Polyester-Based Coatings for Corrosion Protection
Abstract
:1. Introduction
(iron ore) (coke) (iron) (↑gas)
(iron) (oxygen) (water) (rust).
2. Polyesters
2.1. Unsaturated Polyesters
2.2. Saturated Polyesters
2.3. Alkyd Resins
2.4. Vinyl Esters
2.4.1. Polymerization of Vinyl Ester
2.4.2. Free Radical Polymerization
2.4.3. Crosslinking of Vinyl Esters
3. Developments in Polyester-Based Coatings
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rahman, S.; McDonald, B.C.; Gagnon, G.A. Impact of secondary disinfectants on copper corrosion under stagnation conditions. J. Environ. Eng. 2007, 133, 180–185. [Google Scholar] [CrossRef]
- Ask, T. Engineering for Industrial Designers and Inventors: Fundamentals for Designers of Wonderful Things; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2016. [Google Scholar]
- Xu, D.; Guo, S. Corrosion Types and Elemental Effects of Ni-Based and FeCrAl Alloys. In Corrosion Characteristics, Mechanisms and Control Methods of Candidate Alloys in Sub-and Supercritical Water; Springer: Singapore, 2022; pp. 23–49. [Google Scholar]
- Kim, K.; Lee, H.B.R.; Johnson, R.W.; Tanskanen, J.T.; Liu, N.; Kim, M.G.; Pang, C.; Ahn, C.; Bent, S.F.; Bao, Z. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 2014, 5, 4781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, S.; Medhekar, N.V.; Frankel, G.S.; Birbilis, N. Corrosion mechanism and hydrogen evolution on Mg. Curr. Opin. Solid State Mater. Sci. 2015, 19, 85–94. [Google Scholar] [CrossRef]
- Yucel, N.; Kalkanli, A.; Caner-Saltik, E.N. Investigation of atmospheric corrosion layers on historic iron nails by micro-Raman spectroscopy. J. Raman Spectrosc. 2016, 47, 1486–1493. [Google Scholar] [CrossRef]
- Chilingar, G.V.; Mourhatch, R.; Al-Qahtani, A. The Fundamentals of Corrosion and Scaling for Petroleum & Environmental Engineers; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Vance, K.; Kumar, A.; Sant, G.; Neithalath, N. The rheological properties of ternary binders containing Portland cement, limestone, and metakaolin or fly ash. Cem. Concr. Res. 2013, 52, 196–207. [Google Scholar] [CrossRef]
- Brendgen, R.; Graßmann, C.; Grethe, T.; Mahltig, B.; Schwarz-Pfeiffer, A. Coatings with recycled polyvinyl butyral on polyester and polyamide mono-and multifilament yarns. J. Coat. Technol. Res. 2021, 18, 819–829. [Google Scholar] [CrossRef]
- Hansson, C.M. The impact of corrosion on society. Metall. Mater. Trans. A 2011, 42, 2952–2962. [Google Scholar] [CrossRef]
- Costanza, R.; Hart, M.; Talberth, J.; Posner, S. Beyond GDP: The Need for New Measures of Progress; The Pardee Papers; Pardee Center for the Study of the Longer-Range Future: Boston, MA, USA, 2009. [Google Scholar]
- Zhu, Y.; Romain, C.; Williams, C.K. Sustainable polymers from renewable resources. Nature 2016, 540, 354–362. [Google Scholar] [CrossRef]
- Azzaroni, O. Polymer brushes here, there, and everywhere: Recent advances in their practical applications and emerging opportunities in multiple research fields. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 3225–3258. [Google Scholar] [CrossRef]
- Comninellis, C.; Kapalka, A.; Malato, S.; Parsons, S.A.; Poulios, I.; Mantzavinos, D. Advanced oxidation processes for water treatment: Advances and trends for R&D. J. Chem. Technol. Biotechnol. Int. Res. Process. Environ. Clean Technol. 2008, 83, 769–776. [Google Scholar]
- Seidi, F.; Jouyandeh, M.; Taghizadeh, M.; Taghizadeh, A.; Vahabi, H.; Habibzadeh, S.; Formela, K.; Saeb, M.R. Metal-organic framework (MOF)/epoxy coatings: A review. Materials 2020, 13, 2881. [Google Scholar] [CrossRef] [PubMed]
- Manasoglu, G.; Celen, R.; Kanik, M.; Ulcay, Y. An investigation on the thermal and solar properties of graphene-coated polyester fabrics. Coatings 2021, 11, 125. [Google Scholar] [CrossRef]
- Schopphoven, T.; Gasser, A.; Backes, G. EHLA: Extreme High-Speed Laser Material Deposition: Economical and effective protection against corrosion and wear. Laser Tech. J. 2017, 14, 26–29. [Google Scholar] [CrossRef] [Green Version]
- Golgoon, A.; Aliofkhazraei, M.; Toorani, M.; Moradi, M.H.; Rouhaghdam, A.S. Corrosion and wear properties of nanoclay-polyester nanocomposite coatings fabricated by electrostatic method. Procedia Mater. Sci. 2015, 11, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Hasniraaiman, A.H.; Zuliahani, A.; Ishak, M.; AFaiza, M.; Azniwati, A.A. Comparison studies on corrosive properties of polyester filled graphene primer coatings via sonication and mechanical method. Prog. Color Colorants Coat. 2019, 12, 211–218. [Google Scholar]
