Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composite Preparation Techniques
2.3. Formulations of the Composite
3. Experimental
3.1. Thermal Analysis
3.2. Mechanical Analysis
3.3. Scanning Electron Microscopy (SEM)
4. Results and Discussion
4.1. Thermal Properties
4.1.1. Melting Temperature
4.1.2. Viscosity, Flow Index and Density
4.2. Mechanical Properties
4.2.1. Tensile Behavior
4.2.2. Izod Impact Strength
4.2.3. Flexural Strength
4.3. Morphological Properties
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, E.; Kumar, A.; Hakkim, N.L.; Nebhani, L. Silica Reinforced Polymer Composites: Properties, Characterization and Applications. Encycl. Mater. Plast. Polym. 2021, 2, 1057–1074. [Google Scholar]
- Eterigho-Ikelegbe, O.; Yoro, K.O.; Bada, S. Coal as a Filler in Polymer Composites: A Review. Resour. Conserv. Recycl. 2021, 174, 105756. [Google Scholar] [CrossRef]
- Jotiram, G.A.; Palai, B.K.; Bhattacharya, S.; Aravinth, S.; Gnanakumar, G.; Subbiah, R.; Chandrakasu, M. Investigating mechanical strength of a natural fibre polymer composite using SiO2 nano-filler. Mater. Today Proc. 2022, 56, 1522–1526. [Google Scholar] [CrossRef]
- Vinay, S.S.; Sanjay, M.R.; Siengchin, S.; Venkatesh, C.V. Basalt fiber reinforced polymer composites filled with nano fillers: A short review. Mater. Today Proc. 2021, 52, 2460–2466. [Google Scholar] [CrossRef]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Huang, R.; Zhang, Y.; Xu, X.; Zhou, D.; Wu, Q. Effect of hybrid mineral and bamboo fillers on thermal expansion behavior of bamboo fiber and recycled polypropylene-polyethylene composites. BioResources 2012, 7, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Slouf, M.; Radonjic, G.; Hlavata, D.; Sikora, A. Compatibilized iPP/aPS blends the effect of the viscosity ratio of the components on the blend’s morphology. J. Appl. Polym. Sci. 2006, 101, 2236–2249. [Google Scholar] [CrossRef]
- Khalaf, M.N. Mechanical properties of filled high density polyethylene. J. Saudi Chem. Soc. 2015, 19, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.F.; Dwight, D.W.; Huff, N.T. Effects of silane coupling agents on the interphase and performance of glass-fiber-reinforced polymer composites. Compos. Sci. Technol. 1997, 57, 975–983. [Google Scholar] [CrossRef]
- Lu, J.Z.; Wu, Q.; McNabb, H.S. Chemical coupling in wood fiber and polymer composites: A review of coupling agents and treatments. Wood Fiber Sci. 2000, 32, 88–104. [Google Scholar]
- Shirin, S.; Arefazar, A.; Khosrokhavar, R. Silane coupling agents in polymer-based reinforced composites: A review. J. Reinf. Plast. Compos. 2008, 27, 473–485. [Google Scholar]
- Pimbert, S. Evaluation of the fractionated crystallization of isotactic polypropylene and high density polyethylenes in their blends with Cycloolefin copolymers. Macromol. Symp. 2003, 203, 277–284. [Google Scholar] [CrossRef]
