Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications
Abstract
:1. Introduction
2. Extraction Methods
2.1. Chemical Methods
2.1.1. Demineralization
2.1.2. Deproteination
2.1.3. Ionic Liquids and Deep Eutectic Acids
2.2. Biological Methods
2.2.1. Enzymatic Methods
2.2.2. Fermentation Methods
2.3. Comparison of Extraction Methods
3. Deacetylation
4. Nanochitin Synthesis
5. Applications
5.1. Filler Material/Plastics
5.2. Medical/Biomaterials
5.3. Adsorbents
5.4. Paper
5.5. Cosmetics
5.6. Energetic/Electrical Conductivity
5.7. Agriculture
5.8. Food
5.9. Other
6. Prospective and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Meyers, M.A.; Chen, P.Y. Biological Materials Science: Biological Materials, Bioinspired Materials, and Biomaterials; Cambridge University Press: Cambridge, UK, 2014; pp. 90–93, 305-312. [Google Scholar] [CrossRef]
- Hossin, M.A.; Al Shaqsi, N.H.K.; Al Jouby, S.S.J.A.; Al Sibani, M.A. A review of polymeric chitin extraction, characterization, and applications. Arab. J. Geosci. 2021, 14, 1870. [Google Scholar] [CrossRef]
- Rinaudo, M. Chitin and chitosan: Properties and applications. Prog. Polym. Sci. 2006, 31, 603–632. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Zavgorodnya, O.; Rogers, R.D. Advances in Processing Chitin as a Promising Biomaterial from Ionic Liquids. Adv. Biochem. Eng. Biotechnol. 2018, 168, 177–198. [Google Scholar] [CrossRef]
- No, H.K.; Meyers, S.P. Preparation and Characterization of Chitin and Chitosan—A Review. J. Aquat. Food Prod. Technol. 2010, 4, 27–52. [Google Scholar] [CrossRef]
- Ji, J.; Wang, L.; Yu, H.; Chen, Y.; Zhao, Y.; Zhang, H.; Amer, W.A.; Sun, Y.; Huang, L.; Saleem, M. Chemical Modifications of Chitosan and Its Applications. Polym.-Plast. Technol. Eng. 2014, 53, 1494–1505. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture 2020; Sustainability in Action: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Reboucas, J.S.A.; Oliveira, F.P.S.; Araujo, A.C.S.; Fouveia, H.L.; Latorres, J.M.; Martins, V.G.; Prentice, C.; Tesser, M.B. Shellfish industrial waste reuse. Crit. Rev. Biotechnol. 2021, 1–17. [Google Scholar] [CrossRef]
- Yan, N.; Chen, X. Sustainability: Don’t waste seafood waste. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef]
- Arbia, W.; Arbia, L.; Adour, L.; Amrane, A. Chitin Extraction from Crustacean Shells Using Biological Methods—A review. Food Technol. Biotechnol. 2012, 51, 12–25. [Google Scholar]
- Kou, S.; Peters, L.; Mucalo, M. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol. 2018, 169, 85–94. [Google Scholar] [CrossRef]
- Morais, E.S.; da Costa Lopes, A.M.; Freire, M.G.; Freire, C.S.R.; Coutinho, J.A.P.; Silvestre, A.J.D. Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules 2020, 25, 3652. [Google Scholar] [CrossRef]
- Mohan, K.; Ganesan, A.R.; Ezhilarasi, P.N.; Kondamareddy, K.K.; Rajan, D.K.; Sathishkumar, P.; Rajarajeswaran, J.; Conterno, L. Green and eco-friendly approaches for the extraction of chitin and chitosan: A review. Carbohydr. Polym. 2022, 287, 119349. [Google Scholar] [CrossRef] [PubMed]
- Jin, T.; Liu, T.; Lam, E.; Moores, A. Chitin and Chitosan on the nanoscale. Nanoscale Horizons 2021, 6, 505–542. [Google Scholar] [CrossRef] [PubMed]
- Salaberria, A.M.; Labidi, J.; Fernandes, S.C.M. Different routes to turn chitin into stunning nano-objects. Eur. Polym. J. 2015, 68, 503–515. [Google Scholar] [CrossRef]
- Kumar, M.N.V.R. A review of chitin and chitosan applications. React. Funct. Polym. 2000, 46, 1–27. [Google Scholar] [CrossRef]
- Parhi, R. Drug delivery applications of chitin and chitosan: A review. Environ. Chem. Lett. 2020, 18, 577–594. [Google Scholar] [CrossRef]
- Ali, A.; Ahmed, S. A review on chitosan and its nanocomposites in drug delivery. Int. J. Biol. Macromol. 2018, 109, 273–286. [Google Scholar] [CrossRef]
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym. 2020, 230, 115658. [Google Scholar] [CrossRef]
- Hamed, I.; Ozogul, F.; Regenstein, J.M. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci. Technol. 2016, 48, 40–50. [Google Scholar] [CrossRef]
- Ikram, R.; Jan, B.M.; Qadir, M.A.; Sidek, A.; Stylianakis, M.M.; Kenanakos, G. Recent Advances in Chitin and Chitosan/Graphene-Based Bio-Nanocomposites for Energetic Applications. Polymers 2021, 13, 3266. [Google Scholar] [CrossRef]
- Nagasawa, H. The crustacean cuticle: Structure, composition and mineralization. Front. Biosci. 2012, 4, 711–720. [Google Scholar] [CrossRef]
- Yang, H.; Gozaydn, G.; Nasaruddin, R.R.; Har, J.R.G.; Chen, X.; Wang, X.; Yan, N. Toward the Shell Biorefinery: Processing Crustacean Shell Waste using Hot Water and Carbonic Acid. ACS Sustain. Chem. Eng. 2019, 7, 5532–5542. [Google Scholar] [CrossRef]
- Boric, M.; Puliyalil, H.; Novak, U.; Lokozar, B. An intensified atmospheric plasma-based process for the isolation of the chitin biopolymer from waste crustacean biomass. Green Chem. 2018, 20, 1199. [Google Scholar] [CrossRef]
