Functional Nanogel from Natural Substances for Delivery of Doxorubicin †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Pentane-1,2,5-triol
2.3. Synthesis of Nanogel from Penthane-1,2,5-triol and Citric Acid
2.4. Hydrolytic Degradation
2.5. Drug Loading of Nanogel
2.6. In Vitro Release Test
2.7. DOX Stability Studies
2.8. Methods
3. Results and Discussion
3.1. Synthesis of Nanogel
3.2. Properties of Nanogel
3.3. DOX-Loaded Nanogel
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabanov, A.; Vinogradov, S. Nanogels as pharmaceutical carriers: Finite networks of infinite capabilities. Angew. Chem. Int. Ed. 2009, 48, 5418–5429. [Google Scholar] [CrossRef] [PubMed]
- Kwon, J.; Drumright, O.R.; Siegwart, D.J.; Matyjaszewski, K. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 2008, 33, 448–477. [Google Scholar]
- Takeuchi, T.; Kitayama, Y.; Sasao, R.; Yamada, T.; Toh, K.; Matsumoto, Y.; Kataoka, K. Molecularly imprinted nanogels acquire stealth in situ by cloaking themselves with native dysopsonic proteins. Angew. Chem. Int. Ed. 2017, 56, 7088–7092. [Google Scholar] [CrossRef]
- Schötz, S.; Reisbeck, F.; Schmitt, A.-C.; Dimde, M.; Quaas, E.; Achazi, K.; Tunable, R.H. Polyglycerol-based redox-responsive nanogels for efficient cytochrome c delivery. Pharmaceutics 2021, 13, 1276. [Google Scholar] [CrossRef] [PubMed]
- Basak, S. The age of multistimuli-responsive nanogels: The finest evolved nano delivery system in biomedical sciences. Biotechnol. Bioprocess Eng. 2020, 25, 655–669. [Google Scholar] [CrossRef]
- Sharma, A.; Garg, T.; Aman, A.; Panchal, K.; Sharma, R.; Kumar, S.; Markandeywar, T. Nanogel—An advanced drug delivery tool: Current and future. Artif. Cells Nanomed. Biotechnol. 2016, 44, 165–177. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Choo, H. Preparation of poly(BMA-co-MMA) particles by soap-free emulsion polymerization and its optical properties as photonic crystals. J. Nanosci. Nanotechnol. 2014, 14, 8279–8287. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, R.; Gou, Q.; Lai, J.; Li, X. Precipitation polymerization: A powerful tool for preparation of uniform polymer particles. Polymers 2022, 14, 1851. [Google Scholar] [CrossRef]
- Schmitt, F.; Lagopoulos, L.; Käuper, P.; Rossi, N.; Busso, N.; Barge, J.; Wagnières, G.; Laue, C.; Wandrey, C.; Juillerat-Jeanneret, L. Chitosan-based nanogels for selective delivery of photosensitizers to macrophages and improved retention in and therapy of articular joints. J. Controlled Release 2010, 144, 242–250. [Google Scholar] [CrossRef]
- Sun, Z.; Yi, Z.; Zhang, H.; Ma, H.; Su, W.; Sun, X.; Li, X. Bio-responsive alginate-keratin composite nanogels with enhanced drug loading efficiency for cancer therapy. Carbohydr. Polym. 2017, 175, 159–169. [Google Scholar] [CrossRef]
- Sarika, P.R.; James, N.R.; Kumar, P.R.A.; Raj, D.K. Preparation, characterization and biological evaluation of curcumin loaded alginate aldehyde-gelatin nanogels. Mater. Sci. Eng. C 2016, 68, 251–257. [Google Scholar]
- Xue, Y.; Xia, X.; Yu, B.; Luo, X.; Cai, N.; Long, S. Yu, F. A green and facile method for the preparation of a pH-responsive alginate nanogel for subcellulardelivery of doxorubicin. RSC Adv. 2015, 5, 73416–73423. [Google Scholar] [CrossRef]
- Gyawali, D.; Kim, J.P.; Yang, J. Highly photostable nanogels for fluorescence-based theranostics. Bioact. Mater. 2018, 3, 39–47. [Google Scholar] [CrossRef] [PubMed]