- Van Ooij, W.J.; Zhu, D.; Stacy, M.; Seth, A.; Mugada, T.; Gandhi, J.; Puomi, P. Corrosion protection properties of organofunctional silanes—An overview. Tsinghua Sci. Technol. 2005, 10, 639–664. [Google Scholar] [CrossRef]
- Bahlakeh, G.; Ramezanzadeh, B.; Ramezanzadeh, M. The role of chrome and zinc free-based neodymium oxide nanofilm on adhesion and corrosion protection properties of polyester/melamine coating on mild steel: Experimental and molecular dynamics simulation study. J. Clean. Prod. 2019, 210, 872–886. [Google Scholar] [CrossRef]
- Goerz, O.; Ritter, H. Polymers with shape memory effect from renewable resources: Crosslinking of polyesters based on isosorbide, itaconic acid and succinic acid. Polym. Int. 2013, 62, 709–712. [Google Scholar] [CrossRef]
- Krishnaveni, K.; Ravichandran, J.; Selvaraj, A. Effect of Morinda tinctoria leaves extract on the corrosion inhibition of mild steel in acid medium. Acta Metall. Sin. 2013, 26, 321–327. [Google Scholar] [CrossRef] [Green Version]
- Chajęcka, J.M. Synthesis of Biodegradable and Biocompostable Polyesters. Ph.D. Thesis, Instituo Superior Tecnico, Universide Tecnica de Lisboa, Lisboa, Portugal, 2011. [Google Scholar]
- Li, L.; Sun, X.; Lee, L.J. Low temperature cure of vinyl ester resins. Polym. Eng. Sci. 1999, 39, 646–661. [Google Scholar] [CrossRef]
- Shields, R.J.; Bhattacharyya, D.; Fakirov, S. Fibrillar polymer–polymer composites: Morphology, properties and applications. J. Mater. Sci. 2008, 43, 6758–6770. [Google Scholar] [CrossRef]
- Jung, M.E.; Blum, R.B. Generation of the enolate of acetaldehyde from non-carbonyl substances and its C-alkylation, O-acylation and O-silylation. Tetrahedron Lett. 1977, 18, 3791–3794. [Google Scholar] [CrossRef]
- Seyhan, A.T.; Gojny, F.H.; Tanoğlu, M.; Schulte, K. Rheological and dynamic-mechanical behavior of carbon nanotube/vinyl ester–polyester suspensions and their nanocomposites. Eur. Polym. J. 2007, 43, 2836–2847. [Google Scholar] [CrossRef] [Green Version]
- Anastas, P.T.; Beach, E.S. Green chemistry: The emergence of a transformative framework. Green Chem. Lett. Rev. 2007, 1, 9–24. [Google Scholar] [CrossRef] [Green Version]
- Nikles, D.E.; Farahat, M.S. New motivation for the depolymerization products derived from poly (ethylene terephthalate) (PET) waste: A review. Macromol. Mater. Eng. 2005, 290, 13–30. [Google Scholar] [CrossRef]
- Jankauskaite, V.; Macijauskas, G.; Lygaitis, R. Polyethylene terephthalate waste recycling and application possibilities: A review. Mater. Sci. 2008, 14, 119–127. [Google Scholar]
- McKee, M.G.; Unal, S.; Wilkes, G.L.; Long, T.E. Branched polyesters: Recent advances in synthesis and performance. Prog. Polym. Sci. 2005, 30, 507–539. [Google Scholar] [CrossRef]
- Pang, K.; Kotek, R.; Tonelli, A. Review of conventional and novel polymerization processes for polyesters. Prog. Polym. Sci. 2006, 31, 1009–1037. [Google Scholar] [CrossRef]
- Raquez, J.M.; Deléglise, M.; Lacrampe, M.F.; Krawczak, P. Thermosetting (bio) materials derived from renewable resources: A critical review. Prog. Polym. Sci. 2010, 35, 487–509. [Google Scholar] [CrossRef]
- Kalia, S.; Dufresne, A.; Cherian, B.M.; Kaith, B.S.; Avérous, L.; Njuguna, J.; Nassiopoulos, E. Cellulose-based bio-and nanocomposites: A review. Int. J. Polym. Sci. 2011, 35. [Google Scholar] [CrossRef]
- Johansson, C.; Bras, J.; Mondragon, I.; Nechita, P.; Plackett, D.; Simon, P.; Svetec, D.G.; Virtanen, S.; Baschetti, M.G.; Breen, C.; et al. Renewable fibers and bio-based materials for packaging applications—A review of recent developments. BioResources 2012, 7, 2506–2552. [Google Scholar] [CrossRef]
- Babu, R.P.; O’connor, K.; Seeram, R. Current progress on bio-based polymers and their future trends. Prog. Biomater. 2013, 2, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokiwa, Y.; Calabia, B.P. Review degradation of microbial polyesters. Biotechnol. Lett. 2004, 26, 1181–1189. [Google Scholar] [CrossRef]
- Levchik, S.V.; Weil, E.D. A review on thermal decomposition and combustion of thermoplastic polyesters. Polym. Adv. Technol. 2004, 15, 691–700. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–2650. [Google Scholar] [CrossRef]
- Lenz, R.W.; Marchessault, R.H. Bacterial polyesters: Biosynthesis, biodegradable plastics and biotechnology. Biomacromolecules 2005, 6, 1–8. [Google Scholar] [CrossRef]