- Boric, M.; Vicente, F.A.; Jurkovic, D.L.; Novak, U.; Likozar, B. Chitin isolation from crustacean waste using a hybrid demineralization/DBD plasma process. Carbohydr. Polym. 2020, 246, 116648. [Google Scholar] [CrossRef] [PubMed]
- Percot, A.; Viton, C.; Domard, A. Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules 2003, 4, 12–18. [Google Scholar] [CrossRef]
- Pohling, J.; Dave, D.; Liu, Y.; Murphy, W.; Trenholm, S. Two-step demineralization of shrimp (Pandalus borealis) shells using citric acid: An environmentally friendly, safe cost-effective alternative to the traditional approach. Green Chem. 2022, 24, 1141. [Google Scholar] [CrossRef]
- Trung, T.S.; Tram, L.H.; Tan, N.V.; Hoa, N.V.; Minh, N.C.; Loc, T.L.; Stevens, W.F. Improved method for production of chitin and chitosan from shrimp shells. Carbohydr. Res. 2020, 489, 107913. [Google Scholar] [CrossRef]
- Jung, W.J.J.; Jo, G.H.; Kuk, J.H.; Kim, K.Y.; Park, R.D. Demineralization of Crab Shells by Chemical and Biological Treatments. Biotechnol. Bioprocess Eng. 2005, 10, 67–72. [Google Scholar] [CrossRef]
- Blumberg, R.; Southall, C.L.; Van Rensburg, N.J.; Volckman, O.B. The Rock Lobster: A Study of Chitin Production from Processing Wastes. J. Sci. Food Agric. 1951, 12, 571–576. [Google Scholar] [CrossRef]
- Saravana, P.S.; Ho, T.C.; Chae, S.J.; Cho, Y.J.; Park, J.S.; Lee, H.J.; Chun, B.S. Deep eutectic solvent-based extraction and fabrication of chitin films from crustacean waste. Carbohydr. Polym. 2018, 195, 622–630. [Google Scholar] [CrossRef]
- Olafadehan, O.A.; Ajayi, T.O.; Amoo, K.O. Optimum Conditions for Extraction of Chitin and Chitosan from Callinectes amnicola Shell Waste. Theor. Found. Chem. Eng. 2020, 54, 1173–1194. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Y.; Wang, R.; Zhu, Y.; Yang, P.; Lin, Z.; Wang, Z.; Cong, W. Efficient extraction of chitin from crustacean waste via a novel ternary natural deep eutectic solvents. Carbohydr. Polym. 2022, 286, 119281. [Google Scholar] [CrossRef] [PubMed]
- Roy, J.C.; Salaün, F.; Giraud, S.; Ferri, A. Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms in Solubility of Polysaccharides. IntechOpen 2017, 3, 20–60. [Google Scholar] [CrossRef]
- Tan, X.; Wang, G.; Zhong, L.; Xie, F.; Lan, P.; Chi, B. Regeneration behavior of chitosan from ionic liquid using water and alcohols as anti-solvents. Int. J. Biol. Macromol. 2021, 166, 940–947. [Google Scholar] [CrossRef] [PubMed]
- Wineinger, H.B.; Kelly, A.; Shamshina, J.L.; Rogers, R.D. Farmed Jumbo shrimp molts: An ionic liquid strategy to increase chitin yield per animal while controlling molecular weight. Green Chem 2020, 22, 6001–6007. [Google Scholar] [CrossRef]
- Tolesa, L.D.; Gupta, B.S.; Lee, M.J. Chitin and chitosan production from shrimp shells using ammonium-based ionic liquids. Int. J. Biol. Macromol. 2019, 130, 818–826. [Google Scholar] [CrossRef]
- Setoguchi, T.; Kato, T.; Yamamoto, K.; Kadokawa, J. Facile production of chitin from crab shells using ionic liquid and citric acid. Int. J. Biol. Macromol. 2012, 50, 861–864. [Google Scholar] [CrossRef]
- Wang, W.T.; Zhu, J.; Wang, X.L.; Huang, Y.; Wang, Y.Z. Dissolution behavior of chitin in ionic liquids. J. Macromol. Sci. Part B 2010, 49, 528–541. [Google Scholar] [CrossRef]
- Shimo, M.; Abe, M.; Ohno, H. Functional comparison of polar ionic liquids and onium hydroxides for chitin dissolution and deacetylation to chitosan. Sustain. Chem. Eng. 2016, 4, 3722–3727. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, X.; Bi, X.; Han, Q.; Tu, L.; Yang, Y.; Shen, Y.; Wang, M. Dissolution and deacetylation of chitin in ionic liquid tetrabutylammonium hydroxide and its cascade reaction in enzyme treatment for chitin recycling. Carbohydr. Polym. 2020, 230, 115605. [Google Scholar] [CrossRef]
- Smith, E.L.; Abbot, A.P.; Ryder, K.S. Deep Eutectic Solvents (DESs) and Their Applications. Chem. Rev. 2014, 114, 11060–11082. [Google Scholar] [CrossRef]
- Abbot, A.P.; Capper, G.; Davies, D.L.; Munro, H.L.; Rasheed, R.K.; Tambyrajah, V. Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chem. Commun. 2001, 2010–2011. [Google Scholar] [CrossRef] [PubMed]
- Paiva, A.; Craveiro, R.; Aroso, I.; Martins, M.; Reis, R.L.; Duarte, A.R.C. Natural Deep Eutectic Solvents—Solvents for the 21st Century. ACS Sustain. Chem. Eng. 2014, 2, 1063–1071. [Google Scholar] [CrossRef]
- Dai, Y.; van Spronsen, J.; Witkamp, G.-J.; Verpoorte, R.; Choi, Y.H. Natural deep eutectic solvents as new potential media for green technology. Anal. Chim. Acta 2013, 766, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, L.A.; Redovnikovic, I.R.; Duarte, A.R.C.; Matias, A.A.; Paiva, A. Low-Phytotoxic Deep Eutectic Sysytems as Alternative Extraction Media for the Recovery of Chitin from Brown Crab Shells. ACS Omega 2021, 6, 28729–28741. [Google Scholar] [CrossRef] [PubMed]
- Bisht, M.; Macario, I.P.E.; Neves, M.C.; Pereira, J.L.; Pandey, S.; Rogers, R.D.; Coutinho, J.A.P.; Ventura, S.P.M. Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustain. Chem. Eng. 2021, 9, 16073–16081. [Google Scholar] [CrossRef]