- Salihu, R.; Razak, S.I.A.; Zawawi, N.A.; Kadir, M.R.A.; Ismail, N.I.; Jusoh, N.; Mohamad, M.R.; Nayan, N.H.M. Citric acid: A green cross-linker of biomaterials for biomedical applications. Eur. Polym. J. 2021, 146, 110271. [Google Scholar] [CrossRef]
- Gorgieva, S.; Kokol, V. Synthesis and application of new temperature-responsive hydrogels based on carboxymethyl and hydroxyethyl cellulose derivatives for the functional finishing of cotton knitwear. Carbohydr. Polym. 2011, 85, 664–673. [Google Scholar] [CrossRef]
- Bozova, N.; Petrov, P.D. Highly elastic super-macroporous cryogels fabricated by thermally induced crosslinking of 2-hydroxyethylcellulose with citric acid in solid state. Molecules 2021, 26, 6370. [Google Scholar] [CrossRef]
- Chhatbar, M.U.; Prasad, K.; Chejara, D.R.; Siddhanta, A.K. Synthesis of sodium alginate based sprayable new soft gel system. Soft Matter 2012, 8, 1837. [Google Scholar] [CrossRef]
- Rafat, M.; Li, F.F.; Fagerholm, P.; Lagali, N.S.; Watsky, M.A.; Munger, R.; Matsuura, T.; Griffith, M. PEG-stabilized carbodiimide crosslinked collagen–chitosan hydrogels for corneal tissue engineering. Biomaterials 2008, 29, 3960. [Google Scholar] [CrossRef]
- Nam, K.; Kimura, T.; Kishida, A. Preparation and characterization of cross-linked collagen–phospholipid polymer hybrid gels. Biomaterials 2007, 28, 1. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, C.S.; Ray, P.; Alam, S.; Kale, N.; Aishwarya, R.; Morshed, M.; Dutta, D.; Hudziak, C.; Banerjee, S.K.; Mallik, S. Chemical architecture of block copolymers differentially abrogate cardiotoxicity and maintain the anticancer efficacy of doxorubicin. Mol. Pharmaceutics 2020, 17, 4676–4690. [Google Scholar] [CrossRef]
- Fleige, E.; Achazi, K.; Schaletzki, K.; Triemer, T.; Haag, R. pH-responsive dendritic core-multishell nanocarriers. J. Control. Release. 2014, 185, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Nawara, K.; Krysinski, P.; Blanchard, G.J. Photoinduced reactivity of doxorubicin: Catalysis and degradation. J. Phys. Chem. A 2012, 116, 4330–4337. [Google Scholar] [CrossRef] [PubMed]
- Kaushik, D.; Bansal, G. Four new degradation products of doxorubicin: An application of forced degradation study and hyphenated chromatographic techniques. J. Pharm. Analysis 2015, 5, 285–295. [Google Scholar] [CrossRef]
- Bandak, S.; Ramu, A.; Barenholz, Y.; Gabizon, A. Reduced UV-induced degradation of doxorubicin encapsulated in polyethyleneglycol-coated liposomes. Pharm. Res. 1999, 16, 841–846. [Google Scholar] [CrossRef]
- Yoncheva, K.; Tzankov, B.; Yordanov, Y.; Spassova, I.; Kovacheva, D.; Frosini, M.; Valoti, M.; Tzankova, V. Encapsulation of doxorubicin in chitosan-alginate nanoparticles improves its stability and cytotoxicity in resistant lymphoma L5178 MDR cell. J. Drug Deliv. Sci. Technol. 2020, 59, 101870. [Google Scholar] [CrossRef]
- Sumitha, N.S.; Prakash, P.; Nair, B.N.; Sailaja, G.S. Degradation-dependent controlled delivery of doxorubicin by glyoxal cross-linked magnetic and porous chitosan microspheres. ACS Omega 2021, 6, 21472–21484. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; O’Hara, I.M.; Orlando, W.; Doherty, S.; Rackemann, D. Methods for converting lignocellulosic materials to useful products. US 2014/0093918 A1, 2014. [Google Scholar]