- Liu, Y.Q.; Liu, Y.; Tay, J.H. The effects of extracellular polymeric substances on the formation and stability of biogranules. Appl. Microbiol. Biotechnol. 2004, 65, 143–148. [Google Scholar] [CrossRef]
- Roberts, C.W. Fire-retardant components of self-extinguishing polyesters. Polym. Eng. Sci. 1963, 3, 111–116. [Google Scholar] [CrossRef]
- Xu, G.; Gong, L.; Yang, Z.; Liu, X.Y. What makes spider silk fibers so strong? From molecular-crystallite network to hierarchical network structures. Soft Matter 2014, 10, 2116–2123. [Google Scholar] [CrossRef]
- Kim, M.N.; Lee, B.Y.; Lee, I.M.; Lee, H.S.; Yoon, J.S. Toxicity and biodegradation of products from polyester hydrolysis. J. Environ. Sci. Health Part A 2001, 36, 447–463. [Google Scholar] [CrossRef]
- Levin, B.C. A summary of the NBS literature reviews on the chemical nature and toxicity of the pyrolysis and combustion products from seven plastics: Acrylonitrile–butadiene–styrenes (ABS), nylons, polyesters, polyethylenes, polystyrenes, poly (vinyl chlorides) and rigid polyurethane foams. Fire Mater. 1987, 11, 143–157. [Google Scholar]
- Yang, S.H.; Fu, P.; Liu, M.Y.; Wang, Y.D.; Zhang, Y.C.; Zhao, Q.X. Synthesis, characterization of polytridecamethylene 2, 6-naphthalamide as semiaromatic polyamide containing naphthalene-ring. Express Polym. Lett. 2010, 4, 442–449. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Reihmane, S.A.; Gassan, J. Thermoplastics reinforced with wood fillers: A literature review. Polym. Plast. Technol. Eng. 1998, 37, 451–468. [Google Scholar] [CrossRef]
- Massy, J. Thermoplastic and thermosetting polymers. In A Little Book about BIG Chemistry; Springer: Cham, Switzerland, 2017; pp. 19–26. [Google Scholar]
- Poth, U. Polyester and Alkyd Resins: Technical Basics and Applications; Vincentz Network: Hannover, Germany, 2020. [Google Scholar] [CrossRef]
- Samsudin, S.N.F.S.; Ahmad, Z.; Baharudin, A.; Rahman, R.; Wahab, N.A. February. Mechanical, adhesion and corrosive properties of unsaturated polyester-graphene coating treated with silane coupling agent on metal substrate. In AIP Conference Proceedings; AIP Publishing Center: Melville, NY, USA, 2021; Volume 2332, p. 060002. [Google Scholar]
- National Research Council. Polymer Science and Engineering: The Shifting Research Frontiers; National Academies Press: Cambridge, MA, USA, 1994.
- Dholakiya, B. Unsaturated polyester resin for specialty applications. Polyester 2012, 7, 167–202. [Google Scholar]
- Makhlouf, A.S.H. (Ed.) Handbook of Smart Coatings for Materials Protection (No. 64); Elsevier: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Hernandez-Izquierdo, V.M.; Krochta, J.M. Thermoplastic processing of proteins for film formation—A review. J. Food Sci. 2008, 73, R30–R39. [Google Scholar] [CrossRef]
- Guzowski, J.; Korczyk, P.M.; Jakiela, S.; Garstecki, P. The structure and stability of multiple micro-droplets. Soft Matter 2012, 8, 7269–7278. [Google Scholar] [CrossRef] [Green Version]
- Makhlouf, A.; Satha, H.; Frihi, D.; Gherib, S.; Seguela, R. Optimization of the crystallinity of polypropylene/submicronic-talc composites: The role of filler ratio and cooling rate. Express Polymer Lett. 2016, 10, 237–247. [Google Scholar] [CrossRef]
- Li, X.P.; Zhao, L.Y.; Liu, Z.Z. Topological optimization of continuum structure based on ANSYS. In Proceedings of the MATEC Web of Conferences, Shanghai, China, 21–23 October 2016; Tianjin University of Technology: Tianjin, China; Volume 95, p. 07020. [Google Scholar]
- Thair, L.; Jassim, I.K.; Al-Khuzaie, S.R.; Hammody, J.F.; Kalil, M.H. Corrosion protection of carbon steel oil pipelines by unsaturated polyester/clay composite coating. Am. Acad. Sci. Res. J. Eng. Technol. Sci. 2016, 18, 108–119. [Google Scholar]
- Blank, W.J.; Berndlmaier, R.; Miller, D. Additives for high solids and water-borne coatings. In Proceedings of the Presented at the International Waterborne, Higher-Solids, and Powder Coatings Symposium, New Orleans, LA, USA, 18–20 February 1998. [Google Scholar]
- Szycher, M. Flexible and semiflexible foams. In Szycher’s Handbook of Polyurethanes; Taylor & Francis Group: Hoboken, NJ, USA, 2012; pp. 181–186. [Google Scholar]
- Kandola, B.K.; Ebdon, J.R.; Chowdhury, K.P. Flame retardance and physical properties of novel cured blends of unsaturated polyester and furan resins. Polymers 2015, 7, 298–315. [Google Scholar] [CrossRef] [Green Version]
