The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.1.1. Coal
2.1.2. Chitosan
2.2. Methods
2.2.1. Flocculation and Sedimentation Experiments
2.2.2. Filtration Experiments
2.2.3. FBRM Test
2.2.4. Optical Microscope Observations
2.2.5. QCM−D Text
2.2.6. Zeta Potential Measurements
3. Results and Discussion
3.1. Solid–Liquid Separation Test Results
3.1.1. The Need for AlCl3
3.1.2. Result of the Flocculation and Sedimentation Experiments
3.1.3. Results of the Filtration Experiments
3.2. Effect of Different Chitosan Dosages on the Fine Particles and Floc Characteristics
3.2.1. Dynamic Change Process of Fine Particles
3.2.2. Floc Morphology and Properties
3.3. Effect of Different Shear Strengths on the Microfine Particles and Floc Characteristics
3.3.1. Dynamic Change Process of Microfine Particles
3.3.2. Floc Morphology and Properties
3.4. Synergistic Mechanism of Al3+ and Chitosan
3.4.1. Results of the QCM−D Test
3.4.2. Potential Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Y.; Li, H.; Mei, H.; Feng, Z.; Chen, R.; Li, J.; Wang, Y.; Fu, W. Organic contaminant removal with no adsorbent recycling based on microstructure modification in coal slime filtration. Fuel 2021, 288, 119630. [Google Scholar] [CrossRef]
- Wang, C.; Harbottle, D.; Liu, Q.; Xu, Z. Current state of fine mineral tailings treatment: A critical review on theory and practice. Miner. Eng. 2014, 58, 113–131. [Google Scholar] [CrossRef]
- Devasahayam, S.; Ameen, M.; Verheyen, T.; Bandyopadhyay, S. Brown Coal Dewatering Using Poly (Acrylamide-Co-Potassium Acrylic) Based Super Absorbent Polymers. Minerals 2015, 5, 623–636. [Google Scholar] [CrossRef]
- Alam, N.; Ozdemir, O.; Hampton, M.A.; Nguyen, A.V. Dewatering of coal plant tailings: Flocculation followed by filtration. Fuel 2011, 90, 26–35. [Google Scholar] [CrossRef]
- Lee, C.S.; Robinson, J.; Chong, M.F. A review on application of flocculants in wastewater treatment. Process Saf. Environ. Prot. 2014, 92, 489–508. [Google Scholar] [CrossRef]
- Bolto, B.; Gregory, J. Organic polyelectrolytes in water treatment. Water Res. 2007, 41, 2301–2324. [Google Scholar] [CrossRef]
- Jiang, X.; Li, Y.; Tang, X.; Jiang, J.; He, Q.; Xiong, Z.; Zheng, H. Biopolymer-based flocculants: A review of recent technologies. Environ. Sci. Pollut. Res. 2021, 28, 46934–46963. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Show, P.-L.; Juan, J.C.; Ling, T.C.; Lau, B.F.; Lai, S.H.; Ng, E.P. Sustainable landfill leachate treatment: Optimize use of guar gum as natural coagulant and floc characterization. Environ. Res. 2020, 188, 109737. [Google Scholar] [CrossRef]
- Renault, F.; Sancey, B.; Badot, P.-M.; Crini, G. Chitosan for coagulation/flocculation processes—An eco-friendly approach. Eur. Polym. J. 2009, 45, 1337–1348. [Google Scholar] [CrossRef]
- Song, Y.; Gan, W.; Li, Q.; Guo, Y.; Zhou, J.; Zhang, L. Alkaline hydrolysis and flocculation properties of acrylamide-modified cellulose polyelectrolytes. Carbohyd. Polym. 2011, 86, 171–176. [Google Scholar] [CrossRef]
- Hu, P.; Zhuang, S.; Shen, S.; Yang, Y.; Yang, H. Dewaterability of sewage sludge conditioned with a graft cationic starch-based flocculant: Role of structural characteristics of flocculant. Water Res. 2021, 189, 116578. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Y.; Gao, B.; Zhao, Y.; Yue, Q. Coagulation performance and floc characteristics of aluminum sulfate using sodium alginate as coagulant aid for synthetic dying wastewater treatment. Sep. Purif. Technol. 2012, 95, 180–187. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Said, N.S.M.; Ismail, N.I.; Hasan, H.A.; Othman, A.R.; Purwanti, I.F. Challenges and Opportunities of Biocoagulant/Bioflocculant Application for Drinking Water and Wastewater Treatment and Its Potential for Sludge Recovery. Int. J. Environ. Res. Public Health 2020, 17, 9312. [Google Scholar] [CrossRef]