- Huang, W.C.; Zhao, D.; Guo, N.; Xue, C.; Mao, X. Green and Facile Production of Chitin from Crustacean Shells Using a Natural Deep Eutectic Solvent. J. Agric. Food Chem. 2018, 66, 11897–11901. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, W.C.; Guo, N.; Zhang, S.; Xue, C.; Mao, X. Two-Step Separation of Chitin from Shrimp Shells Using Citric Acid and Deep Eutectic Solvents with the Assistance of Microwave. Polymers 2019, 11, 409. [Google Scholar] [CrossRef]
- Hamdi, M.; Hammami, A.; Hajji, S.; Jridi, M.; Nasri, M.; Nasri, R. Chitin extraction from blue crab (Porunis segnis) and shrimp (Penaeus kerathurus) shells using digestive alkaline proteases from P. segnis viscera. Int. J. Biol. Macromol. 2017, 101, 455–463. [Google Scholar] [CrossRef]
- Hongkulsup, C.; Khutoryanskiy, V.V.; Niranjan, K. Enzyme assisted extraction of chitin from shrimp shells (Litopenaeus vannamei). J. Chem. Technol. Biotechnol. 2016, 91, 1250–1256. [Google Scholar] [CrossRef]
- Sayari, N.; Sila, A.; Abdelmalek, B.E.; Abdallah, R.B.; Ellouz-Chaabouni, S.; Bougatef, A.; Balti, R. Chitin and chitosan from the Norway lobster by-products: Antimicrobial and anti-proliferative activities. Int. J. Biol. Macromol. 2016, 87, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Sedaghat, F.; Yousefzadi, M.; Toiserkani, H.; Najafipour, S. Bioconversion of shrimp waste Penaeus merguiensis using lactic acid fermentation: An alternative procedure for chemical extraction of chitin and chitosan. Int. J. Biol. Macromol. 2017, 104, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.S.; Abbasiliasi, S.; Lee, C.K.; Phapugrangkul, P. Chitin extraction from shrimp wastes by single step fermentation with Lactobacillus acidophilus FTDC3871 using response surface methodology. J. Food Process. Preserv. 2020, 44, e14895. [Google Scholar] [CrossRef]
- Liu, Y.; Xing, R.; Yang, H.; Liu, S.; Qin, Y.; Li, K.; Yu, H.; Li, P. Chitin extraction from shrimp (Litopenaeus vannamei) shells by successive two-step fermentation with Lactobaccilus rhamnoides and Bacillus amyloliquefaciens. Int. J. Biol. Macromol. 2020, 148, 424–433. [Google Scholar] [CrossRef]
- Tan, Y.N.; Lee, P.P.; Chen, W.N. Microbial extraction of chitin from seafood waste using sugars derived from fruit waste-stream. AMB Express 2020, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.T.; Tran, T.N.; Nguyen, V.B.; Vo, T.P.K.; Nguyen, A.D.; Wang, S.L. Chitin extraction from shrimp waste by liquid fermentation using an alkaline protease-producing strain, Brevibacillus parabrevis. Int. J. Biol. Macromol. 2019, 131, 706–715. [Google Scholar] [CrossRef] [PubMed]
- Cahyaningtyas, H.A.A.; Suyotha, W.; Cheirsilp, B.; Prihanto, A.A.; Yano, S.; Wakayama, M. Optimization of protease production by Baccilus cereus HMRSC30 for simultaneous extraction of chitin from shrimp shell with value-added recovered products. Environ. Sci. Pollut. Res. 2022, 29, 22163–22178. [Google Scholar] [CrossRef]
- Morgan, K.; Conway, C.; Faherty, S.; Quigley, C. A Comparative Analysis of Conventional and Deep Eutectic Solvent (DES)-Mediated Strategies for the Extraction of Chitin from Marine Crustacean Shells. Molecules 2021, 26, 7603. [Google Scholar] [CrossRef]
- Agarwal, M.; Agarwal, M.K.; Shrivastav, N.; Pandey, S.; Gaur, P. A Simple and Effective Method for Preparation of Chitosan from Chitin. Int. J. Life Sci. Scienti. Res. 2018, 4, 1721–1728. [Google Scholar] [CrossRef]
- Rhazi, M.; Desbrieres, J.; Tolaimate, A.; Alagui, A.; Vottero, P. Investigation of different natural sources of chitin: Influence of the source and deacetylation process on the physiochemical characteristics of chitosan. Polym. Int. 2000, 49, 337–344. [Google Scholar] [CrossRef]
- Aspras, I.; Kaminska, M.; Karzynski, K.; Kawka, M.; Jaworska, M.M. The influence of selected ionic liquids on activity of chitin deacetylase. Chem. Process Eng. 2016, 37, 77–82. [Google Scholar] [CrossRef]
- Aspras, I.; Jaworska, M.M.; Gorak, A. Kinetics of chitin deacetylase activation by the ionic liquid [Bmim][Br]. J. Biotechnol. 2017, 251, 94–98. [Google Scholar] [CrossRef] [PubMed]
- Ishii, D.; Ohashi, C.; Hayashi, H. Facile enchancement of the deacetylation degree of chitosan by hydrothermal treatment in an imidazolium-based ionic liquid. Green Chem. 2014, 16, 1764. [Google Scholar] [CrossRef]
- Revol, J.-F.; Marchessault, R.H. In vitro chiral nematic ordering of chitin crystallites. Int. J. Biol. Macromol. 1993, 15, 329–335. [Google Scholar] [CrossRef]
- Kadokawa, J. Preparation and Applications of Chitin Nanofibers/Nanowhiskers. In Biopolymer Nanocomposites: Processing, Properties, and Applications, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 131–151. [Google Scholar]