- Tasdemir, M. Effects of Particle Size on Mechanical, Thermal and Morphological Properties of Untreated Nano and Micro Calcium Carbonate Powder [CaCO3] filled HDPE Polymer Composites. J. Polym. Mater. 2012, 29, 49–61. [Google Scholar]
- Kaeead, S.; Cuesta, J.-M.L.; Crespy, A. Influence of a Fine Talc on The Properties of Composites With High-Density Polyethylene And Polyethylene Polystyrene Blends. J. Mater. Sci. 1998, 33, 453–461. [Google Scholar] [CrossRef]
- Chen, N.; Ma, L.; Zhang, T. Investigation of nano-talc as a filling material and a reinforcing agent in high density polyethylene (HDPE). Rare Met. 2006, 25, 422–425. [Google Scholar] [CrossRef]
- Zebarjad, S.M.; Sajjadi, S.A. On the strain rate sensitivity of HDPE/CaCO3 nanocomposites. Mater. Sci. Eng. A 2008, 475, 365–367. [Google Scholar] [CrossRef]
- Sudar, A.; Moczo, J.; Voros, G.; Pukanszky, B. The mechanism and kinetics of void formation and growth in particulate filled PE composites. Express Polym. Lett. 2007, 1, 763–772. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Rong, M.Z.; Zhang, H.B.; Friedrich, K. Mechanical properties of low nano-silica filled high density polyethylene composites. Polym. Eng. Sci. 2003, 43, 490–500. [Google Scholar] [CrossRef]
- Kontou, E.; Niaounakis, M. Thermo-mechanical properties of LLDPE/SiO2 nanocomposites. Polymer 2006, 47, 1267–1280. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A.; Kolařík, J. Nonlinear tensile creep of linear low density polyethylene/fumed silica nanocomposites: Time-strain superposition and creep prediction. Polym. Compos. 2010, 31, 1947–1955. [Google Scholar] [CrossRef]
- Dorigato, A.; Pegoretti, A.; Fambri, L.; Slouf, M.; Kolarik, J. Cycloolefin copolymer/fumed silica nanocomposites. J. Appl. Polym. Sci. 2010, 119, 3393–3402. [Google Scholar] [CrossRef]
- Dorigato, A.; D’Amato, M.; Pegoretti, A. Thermo-mechanical properties of high-density polyethylene—Fumed silica nanocomposites: Effect of filler surface area and treatment. J. Polym. Res. 2012, 19, 10–15. [Google Scholar] [CrossRef]
- Benabid, F.Z.; Kharchi, N.; Zouai, F.; Mourad, A.H.I.; Benachour, D. Impact of co-mixing technique and surface modification of ZnO nanoparticles using stearic acid on their dispersion into HDPE to produce HDPE/ZnO nanocomposites. Polym. Polym. Compos. 2019, 27, 389–399. [Google Scholar] [CrossRef]
- Guo, G.; Finkenstadt, V.L.; Nimmagadda, Y. Mechanical properties and water absorption behaviour of injection-molded wood fiber/carbon fiber high-density polyethylene hybrid composites. Adv. Compos. Hybrid Mater. 2019, 2, 690–700. [Google Scholar] [CrossRef]
- Huang, R.; Xu, X.; Lee, S.; Zhang, Y.; Kim, B.J.; Wu, Q. High density polyethylene composites reinforced with hybrid inorganic fillers: Morphology, mechanical and thermal expansion performance. Materials 2013, 6, 4122–4138. [Google Scholar] [CrossRef] [Green Version]