- Mahto, A.; Mishra, S. Guar Gum Grafted Itaconic Acid: A Solution for Different Waste Water Treatment. J. Polym. Environ. 2021, 29, 3525–3538. [Google Scholar] [CrossRef]
- Mehta, A.; Aryan, A.; Pandey, J.P.; Sen, G. Synthesis of a Novel Water-Soluble Graft Copolymer for Mineral Ore Beneficiation and for River Water Treatment towards Drinking Water Augmentation. ChemistrySelect 2022, 7, e202103289. [Google Scholar] [CrossRef]
- Bouaouine, O.; Bourven, I.; Khalil, F.; Baudu, M. Identification of functional groups of Opuntia ficus-indica involved in coagulation process after its active part extraction. Environ. Sci. Pollut. Res. 2018, 25, 11111–11119. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Imron, M.F.; Chik, C.E.N.C.E.; Owodunni, A.A.; Ahmad, A.; Alnawajha, M.M.; Rahim, N.F.M.; Said, N.S.M.; Abdullah, S.R.S.; Kasan, N.A.; et al. What compound inside biocoagulants/bioflocculants is contributing the most to the coagulation and flocculation processes? Sci. Total Environ. 2022, 806, 150902. [Google Scholar] [CrossRef]
- Xu, R.; Zou, W.; Wang, T.; Huang, J.; Zhang, Z.; Xu, C. Adsorption and interaction mechanisms of Chi-g-P(AM-DMDAAC) assisted settling of kaolinite in a two-step flocculation process. Sci. Total Environ. 2022, 816, 151576. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, F.; Tang, Q.; Du, B.; Ma, D.; Zhao, Z.; Fan, L.; Luo, H.; Zhao, Z.; Huang, X.; et al. Evaluating the performance of bridging-assembly chelating flocculant for heavy metals removal: Role of branched architectures. Chemosphere 2022, 289, 133260. [Google Scholar] [CrossRef]
- Liu, M.Y.; Xie, Z.F.; Ye, H.; Li, W.; Shi, W.; Liu, Y.C.; Zhang, Y. Waste polystyrene foam-Chitosan composite materials as high-efficient scavenger for the anionic dyes. Colloids Surf. A Physicochem. Eng. Asp. 2021, 627, 127155. [Google Scholar] [CrossRef]
- Ma, J.; Xia, W.; Zhang, R.; Ding, L.; Kong, Y.; Zhang, H.; Fu, K. Flocculation of emulsified oily wastewater by using functional grafting modified chitosan: The effect of cationic and hydrophobic structure. J. Hazard. Mater. 2021, 403, 123690. [Google Scholar] [CrossRef]
- Sun, Y.; Yu, Y.; Zhou, S.; Shah, K.J.; Sun, W.; Zhai, J.; Zheng, H. Functionalized chitosan-magnetic flocculants for heavy metal and dye removal modeled by an artificial neural network. Sep. Purif. Technol. 2022, 282, 120002. [Google Scholar] [CrossRef]
- Nouj, N.; Hafid, N.; El Alem, N.; Cretescu, I. Novel Liquid Chitosan-Based Biocoagulant for Treatment Optimization of Fish Processing Wastewater from a Moroccan Plant. Materials 2021, 14, 7133. [Google Scholar] [CrossRef]
- Chen, F.; Liu, W.; Pan, Z.; Wang, Y.; Guo, X.; Sun, S.; Jia, R. Characteristics and mechanism of chitosan in flocculation for water coagulation in the Yellow River diversion reservoir. J. Water Process Eng. 2020, 34, 101191. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, H.; Sun, Y.; Ren, J.; Zheng, X.; Sun, Q.; Jiang, S.; Ding, W. Synthesis of novel chitosan-based flocculants with amphiphilic structure and its application in sludge dewatering: Role of hydrophobic groups. J. Clean. Prod. 2020, 249, 119350. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Li, L.; Li, D.; Wang, Q.; Xu, Q.; Wang, D. Impact of molecular structure and charge property of chitosan based polymers on flocculation conditioning of advanced anaerobically digested sludge for dewaterability improvement. Sci. Total Environ. 2019, 670, 98–109. [Google Scholar] [CrossRef]