- Joseph, B.; Sam, R.M.; Balakrishnan, P.; Maria, H.J.; Gopi, S.; Volova, T.; Fernandes, S.C.M.; Thomas, S. Extraction of Nanochitin from Marine Resources and Fabrication of Polymer Nanocomposites: Recent Advances. Polymers 2020, 12, 1664. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hong, S.; Lian, H.; Zhang, K.; Liimatainen, H. Comparison of acidic deep eutectic solvents in production of chitin nanocrystals. Carbohydr. Polym. 2020, 236, 116095. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Saito, T.; Isogai, A. Chitin Nanocrystals Prepared by TEMPO-mediated Oxidation of α-Chitin. Biomacromolecules 2008, 9, 192–198. [Google Scholar] [CrossRef]
- Fernandez-Marin, R.; Hernandez-Ramos, F.; Salaberria, A.M.; Andres, M.A.; Labidi, J.; Fernandes, S.C.M. Eco-friendly isolation and characterization of nanochitin from different origins by microwave irradiation: Optimization using response surface methodology. Int. J. Biol. Macromol. 2021, 186, 218–226. [Google Scholar] [CrossRef]
- Mushi, N.E.; Butchosa, N.; Salajkova, M.; Zhou, Q.; Berglund, L.A. Nanostructured membranes based on native chitin nanofibers prepared by mild process. Carbohydr. Polym. 2014, 112, 255–263. [Google Scholar] [CrossRef]
- Bai, L.; Liu, L.; Esquivel, M.; Tardy, B.L.; Huan, S.; Niu, X.; Liu, S.; Yang, G.; Fan, Y.; Rojas, O.J. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem. Rev. 2022, 122, 11604–11674. [Google Scholar] [CrossRef]
- Fan, Y.; Saito, T.; Isogai, A. Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr. Polym. 2010, 79, 1046–1051. [Google Scholar] [CrossRef]
- Geetha, P.; Sivaram, A.J.; Jayakumar, R.; Gopi Mohan, C. Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr. Polym. 2016, 142, 240–249. [Google Scholar] [CrossRef] [PubMed]
- Phongying, S.; Aiba, S.I.; Chirachanchai, S. Direct chitosan nanoscaffold formation via chitin whiskers. Polym. J. 2007, 48, 393–400. [Google Scholar] [CrossRef]
- Araki, J.; Yamanaka, Y.; Ohkawa, K. Chitin-chitosan nanocomposite gels: Reinforcement of chitosan hydrogels with rod-like chitin nanowhiskers. Polym. J. 2012, 44, 713–717. [Google Scholar] [CrossRef]
- Ma, B.; Qin, A.; Li, X.; Zhao, X.; He, C. Structure and properties of chitin whisker reinforced chitosan membranes. Int. J. Biol. Macromol. 2014, 64, 341–346. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.R.; Escobar, A.P.; Andris, M.N.; Boardman, B.M.; Peters, G.M. Understanding the Molecular-Level Interactions of Glucosamine-Glycerol Assemblies: A Model System for Chitosan Plasticization. ACS Omega 2021, 6, 25227–25234. [Google Scholar] [CrossRef]
- Mutmainna, I.; Tahir, D.; Gareso, P.L.; Ilyas, S. Synthesis composite starch-chitosan as biodegradable plastic for food packaging. J. Phys. Conf. Ser. 2019, 1317, 012053. [Google Scholar] [CrossRef]
- Hasan, M.; Rahmayani, R.F.I.; Minandar. Bioplastic from Chitosan and Yellow Pumpkin Starch with Castor Oil as Plasticizer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 333, 012087. [Google Scholar] [CrossRef]
- Sapei, L.; Pdmawijaya, K.S.; Sijayanti, O.; Wardhana, P.J. The effect of banana starch concentration on the properties of chitosan-starch bioplastics. J. Chem. Pharm. Res. 2015, 7, 101–105. [Google Scholar]
- Fathanah, U.; Lubis, M.R.; Nasution, F.; Masyawi, M.S. Characterization of bioplastic based from cassava crisp home industrial waste incorporated with chitosan and liquid smoke. IOP Conf. Ser. Mater. Sci. Eng. 2018, 334, 012073. [Google Scholar] [CrossRef]
- Choo, K.W.; Lin, M.; Mustapha, A. Chitosan/acetylated starch composite films incorporated with essential oils: Physiochemical and antimicrobial properties. Food Biosci. 2021, 43, 101287. [Google Scholar] [CrossRef]
- Castro, J.I.; Valencia-Llano, C.H.; Zapata, M.E.V.; Restrepo, Y.J.; Hernandez, J.H.M.; Navia-Porras, D.P.; Valencia, Y.; Valencia, C.; Grande-Tovar, C.D. Chitosan/Polyvinyl Alcohol/ Tea Tree Essential Oil Composite Films for Biomedical Applications. Polymers 2021, 13, 3753. [Google Scholar] [CrossRef] [PubMed]
- Jannah, M.; Ahmad, A.; Hayatun, A.; Taba, P.; Chadijah, S. Effect of filler and plastisizer on the mechanical properties of bioplastic cellulose from rice husk. J. Phys. Conf. Ser. 2019, 1341, 032019. [Google Scholar] [CrossRef]
- Babaee, M.; Garavan, F.; Rehman, A.; Jafarazadeh, S.; Amini, E.; Cacciotti, I. Biodegradability, physical, mechanical, and antimicrobial attributes of starch nanocomposites containing chitosan nanoparticles. Int. J. Biol. Macromol. 2022, 195, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Pratama, J.P.; Amalia, A.; Rohmah, R.L.; Saraswati, T.E. The extraction of cellulose powder of water hyacinth (Eichhornia crassipes) as reinforcing agents in bioplastic. IOP. Conf. Ser. 2020, 2219, 100003. [Google Scholar] [CrossRef]
- Blilid, S.; Kedzierska, M.; Kilowska, K.; Wronska, N.; El Achaby, M.; Katir, N.; Belamie, E.; Alonso, B.; Lisowska, K.; Lahcini, M.; et al. Phosphorylated Micro- and Nanocellulose-Filled Chitosan Nanocomposites as Fully Sustainable, Biologically Active Bioplastics. ACS Sustain. Chem. Eng. 2020, 8, 18354–18365. [Google Scholar] [CrossRef]
- Kongkaoroptham, P.; Piroonpan, T.; Pasanphan, W. Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydr. Polym. 2021, 257, 117610. [Google Scholar] [CrossRef]