- Dai, J.; Ma, S.; Liu, X.; Han, L.; Wu, Y.; Dai, X.; Zhu, J. Synthesis of bio-based unsaturated polyester resins and their application in waterborne UV-curable coatings. Prog. Org. Coat. 2015, 78, 49–54. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, G.; Chen, Z.; Long, Z. An Environmentally Friendly Polyester Coil Coating Primer; AMPP Publications: Houston, TX, USA, 2020. [Google Scholar]
- Grigore, M.E. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling 2017, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Larock, R.C. Vegetable oil-based polymeric materials: Synthesis, properties, and applications. Green Chem. 2010, 12, 1893–1909. [Google Scholar] [CrossRef]
- Hansen, T.S.; Mielby, J.; Riisager, A. Synergy of boric acid and added salts in the catalytic dehydration of hexoses to 5-hydroxymethylfurfural in water. Green Chem. 2011, 13, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Kandelbauer, A.; Tondi, G.; Zaske, O.C.; Goodman, S.H. Unsaturated polyesters and vinyl esters. In Handbook of Thermoset Plastics; William Andrew Publishing: Park Ridge, NJ, USA, 2022; pp. 97–158. [Google Scholar]
- Ali Fathima Sabirneeza, A.; Subhashini, S. A novel water-soluble, conducting polymer composite for mild steel acid corrosion inhibition. J. Appl. Polym. Sci. 2013, 127, 3084–3092. [Google Scholar] [CrossRef]
- Jafarzadeh, S.; Claesson, P.M.; Sundell, P.E.; Tyrode, E.; Pan, J. Active corrosion protection by conductive composites of polyaniline in a UV-cured polyester acrylate coating. Prog. Org. Coat. 2016, 90, 154–162. [Google Scholar] [CrossRef]
- Lee, Y.H.; Lee, S.J.; Park, J.W.; Kim, H.J. Synthesis and properties of flexible polyester with urethane polyol for automotive pre-coated metals. J. Adhes. Sci. Technol. 2016, 30, 1537–1554. [Google Scholar] [CrossRef]
- Dutta, N.; Karak, N.; Dolui, S.K. Stoving paint from Mesua ferrea L. seed oil based short oil polyester and MF resins blend. Prog. Org. Coat. 2007, 58, 40–45. [Google Scholar] [CrossRef]
- Popović, M.M.; Grgur, B.N. Electrochemical synthesis and corrosion behavior of thin polyaniline-benzoate film on mild steel. Synth. Met. 2004, 143, 191–195. [Google Scholar] [CrossRef]
- Tawfik, S.Y.; Asaad, J.N.; Sabaa, M.W. Thermal and mechanical behaviour of flexible poly (vinyl chloride) mixed with some saturated polyesters. Polym. Degrad. Stab. 2006, 91, 385–392. [Google Scholar] [CrossRef]
- Rammelt, U.; Reinhard, G. Characterization of active pigments in damage of organic coatings on steel by means of electrochemical impedance spectroscopy. Prog. Org. Coat. 1994, 24, 309–322. [Google Scholar] [CrossRef]
- Mariam Fadzlina, R. Synthesis of Polyaniline Modified with Palm Oil Based Alkyd as Counter Electrode in Solar Cell Application/Mariam Fadzlina Ramli. Ph.D. Thesis, Universiti Malaya, Kuala Lumpur, Malaysia, 2020. [Google Scholar]
- Jaffe, M.; Easts, A.J.; Feng, X. Polyester fibers. In Thermal Analysis of Textiles and Fibers; Woodhead Publishing: Sawston, UK, 2020; pp. 133–149. [Google Scholar]
- Gradinaru, V.; Treweek, J.; Overton, K.; Deisseroth, K. Hydrogel-tissue chemistry: Principles and applications. Annu. Rev. Biophys. 2018, 47, 355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mukhtar, A.; Ullah, H.; Mukhtar, H. Fatty acid composition of tobacco seed oil and synthesis of alkyd resin. Chin. J. Chem. 2007, 25, 705–708. [Google Scholar] [CrossRef]
- Isaac, I.O.; Ekpa, O.D.; Ekpe, U.J.; Odiongenyi, A.O. The effects of polybasic acid type on kinetics of the preparation of cottonseed oil based alkyd resins. IOSR J. Pharm. Biol. Sci. Ver. I 2015, 10, 231. [Google Scholar]
- Lambourne, R.; Strivens, T.A. (Eds.) Paint and Surface Coatings: Theory and Practice; Elsevier: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Hofland, A. Alkyd resins: From down and out to alive and kicking. Prog. Org. Coat. 2012, 73, 274–282. [Google Scholar] [CrossRef]
- Kushwaha, P.K.; Kumar, R. Studies on water absorption of bamboo-polyester composites: Effect of silane treatment of mercerized bamboo. Polym. Plast. Technol. Eng. 2009, 49, 45–52. [Google Scholar] [CrossRef]
- Blayo, A.; Gandini, A.; Le Nest, J.F. Chemical and rheological characterizations of some vegetable oils derivatives commonly used in printing inks. Ind. Crop. Prod. 2001, 14, 155–167. [Google Scholar] [CrossRef]
- Uchiyama, M.; Satoh, K.; Kamigaito, M. Stereospecific cationic RAFT polymerization of bulky vinyl ethers and stereoblock poly (vinyl alcohol) via mechanistic transformation to radical RAFT polymerization of vinyl acetate. Giant 2021, 5, 100047. [Google Scholar] [CrossRef]