- Gil, H.w.; Woon, N.J.; Jeong, G.-W. Development and Evaluation of Coal-dust Water Flocculant using Chitosan. Appl. Chem. Eng. 2021, 32, 139–142. [Google Scholar] [CrossRef]
- Razali, M.A.A.; Ahmad, Z.; Ahmad, M.S.B.; Ariffin, A. Treatment of pulp and paper mill wastewater with various molecular weight of polyDADMAC induced flocculation. Chem. Eng. J. 2011, 166, 529–535. [Google Scholar] [CrossRef]
- Zhang, Z.; Jing, R.; He, S.; Qian, J.; Zhang, K.; Ma, G.; Chang, X.; Zhang, M.; Li, Y. Coagulation of low temperature and low turbidity water: Adjusting basicity of polyaluminum chloride (PAC) and using chitosan as coagulant aid. Sep. Purif. Technol. 2018, 206, 131–139. [Google Scholar] [CrossRef]
- El Foulani, A.-A.; Jamal-eddine, J.; Lekhlif, B. Study of aluminium speciation in the coagulant composite of polyaluminium chloride-chitosan for the optimization of drinking water treatment. Process Saf. Environ. Prot. 2022, 158, 400–408. [Google Scholar] [CrossRef]
- Wang, Q.; Oshita, K.; Takaoka, M. Harvesting Nannochloropsis oculata by Chitosan and AlCl3-Induced Flocculation: Effects of Microalgal Condition on Flocculation Performance. BioEnergy Res. 2021, 14, 924–939. [Google Scholar] [CrossRef]
- Ma, X.; Fan, Y.; Dong, X.; Chen, R.; Li, H.; Sun, D.; Yao, S. Impact of Clay Minerals on the Dewatering of Coal Slurry: An Experimental and Molecular-Simulation Study. Minerals 2018, 8, 400. [Google Scholar] [CrossRef]
- Fan, Y.; Dong, X.; Li, H. Dewatering effect of fine coal slurry and filter cake structure based on particle characteristics. Vacuum 2015, 114, 54–57. [Google Scholar] [CrossRef]
- Ruth, B.F. Correlating Filtration Theory with Industrial Practice. Ind. Eng. Chem. 1946, 38, 564–571. [Google Scholar] [CrossRef]
- Mota, M.; Teixeira, J.A.; Yelshin, A. Influence of cell-shape on the cake resistance in dead-end and cross-flow filtrations. Sep. Purif. Technol. 2002, 27, 137–144. [Google Scholar] [CrossRef]
- Hu, P.; Liang, L.; Li, B.; Xia, W. Delving into the heterocoagulation between coal and quartz at different shear rates by the focused beam reflectance measurement (FBRM) and particle vision and measurement (PVM) techniques. Fuel 2021, 286, 119445. [Google Scholar] [CrossRef]
- Fan, Y.; Ma, X.; Dong, X.; Feng, Z.; Dong, Y. Characterisation of floc size, effective density and sedimentation under various flocculation mechanisms. Water Sci. Technol. 2020, 82, 1261–1271. [Google Scholar] [CrossRef]
- Zou, W.; Fang, Z.; Huang, J.; Zhang, Z. Effect of salinity on adsorption of sodium hexametaphosphate and hydrophobically-modified polyacrylamide flocculant on kaolinite Al-OH surface. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124055. [Google Scholar] [CrossRef]
- Sabah, E.; Erkan, Z.E. Interaction mechanism of flocculants with coal waste slurry. Fuel 2006, 85, 350–359. [Google Scholar] [CrossRef]
- Hansdah, P.; Kumar, S.; Mandre, N.R. Optimization of settling characteristics of coal fine tailings with an anionic polyacrylamide using response surface methodology. Int. J. Coal Prep. Util. 2018, 41, 370–383. [Google Scholar] [CrossRef]
- Kumar, S.; Mandre, N.R.; Bhattacharya, S. Flocculation Studies of Coal Tailings and the Development of a Settling Index. Int. J. Coal Prep. Util. 2015, 36, 293–305. [Google Scholar] [CrossRef]