- Hammi, N.; Wroska, N.; Katir, N.; Lisowska, K.; Marcotte, N.; Cacciaguerra, T.; Bryszewska, M.; El Kadib, A. Supramolecular Chemistry Driven Preparation of Nanostructured, Transformable and Biologically-active Chitosan-Clustered Single, Binary and Ternary Metal Oxide Bioplastics. ACS Appl. Bio Mater. 2018, 2, 61–69. [Google Scholar] [CrossRef]
- Sapei, L.; Padmawijaya, K.S.; Sujayanti, O.; Wardhana, P.J. Study of the influence of ZnO addition on the properties of chitosan-banana starch bioplastics. IOP Conf. Ser. Mater. Sci. Eng. 2017, 223, 012044. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Boonyaritthongchai, P.; Buanong, M.; Supapvanich, S.; Wongs-Aree, C. Edible coating of chitosan ionically combined with κ-carrageenan maintains the bract and postharvest attributes of dragon fruit (Hylocereus undatus). Int. Food Res. J. 2021, 28, 682–694. [Google Scholar] [CrossRef]
- Song, D.-H.; Hoa, V.B.; Kim, H.W.; Khang, S.M.; Cho, S.-H.; Ham, J.-S.; Seol, K.-H. Edible Films on Meat and Meat Products. Coatings 2021, 11, 1344. [Google Scholar] [CrossRef]
- Candra, A.; Kaban, J.; Ginting, M. Antimicrobial activity and physical properties of chitosan-aren seed (Arenga pinnata) starch edible film. Rasayan J. Chem. 2021, 14, 1860–1868. [Google Scholar] [CrossRef]
- Fernandez, J.G.; Ingber, D.E. Manufacturing of Large-Scale Functional Objects Using Biodegradable Chitosan Bioplastic. Macromol. Mater. Eng. 2014, 299, 932–938. [Google Scholar] [CrossRef]
- Heidari, M.; Khomeiri, M.; Yousefi, H.; Rafieian, M.; Kashiri, M. Chitin nanofiber-based nanocomposites containing biodegradable polymers for food packaging applications. J. Consum. Prot. Food Saf. 2020, 16, 237–246. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Diaz, R.H.; Labidi, J.; Fernandes, S.C.M. Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocoll. 2015, 46, 93–102. [Google Scholar] [CrossRef]
- Robles, E.; Salaberria, A.M.; Herrera, R.; Fernandes, S.C.M.; Labidi, J. Self-bonded composite films based on cellulose nanofibers and chitin nanocrystals as antifungal materials. Carbohydr. Polym. 2016, 144, 41–49. [Google Scholar] [CrossRef]
- Qin, Y.; Zhang, S.; Yu, J.; Yang, J.; Xiong, L.; Sun, Q. Effects of chitin nano-whiskers on the antibacterial and physiochemical properties of maize starch films. Carbohydr. Polym. 2016, 147, 372–378. [Google Scholar] [CrossRef]
- Salaberria, A.M.; Diaz, R.H.; Labidi, J.; Fernandes, S.C.M. Preparing valuable renewable nanocomposite films based exclusively on oceanic biomass–chitin nanofillers and chitosan. React. Funct. Polym. 2015, 89, 31–39. [Google Scholar] [CrossRef]
- Jayakumar, R.; Prabaharan, M.; Kumar, P.T.S.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef]
- Satitsri, S.; Muanprasat, C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020, 25, 5961. [Google Scholar] [CrossRef]
- Adres, Y.; Giraud, L.; Gerente, C.; Le Cloirec, P. Antibacterial Effects of Chitosan Powder: Mechanisms of Action. Environ. Technol. 2007, 28, 1357–1363. [Google Scholar] [CrossRef]
- He, H.; Sun, C.; Weng, Y.; Huang, H.; Ni, P.; Fang, Y.; Xu, R.; Wang, Z.; Liu, H. Catechol modification of non-woven chitosan gauze for enhanced hemostatic efficacy. Carbohydr. Polym. 2022, 286, 119319. [Google Scholar] [CrossRef] [PubMed]
- Pang, J.; Bi, S.; Kong, T.; Luo, X.; Zhou, Z.; Qiu, K.; Huang, L.; Chen, X.; Kong, M. Mechanically and functionally strengthened tissue adhesive of chitin whisker complexed chitosan/dextran derivatives based hydrogel. Carbohydr. Polym. 2020, 237, 116138. [Google Scholar] [CrossRef] [PubMed]
- Fakhri, E.; Eslami, H.; Maroufi, P.; Pakdel, F.; Taghizadeh, S.; Ganbarov, K.; Yousefi, M.; Tanomand, A.; Yousefi, B.; Mahmoudi, S.; et al. Chitosan biomaterials application in dentistry. Int. J. Biol. Macromol. 2020, 162, 956–974. [Google Scholar] [CrossRef] [PubMed]
- Madhumathi, K.; Kumar, P.T.S.; Kavya, K.C.; Furuike, T.; Tamura, H.; Nair, S.V.; Jayakumar, R. Novel chitin/nanosilica composite scaffolds for bone tissue engineering applications. Int. J. Biol. Macromol. 2009, 45, 289–292. [Google Scholar] [CrossRef]
- Christy, P.N.; Basha, S.K.; Kumari, V.S. Nano zinc oxide and nano bioactive glass reinforced chitosan/poly(vinyl alcohol) scaffolds for bone tissue engineering application. Mater. Today Commun. 2022, 31, 103429. [Google Scholar] [CrossRef]
- Karimipour-Fard, P.; Jeffrey, M.P.; Taggert, H.J.; Pop-Illiev, R.; Rizvi, G. Development, processing and characterization of Polycaprolactone/Nano-Hydroxyapatite/Chitin-Nano-Whisker nanocomposite filaments for additive manufacturing of bone tissue scaffolds. J. Mech. Behav. Biomed. Mater. 2021, 120, 104583. [Google Scholar] [CrossRef]
- Chang, H.K.; Yang, D.H.; Ha, M.Y.; Kim, H.J.; Kim, C.H.; Kim, S.H.; Choi, J.W.; Chun, H.J. 3D printing of cell-laden visible light curable glycol chitosan bioink for bone tissue engineering. Carbohydr. Polym. 2022, 287, 119328. [Google Scholar] [CrossRef]