- Simeonov, S.P.; Ravutsov, M.A.; Mihovilovic, M.D. Biorefinery via achmatowicz rearrangement: Synthesis of pentane-1,2,5-triol from furfuryl alcohol. Chem.Sus.Chem. 2019, 12, 2748–2754. [Google Scholar] [CrossRef] [PubMed]
- Danish, M.; Mumtaz, M.W.; Fakhar, M.; Rashid, U. Response surface methodology: An imperative tool for the optimized purification of the residual glycerol from biodiesel production process. Chiang Mai J. Sci. 2016, 44, 1–13. [Google Scholar]
- Pimpan, P.; Sumang, T.; Ch, S. Effect of concentration of citric acid on size and optical properties of fluorescence graphene quantum dots prepared by tuning carbonization degree. Chiang Mai J. Sci. 2018, 45, 2005–2014. [Google Scholar]
- Koto, N.; Soegijono, B. Effect of rice husk ash filler of resistance against of high-speed projectile impact on polyester-fiberglass double panel composites. J. Phys. Conf. Ser. 2019, 1191, 012058. [Google Scholar] [CrossRef]
- Rydz, J.; Sikorska, W.; Kyulavska, M.; Christova, D. Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. Int. J. Mol. Sci. 2015, 16, 564–596. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Nair, A.; Rejinold, N.S.; Maya, S.; Nair, S.V. Doxorubicin-loaded pH-responsive chitin nanogels for drug delivery to cancer cells. Carbohydr. Polym. 2021, 87, 2352–2356. [Google Scholar] [CrossRef]
- Abedi, F.; Davaran, S.; Hekmati, M.; Akbarzadeh, A.; Baradaran, B.; Moghaddam, S.V. An improved method in fabrication of smart dual-responsive nanogels for controlled release of doxorubicin and curcumin in HT-29 colon cancer cells. J. Nanobiotechnol. 2021, 19, 18. [Google Scholar] [CrossRef] [PubMed]
- Prokopowicz, M.; Lukasiak, J.; Przyjazny, A. Synthesis and application of doxorubicin-loaded silica gels as solid materials for spectral analysis. Talanta 2005, 65, 663–671. [Google Scholar] [CrossRef] [PubMed]
Sample Code | Dh (nm) | ζ-Potential (mV) | DI |
---|---|---|---|
NG1 | 153 ± 4 | −13.0 ± 1.2 | 0.22 ± 0.017 |
NG2 | 172 ± 5 | −12.8 ± 1.1 | 0.23 ± 0.015 |
NG3 | 173 ± 5 | −13.2 ± 1.2 | 0.32 ± 0.019 |
NG1/DOX | 146 ± 4 | −8.9 ± 1.0 | 0.40 ± 0.020 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamenova, K.; Radeva, L.; Yoncheva, K.; Ublekov, F.; Ravutsov, M.A.; Marinova, M.K.; Simeonov, S.P.; Forys, A.; Trzebicka, B.; Petrov, P.D. Functional Nanogel from Natural Substances for Delivery of Doxorubicin. Polymers 2022, 14, 3694. https://doi.org/10.3390/polym14173694
Kamenova K, Radeva L, Yoncheva K, Ublekov F, Ravutsov MA, Marinova MK, Simeonov SP, Forys A, Trzebicka B, Petrov PD. Functional Nanogel from Natural Substances for Delivery of Doxorubicin. Polymers. 2022; 14(17):3694. https://doi.org/10.3390/polym14173694
Chicago/Turabian StyleKamenova, Katya, Lyubomira Radeva, Krassimira Yoncheva, Filip Ublekov, Martin A. Ravutsov, Maya K. Marinova, Svilen P. Simeonov, Aleksander Forys, Barbara Trzebicka, and Petar D. Petrov. 2022. "Functional Nanogel from Natural Substances for Delivery of Doxorubicin" Polymers 14, no. 17: 3694. https://doi.org/10.3390/polym14173694
APA StyleKamenova, K., Radeva, L., Yoncheva, K., Ublekov, F., Ravutsov, M. A., Marinova, M. K., Simeonov, S. P., Forys, A., Trzebicka, B., & Petrov, P. D. (2022). Functional Nanogel from Natural Substances for Delivery of Doxorubicin. Polymers, 14(17), 3694. https://doi.org/10.3390/polym14173694