | 2.25 | 3.24 | 6.52 |
Pore Size (Å) | Bare SM Particles | C18-Bound SM Particles | ||
---|---|---|---|---|
[26] | Current Study | [26] | Current Study | |
Pore size (Å) | 295 | 310 | 232 | 241 |
Pore volume (cm3/g) | 0.73 | 0.67 | 0.61 | 0.58 |
Surface area (m2/g) | 124 | 116 | 111 | 105 |
Analyte | Batch Reproducibility | Time Reproducibility | ||
---|---|---|---|---|
n Values | %RSD | n Values | %RSD | |
Thr-Tyr-Ser | 40,600 | 0.05 | 40,200 | 0.11 |
Val-Ala-Pro-Gly | 40,400 | 0.10 | 40,300 | 0.12 |
Angiotensin-I | 39,500 | 0.11 | 39,200 | 0.18 |
Isotocin | 39,300 | 0.20 | 39,000 | 0.23 |
Bradykinin | 38,200 | 0.22 | 38,700 | 0.28 |
Average | 39,600 | 0.14 | 39,400 | 0.18 |
Analyte | Column-to-Column Reproducibility | Day-to-Day Reproducibility | ||
---|---|---|---|---|
n Values | %RSD | n Values | %RSD | |
Cytochrome c | 23,300 | 0.08 | 23,700 | 0.15 |
RNase A | 23,200 | 0.12 | 23,500 | 0.18 |
Lysine | 22,500 | 0.14 | 22,900 | 0.28 |
α-Amylase | 21,300 | 0.29 | 22,300 | 0.37 |
Insulin | 21,100 | 0.32 | 21,800 | 0.42 |
Average | 22,200 | 0.19 | 22,800 | 0.28 |
Analyte | DL (ng) | QL (ng) |
---|---|---|
T-T-S | 0.57 | 1.71 |
V-A-P-G | 0.55 | 1.65 |
AT-I | 0.51 | 1.53 |
Isotocine | 0.58 | 1.74 |
Bradykinin | 0.53 | 1.59 |
Cytochrome c | 0.49 | 1.47 |
RNase A | 0.47 | 1.41 |
Lysine | 0.52 | 1.56 |
α-Amylase | 0.48 | 1.44 |
Insulin | 0.45 | 1.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, A.; Alharthi, S.; Al-Shaalan, N.H.; Santali, E.Y. Development of Narrow-Bore C18 Column for Fast Separation of Peptides and Proteins in High-Performance Liquid Chromatography. Polymers 2022, 14, 2576. https://doi.org/10.3390/polym14132576
Ali A, Alharthi S, Al-Shaalan NH, Santali EY. Development of Narrow-Bore C18 Column for Fast Separation of Peptides and Proteins in High-Performance Liquid Chromatography. Polymers. 2022; 14(13):2576. https://doi.org/10.3390/polym14132576
Chicago/Turabian StyleAli, Ashraf, Sarah Alharthi, Nora Hamad Al-Shaalan, and Eman Y. Santali. 2022. "Development of Narrow-Bore C18 Column for Fast Separation of Peptides and Proteins in High-Performance Liquid Chromatography" Polymers 14, no. 13: 2576. https://doi.org/10.3390/polym14132576
APA StyleAli, A., Alharthi, S., Al-Shaalan, N. H., & Santali, E. Y. (2022). Development of Narrow-Bore C18 Column for Fast Separation of Peptides and Proteins in High-Performance Liquid Chromatography. Polymers, 14(13), 2576. https://doi.org/10.3390/polym14132576