- Liao, J.; Hou, B.; Huang, H. Preparation, properties and drug controlled release of chitin-based hydrogels: An updated review. Carbohydr. Polym. 2022, 283, 119177. [Google Scholar] [CrossRef]
- Hoang, H.T.; Vu, T.T.; Karthika, V.; Jo, S.H.; Jo, Y.J.; Seom, J.W.; Oh, C.W.; Park, S.H.; Lim, K.T. Dual cross-linked chitosan/alginate hydrogels prepared by Nb-Tz ‘click’ reaction for pH responsive drug delivery. Carbohydr. Polym. 2022, 288, 119389. [Google Scholar] [CrossRef]
- Xia, D.; Wang, F.; Pan, S.; Yuan, S.; Liu, Y.; Xu, Y. Redox/pH-Responsive Biodegradable Thiol-Hyaluronic Acid/Chitosan Charge-Reversal Nanocarriers for Triggered Drug Release. Polymers 2021, 13, 3785. [Google Scholar] [CrossRef]
- Schmuhl, R.; Krieg, H.M.; Keizer, K. Adsorption of Cu (II) and Cr (VI) ions by chitosan: Kinetics and equilibrium studies. Water SA 2001, 27, 1–7. [Google Scholar] [CrossRef]
- Boulaiche, W.; Hamdi, B.; Trari, M. Removal of heavy metals by chitin: Equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. 2019, 9, 39. [Google Scholar] [CrossRef]
- Siahkamari, M.; Jamali, A.; Sabzevari, A.; Shakeri, A. Removal of Lead (II) ions from aqueous solutions using biocompatible polymeric nano-adsorbents: A comparative study. Carbohydr. Polym. 2016, 157, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Cheng, X.; Lu, Y.; Yang, G. Constructing biodegradable nanochitin-contained chitosan hydrogel beads for fast and efficient removal of Cu(II) from aqueous solution. Carbohydr. Polym. 2019, 211, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.; Li, P.; Zhou, W.; Wang, Z.; Fan, X.; Chen, M.; Fang, Y.; Liu, H. Shrimp Shell-Inspired Antifouling Chitin Nanofibrous Membrane for Efficient Oil/Water Emulsion Separation with In Situ Removal of heavy Metal Ions. ACS Sustain. Chem. Eng. 2019, 7, 2064–2072. [Google Scholar] [CrossRef]
- Zhang, X.; Elsayed, I.; Navaranthna, C.; Schueneman, G.T.; Hassan, E.B. Biohybrid Hydrogel and Aerogel from Self-Assembled Nanocellulose and Nanochitin as a High-Efficiency Adsorbent for Water Purificaiton. ACS Appl. Mater. Interfaces 2019, 11, 46714–46725. [Google Scholar] [CrossRef] [PubMed]
- Doan, C.T.; Tran, T.N.; Wang, C.L.; Wang, S.L. Microbial Conversion of Shrimp Heads to Proteases and Chitin as an Effective Dye Adsorbent. Polymers 2020, 12, 2228. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, Y.; He, J.; Wu, J.; Li, W.; Zhang, H.; Wang, H.; Tu, J.; Zhou, Y.; Dong, Y.; et al. Natural and Sustainable Superhydrophobic Nanochitin Aerogels for Collecting Methane Bubbles from Underwater. ACS Sustain. Chem. Eng. 2021, 9, 5000–5009. [Google Scholar] [CrossRef]
- Song, Z.; Li, G.; Guan, F.; Liu, W. Application of Chitin/Chitosan and Their Derivatives in the Papermaking Industry. Polymers 2018, 10, 389. [Google Scholar] [CrossRef]
- Zhang, T.; Kuga, S.; Wu, M.; Huang, Y. Chitin Nanofibril-Based Flame Retardant for Paper Application. ACS Sustain. Chem. Eng. 2020, 8, 12360–12365. [Google Scholar] [CrossRef]
- Kadokawa, J.; Idenoue, S.; Yamamoto, K. Fabricating Chitin Paper from Self-Assembled Nanochitins. ACS Sustain. Chem. Eng. 2020, 8, 8402–8408. [Google Scholar] [CrossRef]
- Naghdi, T.; Golmohammadi, H.; Yousefi, H.; Hosseinfard, M.; Kostiv, U.; Horák, D.; Merkoçi, A. Chitin Nanofiber Paper Towards Optical (bio)sensing Applications. ACS Appl. Mater. Interfaces 2020, 12, 15538–15552. [Google Scholar] [CrossRef]
- Aranaz, I.; Acosta, N.; Civera, C.; Elorza, B.; Mingo, J.; Castro, C.; de los Llanos Gandía, M.; Caballero, A.H. Cosmetics and Cosmeceutical Applications of Chitin, Chitosan and Their Derivatives. Polymers 2018, 10, 213. [Google Scholar] [CrossRef]
- Theerawattanawit, C.; Phaiyarin, P.; Wanichwecharungruang, S.; Noppakun, N.; Asawanonda, P.; Kumtornrut, C. The Efficacy and Safety of Chitosan on Facial Skin Sebum. Ski. Pharmacol. Physiol. 2021, 35, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Azimi, B.; Ricci, C.; Fusco, A.; Zavagna, L.; Linari, S.; Donnarumma, G.; Hadrich, A.; Cinelli, P.; Coltelli, M.-B.; Danti, S.; et al. Electrosprayed Shrimp and Mushroom Nanochitins on Cellulose Tissue for Skin Contact Application. Molecules 2021, 26, 4374. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, Y.; Huang, Q.; Chen, R.; Ge, W.; Fang, Z.; Huang, F.; Wang, X. Designed biomass materials for “green” electronics: A review of materials, fabrications, devices, and perspectives. Prog. Mater. Sci. 2022, 125, 100917. [Google Scholar] [CrossRef]
- Dong, Z.; Chen, C.; Wen, K.; Zhao, X.; Guo, X.; Zhou, Z.; Chang, G.; Zhang, Y.; Dong, Y. A Freestanding Chitin-Derived Hierarchical Nanocomposite for Developing Electrodes in Future Supercapacitor Industry. Polymers 2022, 14, 195. [Google Scholar] [CrossRef]
- Wang, S.; Yu, W.; Chen, Y.; He, J.; Zhao, Z.; Lu, Y.; Yang, Q.; Xiong, C.; Shi, Z. Electrode materials from cuprous oxide and chitin nanofibrils for supercapacitors with high specific capacity. Ionics 2022, 28, 1947–1955. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, G.; Yang, F.; Luo, Z.; Yuan, B.; Chen, X.; Wang, L. Serendipity discovery of fire early warning function of chitosan films. Carbohydr. Polym. 2022, 277, 118884. [Google Scholar] [CrossRef]