- Kolařík, J.; Kruliš, Z.; Šlouf, M.; Fambri, L. High-density polyethylene/cycloolefin copolymer blends. Part 1: Phase structure, dynamic mechanical, tensile, and impact properties. Polym. Eng. Sci. 2005, 45, 817–826. [Google Scholar] [CrossRef]
- Fenni, S.E.; Caputo, M.R.; Müller, A.J.; Cavallo, D. Surface Roughness Enhances Self-Nucleation of High-Density Polyethylene Droplets Dispersed within Immiscible Blends. Macromolecules 2022, 55, 1412–1423. [Google Scholar] [CrossRef]
- Jancar, J.; Fekete, E.; Hornsby, P.R.; Jancar, J.; Pukánszky, B.; Rothon, R.N. (Eds.) Mineral Fillers in Thermoplastics I: Raw Materials and Processing; Springer: Berlin, Germany, 1999; pp. 67–155. [Google Scholar]
- Mejia, E.; Cherupurakal, N.; Mourad, A.-I.; al Hassanieh, S.; Rabia, M. Effect of Processing Techniques on the Microstructure and Mechanical Performance of High-Density Polyethylene. Polymers 2021, 13, 3346. [Google Scholar] [CrossRef]
- Mozumder, M.S.; Mourad, A.-I.; Mairpady, A.; Pervez, H.; Haque, M.E. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites. J. Mater. Eng. Perform. 2018, 27, 2166–2181. [Google Scholar] [CrossRef]
- Pervez, H.; Mozumder, M.S.; Mourad, A.-I. Optimization of injection molding parameters for HDPE/TiO2 nanocomposites fabrication with multiple performance characteristics using the Taguchi method and grey relational analysis. Materials 2016, 9, 710. [Google Scholar] [CrossRef] [Green Version]
- Mourad, A.-I.; Mozumder, M.S.; Mairpady, A.; Pervez, H.; Kannuri, U.M. On the Injection Molding Processing Parameters of HDPE-TiO2 Nanocomposites. Materials 2017, 10, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansys Edupack Data Basem High Density Polyethylene/HDPE/PE-HD (Homopolymer, General Purpose, Molding Extrusion). Available online: https://www.sciencedirect.com/topics/engineering/high-density-poly-ethylene (accessed on 8 May 2022).
- Taşdemir, M.; Ersoy, S. Mechanical, morphological and thermal properties of HDPE polymer composites filled with talc, calcium carbonate and glass spheres. Rom. J. Mater. 2015, 45, 147–154. [Google Scholar]
- Mehrjerdi, A.K.; Adl-Zarrabi, B.; Cho, S.; Skrifvars, M. Mechanical and thermo-physical properties of high-density polyethylene modified with talc. J. Appl. Polym. Sci. 2013, 129, 2128–2138. [Google Scholar] [CrossRef]
- Awan, M.; Shakoor, A.; Rehan, M.S.; Gill, Y.Q. Development of HDPE composites with improved mechanical properties using calcium carbonate and NanoClay. Phys. B Condens. Matter 2021, 606, 412568. [Google Scholar] [CrossRef]
- Leong, Y.W.; Abu Bakar, M.B.; Ishak, Z.M.; Ariffin, A.; Pukanszky, B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2004, 91, 3315–3326. [Google Scholar] [CrossRef]
Groups | Formulations | HDPE % | Talc % | CaCO3 % | FS % |
---|---|---|---|---|---|
Control | 1 | 100 | 0 | 0 | 0 |
Group 1 | 2 | 75 | 25 | 0 | 0 |
3 | 74 | 25 | 0 | 1 | |
4 | 72 | 25 | 0 | 3 | |
5 | 70 | 25 | 0 | 5 | |
Group 2 | 6 | 75 | 0 | 25 | 0 |