- Zhang, X.; Bitaraf, V.; Wei, S.; Guo, Z.; Zhang, X.; Wei, S.; Colorado, H.A. Vinyl ester resin: Rheological behaviors, curing kinetics, thermomechanical, and tensile properties. AIChE J. 2014, 60, 266–274. [Google Scholar] [CrossRef]
- Fei, M.; Liu, T.; Zhao, B.; Otero, A.; Chang, Y.C.; Zhang, J. From glassy plastic to ductile elastomer: Vegetable oil-based UV-curable vitrimers and their potential use in 3D printing. ACS Appl. Polym. Mater. 2021, 3, 2470–2479. [Google Scholar] [CrossRef]
- Winkler, H.; Vorwerg, W.; Rihm, R. Thermal and mechanical properties of fatty acid starch esters. Carbohydr. Polym. 2014, 102, 941–949. [Google Scholar] [CrossRef]
- Gilman, J.W.; Kashiwagi, T.; Nyden, M.; Brown, J.E.T.; Jackson, C.L.; Lomakin, S.; Giannelis, E.P.; Manias, E. Flammability studies of polymer layered silicate nanocomposites: Polyolefin, epoxy, and vinyl ester resins. Chem. Technol. Polym. Addit. 1999, 14, 249–265. [Google Scholar]
- Poornima, T.; Nayak, J.; Nityananda Shetty, A. 3,4-Dimethoxybenzaldehydethiosemicarbazone as corrosion inhibitor for aged 18 Ni 250 grade maraging steel in 0.5 M sulfuric acid. J. Appl. Electrochem. 2011, 41, 223–233. [Google Scholar] [CrossRef]
- Kootsookos, A.; Burchill, P.J. The effect of the degree of cure on the corrosion resistance of vinyl ester/glass fibre composites. Compos. Part A Appl. Sci. Manuf. 2004, 35, 501–508. [Google Scholar] [CrossRef]
- George, S.M.; Yoon, B.; Dameron, A.A. Surface chemistry for molecular layer deposition of organic and hybrid organic− inorganic polymers. Acc. Chem. Res. 2009, 42, 498–508. [Google Scholar] [CrossRef] [PubMed]
- Kouznetsov, V.V.; Vargas Méndez, L.Y. Synthesis of eugenol-based monomers for sustainable epoxy thermoplastic polymers. J. Appl. Polym. Sci. 2022, 139, 52237. [Google Scholar] [CrossRef]
- Brand, J.; Pecastaings, G.; Sèbe, G. A versatile method for the surface tailoring of cellulose nanocrystal building blocks by acylation with functional vinyl esters. Carbohydr. Polym. 2017, 169, 189–197. [Google Scholar] [CrossRef]
- Anand, G.; Alagumurthi, N.; Elansezhian, R.; Venkateshwaran, N. Dynamic mechanical, thermal and wear analysis of Ni-P coated glass fiber/Al2O3 nanowire reinforced vinyl ester composite. Alex. Eng. J. 2018, 57, 621–631. [Google Scholar] [CrossRef]
- Valente, M.; Sarasini, F.; Marra, F.; Tirillò, J.; Pulci, G. Hybrid recycled glass fiber/wood flour thermoplastic composites: Manufacturing and mechanical characterization. Compos. Part A Appl. Sci. Manuf. 2011, 42, 649–657. [Google Scholar] [CrossRef]
- Jansen, J.F.; Dias, A.A.; Dorschu, M.; Coussens, B. Fast monomers: Factors affecting the inherent reactivity of acrylate monomers in photoinitiated acrylate polymerization. Macromolecules 2003, 36, 3861–3873. [Google Scholar] [CrossRef]
- Singh, M.; Mehta, R.; Verma, S.K.; Biswas, I. Effect of addition of different nano-clays on the fumed silica-polyethylene glycol based shear-thickening fluids. Mater. Res. Express 2018, 5, 014001. [Google Scholar] [CrossRef]
- Wonderly, C.; Grenestedt, J.; Fernlund, G.; Cěpus, E. Comparison of mechanical properties of glass fiber/vinyl ester and carbon fiber/vinyl ester composites. Compos. Part B Eng. 2005, 36, 417–426. [Google Scholar] [CrossRef]
- Jaillet, F.; Nouailhas, H.; Boutevin, B.; Caillol, S. Synthesis of novel vinylester from dicyclopentadiene prepolymer. Eur. Polym. J. 2015, 71, 248–258. [Google Scholar] [CrossRef]
- Jernigan, J.C.; Wilbourn, K.O.; Murray, R.W. A benzimidazobenzophenanthroline polymer molecular transistor fabricated using club sandwich electrodes. J. Electroanal. Chem. Interfacial Electrochem. 1987, 222, 193–200. [Google Scholar] [CrossRef]
- Frisch, K.C.; Sendijarevic, V.; Sendijarevic, A.; Lekovic, H.; Kresta, J.E.; Klempner, D.; Hunter, L.; Banuk, R. New heat resistant isocyanate based foams for structural applications. J. Cell. Plast. 1992, 28, 316–329. [Google Scholar] [CrossRef]
- Hefner, B.T.; Marston, P.L. Backscattering enhancements associated with subsonic Rayleigh waves on polymer spheres in water: Observation and modeling for acrylic spheres. J. Acoust. Soc. Am. 2000, 107, 1930–1936. [Google Scholar] [CrossRef]
- Walters, D.G.; Bartholomew, J.J.; Bolton, D.J.; Butler, W.B.; Cain, R.R.; Carter, P.D.; Constantino, F.; DePuy, G.W.; Dimmick, F.E.; Dohner, W.T.; et al. Guide for polymer concrete overlays. ACI Mater. J. 1993, 90, 499–522. [Google Scholar]