- Yang, F.; Yuan, B.; Wang, Y.; Chen, X.; Wang, L.; Zhang, H. Graphene oxide/ chitosan nano-coating with ultrafast fire-alarm response and flame-retardant property. Polym. Adv. Technol. 2021, 33, 795–806. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Kelly, A.; Oldham, T.; Rogers, R.D. Agricultural uses of chitin polymers. Environ. Chem. Lett. 2019, 18, 53–60. [Google Scholar] [CrossRef]
- Zhou, Y.; Jiang, S.; Jiao, Y.; Wang, H. Synergistic Effects of Nanochitin on Inhibition of Tobacoo Root Rot Disease. Int. J. Biol. Macromol. 2018, 99, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Jing, M.; Levy, A.; Wang, H.; Jiang, S.; Dou, D. Molecular mechanism of nanochitin whisker elicits plant resistance against Phytophthora and the receptors in plants. Int. J. Biol. Macromol. 2020, 165, 2660–2667. [Google Scholar] [CrossRef]
- Liang, R.; Li, X.; Yuan, W.; Jin, S.; Hou, S.; Wang, M.; Wang, H. Antifungal activity of nanochitin whisker against crown rot diseases of wheat. J. Agric. Food Chem. 2018, 66, 9907–9913. [Google Scholar] [CrossRef] [PubMed]
- Xue, W.; Han, Y.; Tan, J.; Wang, Y.; Wang, G.; Wang, H. Effects of Nanochitin on Enhancement of Grain Yield and Quality of Winter Wheat. J. Agric. Food Chem. 2017, 66, 6637–6645. [Google Scholar] [CrossRef]
- Chenh, Y.; Wang, Y.; Han, Y.; Li, D.; Zhang, Z.; Zhu, X.; Tan, J.; Wang, H. The Stimulatory Effects of Nanochitin Whiskers on Carbon and Nitrogen Metabolism and on the Enhancement of Grain Yield and Crude Protein of Winter Wheat. Molecules 2019, 24, 1752. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; An, S.; Yin, X. Nanochitin whisker enhances insecticidal activity of chemical pesticide for pest insect control and toxicity. J. Nanobiotechnol. 2021, 19, 49. [Google Scholar] [CrossRef]
- Li, Z.; Su, L.; Wang, H.; An, S.; Yin, X. Physiochemical and biological properties of nanochitin-abamectin conjugate for Nactuidae insect pest control. J. Nanopart. Res. 2020, 22, 286. [Google Scholar] [CrossRef]
- Tzoumaki, M.V.; Moschakis, T.; Kiosseoglou, V.; Biliaderis, C.G. Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocoll. 2011, 25, 1521–1529. [Google Scholar] [CrossRef]
- Huan, S.; Zhu, Y.; Xu, W.; McClements, D.j.; Bai, L.; Rojas, O.J. Pickering Emulsions via Interfacial Nanoparticle Complexation of Oppositely Charged Nanopolysaccharides. Appl. Mater. Interfaces 2021, 13, 12581–12593. [Google Scholar] [CrossRef]
- Lv, S.; Zhou, H.; Bai, L.; Rojas, O.J.; McClements, D.J. Development of food-grade Pickering emulsions stabilized by a mixture of cellulose nanofibrils and nanochitin. Food Hydrocoll. 2021, 113, 106541. [Google Scholar] [CrossRef]
- Yu, S.; Duan, M.; Sun, J.; Jiang, H.; Zhao, J.; Tong, C.; Pang, J.; Wu, C. Immobilization of phlorotannins on nanochitin: A novel biopreservatie for refregerated sea vass (Lateolabrax japonicus) fillets. Int. J. Biol. Macromol. 2022, 200, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, M.; Izawa, H.; Saimoto, H.; Ifuku, S. Dyeing of chitin nanofibers with reactive dyes and preparation of their sheets and nanofiber/resin composites. Cellulose 2021, 29, 2829–2837. [Google Scholar] [CrossRef]
- Lizundia, E.; Nguyen, T.D.; Winnick, R.J.; MacLachlan, M.J. Biomimetic photonic materials derived from chitin and chitosan. J. Mater. Chem. C 2021, 9, 796–817. [Google Scholar] [CrossRef]
- Xu, J.; Liu, L.; Yu, J.; Zou, Y.; Pei, W.; Zhang, L.; Ye, W.; Bai, L.; Wang, Z.; Fan, Y.; et al. Simple synthesis of self-assembled nacre-like materials with 3D periodic layers from nanochitin via hydrogelation and mineralization. RSC Green Chem. 2022, 24, 1308–1317. [Google Scholar] [CrossRef]
Method | Source Species | Concentration | Duration | Ash Content (%) | Reference |
---|---|---|---|---|---|
CO2 (aq) | Gray shrimp (Crangon crangon) | 10 atm | 2 h | <1 | [23] |
HCl | Marine shrimp (Parapenaeopsis stylifera) | 1 M | 24 h | 0.01 | [26] |
HCl | Northern shrimp (Pandalus borealis) | 31.45% | 2 h | 0.29 ± 0.05 | [27] |
Citric acid (x2) | Northern shrimp (Pandalus borealis) | 50% | 35 min/1 h | 0.34 ± 0.12 | [27] |
HCl (after 12 h in 0.28 M HCl) | White shrimp (Litopenaeus vannamei) | 0.80 M | 12 h | 0.1 | [28] |
Lactic acid | Red crab (Chionoeetes japonicus) | 5% | 5 days | 6.0 ± 0.2 | [29] |
HCl | Rock lobster (Jasis lalandii) | 31% | 2 h | <2 | [30] |
Method | Source Species | Concentration | Temperature/ Duration | Chitin Yield/ Residual Protein | Reference |
---|---|---|---|---|---|
Pressurized hot water | Gray shrimp (Crangon crangon) | - | 180 °C/1 h | -/4.7% | [23] |
DBD plasma | Shrimp (Species unspecified) | - | -/6 min | -/58% | [24] |
DBD plasma | Northern shrimp (Pandalus borealis) | - | -/2 × 6 min | 17%/<10% | [25] |
NaOH | Marine shrimp (Parapenaeopsis stylifera) | 10% | 90 °C/3 h | 20%/<1% | [26] |
NaOH | White shrimp (Litopenaeus vannamei) | 0.68 M | Ambient/24 h | -/0.92–0.96% | [28] |