- Galloux, J.; Chekli, L.; Phuntsho, S.; Tijing, L.D.; Jeong, S.; Zhao, Y.X.; Gao, B.Y.; Park, S.H.; Shon, H.K. Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment. Sep. Purif. Technol. 2015, 152, 94–100. [Google Scholar] [CrossRef]
- Chen, R.; Dong, X.; Fan, Y.; Ma, X.; Dong, Y.; Chang, M. Interaction between STAC and coal/kaolinite in tailing dewatering: An experimental and molecular-simulation study. Fuel 2020, 279, 118224. [Google Scholar] [CrossRef]
- Shi, C.; Sun, W.; Sun, Y.; Chen, L.; Xu, Y.; Tang, M. Synthesis, Characterization, and Sludge Dewaterability Evaluation of the Chitosan-Based Flocculant CCPAD. Polymers 2019, 11, 95. [Google Scholar] [CrossRef]
- Pal, S.; Sen, G.; Karmakar, N.C.; Mal, D.; Singh, R.P. High performance flocculating agents based on cationic polysaccharides in relation to coal fine suspension. Carbohyd. Polym. 2008, 74, 590–596. [Google Scholar] [CrossRef]
- Serra, T.; Colomer, J.; Logan, B.E. Efficiency of different shear devices on flocculation. Water Res. 2008, 42, 1113–1121. [Google Scholar] [CrossRef]
- Wang, C.; Sun, C.; Liu, Q. Formation, breakage, and re-growth of quartz flocs generated by non-ionic high molecular weight polyacrylamide. Miner. Eng. 2020, 157, 106546. [Google Scholar] [CrossRef]
- Yeung, A.K.C.; Pelton, R. Micromechanics: A New Approach to Studying the Strength and Breakup of Flocs. J. Colloid Interface Sci. 1996, 184, 579–585. [Google Scholar] [CrossRef]
- Chen, R.X.; Fan, Y.P.; Dong, X.S.; Ma, X.M.; Feng, Z.Y.; Chang, M.; Li, N. Impact of pH on interaction between the polymeric flocculant and ultrafine coal with atomic force microscopy (AFM). Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126698. [Google Scholar] [CrossRef]
- Wu, X.H.; Ge, X.P.; Wang, D.S.; Tang, H.X. Distinct mechanisms of particle aggregation induced by alum and PACl: Floc structure and DLVO evaluation. Colloids Surf. A Physicochem. Eng. Asp. 2009, 347, 56–63. [Google Scholar] [CrossRef]
- Lapointe, M.; Barbeau, B. Understanding the roles and characterizing the intrinsic properties of synthetic vs. natural polymers to improve clarification through interparticle Bridging: A review. Sep. Purif. Technol. 2020, 231, 115893. [Google Scholar] [CrossRef]
- Morrow, B.H.; Payne, G.F.; Shen, J. pH-Responsive Self-Assembly of Polysaccharide through a Rugged Energy Landscape. J. Am. Chem. Soc. 2015, 137, 13024–13030. [Google Scholar] [CrossRef] [Green Version]
Proximate Analysis/wt% | Ultimate Analysis/wt% | |||||||
---|---|---|---|---|---|---|---|---|
Vad | Aad | Mad | FCad | C | H | N | S | O |
45.9 | 11.21 | 1.76 | 41.13 | 59.72 | 5.67 | 1.03 | 0.43 | 33.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, M.; Ma, X.; Dong, X.; Fan, Y.; Chen, R. The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action. Polymers 2022, 14, 3970. https://doi.org/10.3390/polym14193970
Chang M, Ma X, Dong X, Fan Y, Chen R. The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action. Polymers. 2022; 14(19):3970. https://doi.org/10.3390/polym14193970
Chicago/Turabian StyleChang, Ming, Xiaomin Ma, Xianshu Dong, Yuping Fan, and Ruxia Chen. 2022. "The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action" Polymers 14, no. 19: 3970. https://doi.org/10.3390/polym14193970
APA StyleChang, M., Ma, X., Dong, X., Fan, Y., & Chen, R. (2022). The Synergistic Effects of Al3+ and Chitosan on the Solid–Liquid Separation of Coal Wastewater and Their Mechanism of Action. Polymers, 14(19), 3970. https://doi.org/10.3390/polym14193970