- Tiwari, S.K.; Mishra, J.; Hatui, G.; Nayak, G.C. Conductive polymer composites based on carbon nanomaterials. In Conducting Polymer Hybrids; Springer: Cham, Switzerland, 2017; pp. 117–142. [Google Scholar]
- Wang, P.; Meng, K.; Cheng, H.; Hong, S.; Hao, J.; Han, C.C.; Haeger, H. Reactive compatibilization of polyamide-12/poly (butylene terephthalate) blends with hyperbranched PEI-g-PA12: Morphology and thermal properties. Polymer 2009, 50, 2154–2160. [Google Scholar] [CrossRef]
- Gaaz, T.S.; Sulong, A.B.; Akhtar, M.N.; Kadhum, A.A.H.; Mohamad, A.B.; Al-Amiery, A.A. Properties and applications of polyvinyl alcohol, halloysite nanotubes and their nanocomposites. Molecules 2015, 20, 22833–22847. [Google Scholar] [CrossRef] [Green Version]
- Han, M.G.; Cho, S.K.; Oh, S.G.; Im, S.S. Preparation and characterization of polyaniline nanoparticles synthesized from DBSA micellar solution. Synth. Met. 2002, 126, 53–60. [Google Scholar] [CrossRef]
- Yamada, K.; Nakano, T.; Okamoto, Y. Synthesis of syndiotactic poly (vinyl alcohol) from fluorine-containing vinyl esters. Polym. J. 1998, 30, 641–645. [Google Scholar] [CrossRef]
- Kubisa, P. Application of ionic liquids as solvents for polymerization processes. Prog. Polym. Sci. 2004, 29, 3–12. [Google Scholar] [CrossRef]
- O’Donnell, P.B.; McGinity, J.W. Preparation of microspheres by the solvent evaporation technique. Adv. Drug Deliv. Rev. 1997, 28, 25–42. [Google Scholar] [CrossRef]
- Mayes, A.G.; Mosbach, K. Molecularly imprinted polymer beads: Suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 1996, 68, 3769–3774. [Google Scholar] [CrossRef] [PubMed]
- Webster, D.C.; Crain, A.L. Synthesis and applications of cyclic carbonate functional polymers in thermosetting coatings. Prog. Org. Coat. 2000, 40, 275–282. [Google Scholar] [CrossRef]
- Glass, J.E.; Schulz, D.N.; Zukoski, C.F. Polymers as Rheology Modifiers: An Overview; American Chemical Society: Washington, DC, USA, 1991. [Google Scholar]
- Veregin, R.P.; Georges, M.K.; Kazmaier, P.M.; Hamer, G.K. Free radical polymerizations for narrow polydispersity resins: Electron spin resonance studies of the kinetics and mechanism. Macromolecules 1993, 26, 5316–5320. [Google Scholar] [CrossRef]
- Moad, G.; Solomon, D.H. The Chemistry of Radical Polymerization; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Kade, M.; Tirrell, M. Free radical and condensation polymerizations. In Monitoring Polymerization Reactions: From Fundamentals to Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2014; pp. 1–28. [Google Scholar]
- Tobita, H. Molecular weight distribution in free-radical crosslinking copolymerization. Macromolecules 1993, 26, 836–841. [Google Scholar] [CrossRef]
- Basfar, A.A.; Lotfy, S. Radiation-crosslinking of shape memory polymers based on poly (vinyl alcohol) in the presence of carbon nanotubes. Radiat. Phys. Chem. 2015, 106, 376–384. [Google Scholar] [CrossRef]
- Rosu, D.; Rosu, L.; Cascaval, C.N. Effect of ultraviolet radiation on vinyl ester network based on bisphenol A. J. Photochem. Photobiol. A Chem. 2008, 194, 275–282. [Google Scholar] [CrossRef]
- Pappas, S.P. (Ed.) Radiation Curing: Science and Technology; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Vargas, M.A.; Vázquez, H.; Guthausen, G. Non-isothermal curing kinetics and physical properties of MMT-reinforced unsaturated polyester (UP) resins. Thermochim. Acta 2015, 611, 10–19. [Google Scholar] [CrossRef]
- Cui, H.W.; Suganuma, K.; Uchida, H. Using the Ozawa method to study the thermally initiated curing kinetics of vinyl ester resin. RSC Adv. 2015, 5, 2677–2683. [Google Scholar] [CrossRef]
- Haddadi, S.A.; Kardar, P.; Abbasi, F.; Mahdavian, M. Effects of nano-silica and boron carbide on the curing kinetics of resole resin. J. Therm. Anal. Calorim. 2017, 128, 1217–1226. [Google Scholar] [CrossRef]
- Kim, D.; Centea, T.; Nutt, S.R. In-situ cure monitoring of an out-of-autoclave prepreg: Effects of out-time on viscosity, gelation and vitrification. Compos. Sci. Technol. 2014, 102, 132–138. [Google Scholar] [CrossRef]
- Singh, R.P.; Zhang, M.; Chan, D. Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction. J. Mater. Sci. 2002, 37, 781–788. [Google Scholar] [CrossRef]
- Cook, W.D.; Simon, G.P.; Burchill, P.J.; Lau, M.; Fitch, T.J. Curing kinetics and thermal properties of vinyl ester resins. J. Appl. Polym. Sci. 1997, 64, 769–781. [Google Scholar] [CrossRef]