7 | 74 | 0 | 25 | 1 | |
8 | 72 | 0 | 25 | 3 | |
9 | 70 | 0 | 25 | 5 | |
Group 3 | 10 | 75 | 12.5 | 12.5 | 0 |
11 | 74 | 12.5 | 12.5 | 1 | |
12 | 72 | 12.5 | 12.5 | 3 | |
13 | 70 | 12.5 | 12.5 | 5 | |
Group 4 | 14 | 75 | 20 | 5 | 0 |
15 | 74 | 20 | 5 | 1 | |
16 | 72 | 20 | 5 | 3 | |
17 | 70 | 20 | 5 | 5 | |
Group 5 | 18 | 75 | 5 | 20 | 0 |
19 | 74 | 5 | 20 | 1 | |
20 | 72 | 5 | 20 | 3 | |
21 | 70 | 5 | 20 | 5 |
Formulation | Melt Flow Index (2.16 kg) | Density (g/cc) | Tensile Yield Strength (MPa) | Izod Impact Strength (J/m2) | Flexural Strength (MPa) |
---|---|---|---|---|---|
1 | 8.0 | 0.96 | 26 ± 0.20 | 75 ± 9.40 | 42 ± 0.96 |
2 | 6.1 | 1.14 | 41 ± 0.30 | 88 ± 2.15 | 62 ± 0.52 |
3 | 6.0 | 1.14 | 39 ± 0.26 | 86 ± 4.86 | 63 ± 0.71 |
4 | 6.0 | 1.15 | 40 ± 0.15 | 88 ± 3.49 | 58 ± 0.98 |
5 | 6.0 | 1.15 | 41 ± 0.51 | 85 ± 4.02 | 61 ± 1.49 |
6 | 6.35 | 1.13 | 60 ± 0.98 | 86 ± 5.31 | 77 ± 1.45 |
7 | 6.50 | 1.13 | 62 ± 0.21 | 90 ± 5.67 | 81 ± 0.81 |
8 | 6.20 | 1.14 | 55 ± 0.43 | 84 ± 3.5 | 77 ± 0.62 |
9 | 6.00 | 1.15 | 60 ± 0.28 | 85 ± 4.60 | 74 ± 0.51 |
10 | 5.8 | 1.14 | 36 ± 0.30 | 81 ± 3.6 | 52 ± 0.41 |
11 | 5.6 | 1.14 | 32 ± 0.40 | 83 ± 5.4 | 48 ± 0.62 |
12 | 5.7 | 1.14 | 30 ± 0.20 | 80 ± 3.9 | 47 ± 0.72 |
13 | 5.6 | 1.16 | 33 ± 0.15 | 77 ± 4.5 | 51 ± 0.58 |
14 | 6.0 | 1.15 | 35 ± 0.70 | 80 ± 3.7 | 54 ± 0.49 |
15 | 5.8 | 1.16 | 33 ± 0.51 | 78 ± 5.7 | 57 ± 0.65 |
16 | 5.7 | 1.15 | 33 ± 0.50 | 77 ± 5.2 | 55 ± 0.75 |
17 | 5.3 | 1.40 | 36 ± 0.85 | 81 ± 4.8 | 54 ± 0.80 |
18 | 5.5 | 1.20 | 46 ± 0.32 | 72 ± 3.5 | 69 ± 0.69 |
19 | 5.9 | 1.11 | 44 ± 0.45 | 70 ± 4.6 | 66 ± 0.59 |
20 | 6.0 | 1.23 | 45 ± 0.23 | 72 ± 3.4 | 67 ± 0.46 |
21 | 6.2 | 1.34 | 45 ± 0.51 | 71 ± 5.3 | 68 ± 0.53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshammari, B.A.; Alenad, A.M.; Al-Mubaddel, F.S.; Alharbi, A.G.; Al-shehri, A.S.; Albalwi, H.A.; Alsuabie, F.M.; Fouad, H.; Mourad, A.-H.I. Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites. Polymers 2022, 14, 3427. https://doi.org/10.3390/polym14163427
Alshammari BA, Alenad AM, Al-Mubaddel FS, Alharbi AG, Al-shehri AS, Albalwi HA, Alsuabie FM, Fouad H, Mourad A-HI. Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites. Polymers. 2022; 14(16):3427. https://doi.org/10.3390/polym14163427
Chicago/Turabian StyleAlshammari, Basheer A., Asma M. Alenad, Fahad S. Al-Mubaddel, Abdullah G. Alharbi, Abdulaziz Salem Al-shehri, Hanan A. Albalwi, Fehaid M. Alsuabie, Hassan Fouad, and Abdel-Hamid I. Mourad. 2022. "Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites" Polymers 14, no. 16: 3427. https://doi.org/10.3390/polym14163427
APA StyleAlshammari, B. A., Alenad, A. M., Al-Mubaddel, F. S., Alharbi, A. G., Al-shehri, A. S., Albalwi, H. A., Alsuabie, F. M., Fouad, H., & Mourad, A. -H. I. (2022). Impact of Hybrid Fillers on the Properties of High Density Polyethylene Based Composites. Polymers, 14(16), 3427. https://doi.org/10.3390/polym14163427