- Dai, J.; Ma, S.; Wu, Y.; Zhu, J.; Liu, X. High bio-based content waterborne UV-curable coatings with excellent adhesion and flexibility. Prog. Org. Coat. 2015, 87, 197–203. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kim, H.J.; Park, J.H. Synthesis and characterization of polyester-based nanocomposites coatings for automotive pre-coated metal. Prog. Org. Coat. 2013, 76, 1329–1336. [Google Scholar] [CrossRef]
- Atta, A.M.; Nassar, I.F.; Bedawy, H.M. Unsaturated polyester resins based on rosin maleic anhydride adduct as corrosion protections of steel. React. Funct. Polym. 2007, 67, 617–626. [Google Scholar] [CrossRef]
- Ramesh, K.; Ramesh, S.; Vengadaesvaran, B.; Arof, A.K. Silicone-Polyester Blended Coatings for Corrosion Protection: Coating. Int. J. Fundam. Phys. Sci. 2011, 1, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Ramesh, K.; Osman, Z.; Arof, A.K.; Vengadaeswaran, B.; Basirun, W.J. Structural and corrosion protection analyses of coatings containing silicone-polyester resins. Pigment. Resin Technol. 2008, 37, 37–41. [Google Scholar] [CrossRef]
- Piazza, D.; Silveira, D.S.; Lorandi, N.P.; Birriel, E.J.; Scienza, L.C.; Zattera, A.J. Polyester-based powder coatings with montmorillonite nanoparticles applied on carbon steel. Prog. Org. Coat. 2012, 73, 42–46. [Google Scholar] [CrossRef]
- Chen, X.; Wu, L.; Zhou, S.; You, B. In situ polymerization and characterization of polyester-based polyurethane/nano-silica composites. Polym. Int. 2003, 52, 993–998. [Google Scholar] [CrossRef]
- Xue, D.; Van Ooij, W.J. Corrosion performance improvement of hot-dipped galvanized (HDG) steels by electro-deposition of epoxy-resin-ester modified bis-[tri-ethoxy-silyl] ethane (BTSE) coatings. Prog. Org. Coat. 2013, 76, 1095–1102. [Google Scholar] [CrossRef]
- Winter, H.H. August. The solidification rheology of amorphous polymers− Vitrification as compared to gelation. In Macromolecular Symposia; WILEY-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; Volume 374, p. 1600113. [Google Scholar]
- Gopi, D.; Govindaraju, K.M.; Kavitha, L.; Basha, K.A. Synthesis, characterization and corrosion protection properties of poly (N-vinyl carbazole-co-glycidyl methacrylate) coatings on low nickel stainless steel. Prog. Org. Coat. 2011, 71, 11–18. [Google Scholar] [CrossRef]
- Hollamby, M.J.; Fix, D.; Dönch, I.; Borisova, D.; Möhwald, H.; Shchukin, D. Hybrid polyester coating incorporating functionalized mesoporous carriers for the holistic protection of steel surfaces. Adv. Mater. 2011, 23, 1361–1365. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Ooi, T.L.; Salmiah, A.; Ishiaku, U.S.; Ishak, Z.M. New polyester acrylate resins from palm oil for wood coating application. J. Appl. Polym. Sci. 2001, 79, 2156–2163. [Google Scholar] [CrossRef]
- Abbate, M.; Martuscelli, E.; Musto, P.; Ragosta, G.; Leonardi, M. A novel reactive liquid rubber with maleimide end groups for the toughening of unsaturated polyester resins. J. Appl. Polym. Sci. 1996, 62, 2107–2119. [Google Scholar] [CrossRef]
- Marian, B.; Silvia, B.M.; Dumitru, D.; Murarescu, M.; Gabriel, A. Thermal Properties of Polyester/Graphene Oxide and Polyester/Graphite Determined by TMA. In Proceedings of the World Congress on New Technologies, Barcelona, Spain, 15–17 July 2015. [Google Scholar]
- Mishra, A.K.; Jena, K.K.; Raju, K.V.S.N. Synthesis and characterization of hyperbranched polyester–urethane–urea/K10-clay hybrid coatings. Prog. Org. Coat. 2009, 64, 47–56. [Google Scholar] [CrossRef]
- Katranitsas, A.; Castritsi-Catharios, J.; Persoone, G. The effects of a copper-based antifouling paint on mortality and enzymatic activity of a non-target marine organism. Mar. Pollut. Bull. 2003, 46, 1491–1494. [Google Scholar] [CrossRef]
- Silvia, B.M.; Marian, B.; Dumitru, D.; Murarescu, M.; Gabriel, A. Mechanichal Properties of Polyester/Nanocellulose and Polyester/Microcellulose Determined by Three Point Bending Test. In Proceedings of the World Congress on New Technologies, Barcelona, Spain, 15–17 July 2015. [Google Scholar]
- Streitberger, H.J.; Dossel, K.F. (Eds.) Automotive Paints and Coatings; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Vahabi, H.; Rad, E.R.; Parpaite, T.; Langlois, V.; Saeb, M.R. Biodegradable polyester thin films and coatings in the line of fire: The time of polyhydroxyalkanoate (PHA)? Prog. Org. Coat. 2019, 133, 85–89. [Google Scholar] [CrossRef]
- Tanoğlu, M.; Seyhan, A.T. Investigating the effects of a polyester preforming binder on the mechanical and ballistic performance of E-glass fiber reinforced polyester composites. Int. J. Adhes. Adhes. 2003, 23, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Barratt, S.R.; Ennos, A.R.; Greenhalgh, M.; Robson, G.D.; Handley, P.S. Fungi are the predominant micro-organisms responsible for degradation of soil-buried polyester polyurethane over a range of soil water holding capacities. J. Appl. Microbiol. 2003, 95, 78–85. [Google Scholar] [CrossRef]
- Bagherpour, S. Fibre Reinforced Polyester Composites; InTech: London, UK, 2012; pp. 135–166. [Google Scholar]
- O’Brien, D.J.; Baechle, D.M.; Yurchak, O.B.; Wetzel, E.D. Effect of processing conditions and electrode characteristics on the electrical properties of structural composite capacitors. Compos. Part A Appl. Sci. Manuf. 2015, 68, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Hendriks, C.F.; Janssen, G.M.T. Testing regulations and procedures for environmental auditing of recycled aggregates. Heron 2001, 46, 135–143. [Google Scholar]
- Sanada, K.; Tada, Y.; Shindo, Y. Thermal conductivity of polymer composites with close-packed structure of nano and micro fillers. Compos. Part A Appl. Sci. Manuf. 2009, 40, 724–730. [Google Scholar] [CrossRef]
- Teng, H. Overview of the development of the fluoropolymer industry. Appl. Sci. 2012, 2, 496–512. [Google Scholar] [CrossRef]
- Leivo, E.; Wilenius, T.; Kinos, T.; Vuoristo, P.; Mäntylä, T. Properties of thermally sprayed fluoropolymer PVDF, ECTFE, PFA and FEP coatings. Prog. Org. Coat. 2004, 49, 69–73. [Google Scholar] [CrossRef]
- Ueberschlag, P. PVDF piezoelectric polymer. Sens. Rev. 2001, 21, 118–126. [Google Scholar] [CrossRef]
- Liu, F.; Hashim, N.A.; Liu, Y.; Abed, M.M.; Li, K. Progress in the production and modification of PVDF membranes. J. Membr. Sci. 2011, 375, 1–27. [Google Scholar] [CrossRef]
- Robinson, L.A. Structural Opportunities of ETFE (Ethylene Tetra Fluoro Ethylene). Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 2005. [Google Scholar]
- Lamnatou, C.; Moreno, A.; Chemisana, D.; Reitsma, F.; Clariá, F. Ethylene tetrafluoroethylene (ETFE) material: Critical issues and applications with emphasis on buildings. Renew. Sustain. Energy Rev. 2018, 82, 2186–2201. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Chen, W.; Zhao, B.; Yang, D. Buildings with ETFE foils: A review on material properties, architectural performance and structural behavior. Constr. Build. Mater. 2017, 131, 411–422. [Google Scholar] [CrossRef]
- Sauerbrunn, S.; Weddle, B. Thermoset Curing Schedule and its Effect on the Final Properties. In Proceedings of the 2005 Annual Meeting, Hyatt Regency Savannah, Savannah, Georgia, 10–11 September 2007. [Google Scholar]
Resin | Structure | Polymer | Properties | Application |
---|---|---|---|---|
Styrene | | Polystyrene | Transparency, water-resistance, and excellent electrical property | Injection molding |
Vinyl chloride | | Polyvinyl chloride | Unique elasticity, fatigue, and water resistance | Synthetic textile |
Vinyl acetate | | Polyvinyl acetate | Light and heat stability | Adhesives, dipping lacquer for artificial leather and synthetic fibers |
Acrylic acid | | Polyvinyl | Soluble in various solvents, transparent | Disposable diapers, resin, and adhesives |
Methacrylic acid esters | | Polymethacrylates | Strong, light, and good impact strength | Automotive, appliances, and glasses lenses |
Industry | Type of Polyester | Properties | Reference |
---|---|---|---|
Transportation |
|
| [148,149,150] |
Electrical |
|
| [151,152,153] |
Industrial applications |
|
| [154,155,156,157,158] |
Construction | Ethylene tetrafluoroethylene (ETFE) |
| [159,160] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motlatle, A.M.; Ray, S.S.; Ojijo, V.; Scriba, M.R. Polyester-Based Coatings for Corrosion Protection. Polymers 2022, 14, 3413. https://doi.org/10.3390/polym14163413
Motlatle AM, Ray SS, Ojijo V, Scriba MR. Polyester-Based Coatings for Corrosion Protection. Polymers. 2022; 14(16):3413. https://doi.org/10.3390/polym14163413
Chicago/Turabian StyleMotlatle, Abesach M., Suprakas Sinha Ray, Vincent Ojijo, and Manfred R. Scriba. 2022. "Polyester-Based Coatings for Corrosion Protection" Polymers 14, no. 16: 3413. https://doi.org/10.3390/polym14163413
APA StyleMotlatle, A. M., Ray, S. S., Ojijo, V., & Scriba, M. R. (2022). Polyester-Based Coatings for Corrosion Protection. Polymers, 14(16), 3413. https://doi.org/10.3390/polym14163413