NaOH | Rock lobster (Jasis lalandii) | 5% | 80–85 °C/2 × 30 min | 24.0%/- | [30] |
NaOH | Shrimp (Marsupenaeus japonicus) | 10% | 90 °C/3 h | 16.08 ± 0.57%/ 1.13 ± 0.01% | [31] |
NaOH | Lagoon crab (Callinectes amnicola) | 2.39 M | 70 ° C/2 h | 19.36 %/- | [32] |
NaOH | Snow crab (Chionoectes opilo) | 10% | 90 °C/3 h | 58.7 ± 0.8% of available/- | [33] |
Method | Source Species | Reagent | Temperature/ Duration | Chitin Yield | Reference |
---|---|---|---|---|---|
DES | Shrimp (Marsupenaeus japonicus) | ChCl–lactic acid (1:2) | 80 °C/2 h | 29.20 ± 1.97% | [31] |
ChCl–ethylene glycol (1:2) | 52.45 ± 2.01% | ||||
ChCl–urea (1:2) | 50.54 ± 1.07% | ||||
ChCl–malonic acid (1:2) | 23.86 ± 0.07% | ||||
DES | Snow crab (Chionoecetes opilio) | ChCl–N-acetyl-D-glucosamine (2:1) | 130 °C/3 h | 90.6 ± 1.2% * | [33] |
ChCl–D-gluconic acid (1:2) | 82.7 ± 0.7% * | ||||
Betaine–D-gluconic acid (1:2) | 90.7 ± 1.6% * | ||||
ChCl–N-acetyl-D-glucosamine–formic acid(1:1:1) | 88.2 ± 1.2% * | ||||
(1:0.6:1.4) | 85.6 ± 2.4% * | ||||
IL | White shrimp (Litopenaeus vannamei) | [EMIM][OAc] | 80 °C/0.5 h | 13–18% | [36] |
IL | Shrimp (Species unspecified) | [DIPEA][Ac] | 110 °C/18 h | 11.1% | [37] |
110 °C/24 h | 13.4% | ||||
110 °C/30 h | 14.7% | ||||
[DIPEA][P] | 110 °C/18 h | 10.0% | |||
110 °C/24 h | 11.5% | ||||
110 °C/30 h | 12.1% | ||||
[DMBA][Ac] | 110 °C/18 h | 10.9% | |||
110 °C/24 h | 12.2% | ||||
110 °C/30 h | 13.7% | ||||
IL | Red queen crab | [AMIM][Br] | 80 °C/24 h | 6.1% | [38] |
100 °C/24 h | 7.5% | ||||
120 °C/24 h | 12.6% | ||||
DES | Red crayfish | ChCl–lactic acid (1:2) | 115 °C/20 h | 85 ± 1% | [47] |
Betaine–lactic acid (1:2) | 85 ± 1% |
Bacterial Strain/Enzyme | Source Species | Carbon Source | Duration | Deproteination (%)/ Demineralization (%)/ Chitin Yield (%) | Reference |
---|---|---|---|---|---|
Protease from P. segnis viscera | Blue crab (Portunus segnis) Shrimp (Penaeus kerathurus) | - | 3 h | 84.69 ± 0.65/100 */ 19.06 ± 1.65 91.06 ± 1.40/100 */ 22.23 ± 0.94 | [50] |
Protease from Streptomyces griseus | Shrimp (Litopenaeus vannamei) | - | 3 h | 91.10/98.64 */- | [51] |
Pseudomonas aeruginosa | Shrimp (Penaeus merguiensis) | Glucose | 6 days | 96.44 ± 0.72/ */ 23.23 ± 3.75 | [53] |
Lactobacillus acidophilus | Pacific white leg shrimp (Litopenaeus vannamei) | Glucose | 3 days | 76/90.7/7.7 | [54] |
Lactobacillus rhamnoides, Bacillus amyloliquefaciens | Shrimp (Litopenaeus vannamei) | Glucose | 7 days | 96.8/97.5/19.6 | [55] |
Lactobacillus plantarum, Bacillus subtilis | Shrimp (Species unspecified) | Glucose | 5 days | -/-/10.0 | [56] |
Red grape Pomade | -/-/12.2 | ||||
White grape Pomade | -/-/11.8 | ||||
Mango peel | -/-/11.0 | ||||
Brevibacillus parabrevis | Giant tiger shrimp | Shrimp head powder | 4 h | 95.91 ± 2.01/ */ 16.87 ± 3.03 | [57] |
Bacillus cereus | Shrimp (Penaeus monodon) | Shrimp shell powder | 7 days | 97.42 ± 0.28/53.76 ± 0.21 (90 *)/- | [58] |
Method | Reagent | Temperature/Duration | Chitosan Yield | DD | Reference |
---|---|---|---|---|---|
Alkali | 50% NaOH | 84.46 °C/ 187 min | - | 84.2% | [32] |
Alkali | 40% NaOH | 100 °C/12 h | - | 93% | [37] |
IL | [N2,2,2,2][OH]/water (1:7.5) | Ambient/ 2 weeks | - | 91% | [40] |
Alkaline | 50% NaOH | 120 °C/4 h | - | 71.9% | [52] |
Alkaline | 50% NaOH | 121 °C/ 30 min | 50% | 80% | [60] |
Alkaline | 50% KOH, ethanol, monoethyleneglycol | 120 °C/24 h | 75% (Maia squinado) 77% (Homarus vulgaris) | 97% 90% | [61] |
IL | [BMIMO][Ac] | 100 °C/2 h | - | 86% | [64] |
Method | Product | Yield | Dimensions (Diameter/Length) (nm) | Reference |
---|---|---|---|---|
Acid hydrolysis | Nanocrystals | 65% | 6–8/50–300 | [65] |
Acid hydrolysis | Nanocrystals | 87.5% | 42–49/257–670 | [68] |
TEMPO-mediated oxidation | Nanocrystals | 90% | 8/340 | [69] |
Microwave irradiation | Nanocrystals | 85.3 ± 0.37% (Lobster) | 41.62 ± 10.92/ 314.74 ± 62.50 | [70] |
79.92 ± 0.24% (shrimp) | 42.16 ± 4.62/ 386.12 ± 47.49 | |||
Mechanical disintegration | Nanofibers | - | 3.6–3.9/1000–1500 | [71] |
Partial deacetylation, mechanical disintegration | Nanocrystals | 85–90% | 6.2 ± 1.1/250 ± 140 | [73] |
Dissolution, cross-linking | Nanoparticles | - | 237–429 (diameter) | [74] |
Acid hydrolysis | Nanocrystals | 86% | 18–40/200–560 | [75] |
Acid hydrolysis | Nanocrystals | 55–60% | 6–8/100–200 | [76] |
Acid hydrolysis | Nanocrystals | 40% | 20/300 | [77] |
Composition | Tensile Strength (MPa) | Elongation at Break (%) | Young’s Modulus (MPa) | Reference |
---|---|---|---|---|
40/60 Chitosan/yellow pumpkin starch, 15% v/v castor oil | 6.787 ± 0.274 | 13.451 ± 3.709 | 6.093 | [80] |
60/40 Chitosan/yellow pumpkin starch, 15% v/v castor oil | 2.563 ± 1.055 | 7.285 ± 1.135 | 5.263 | |
Chitosan, 30% v/v glycerol | 5 | 14 | - | [81] |
70/30 Chitosan/banana starch, 30% v/v glycerol | 2.5 | 28 | ||
50/50 Chitosan/cassava peel starch, 30% v/v glycerol, | 90 | 35 | - | [82] |
50/50 Chitosan/cassava peel starch, 30% v/v glycerol, 1 mL liquid smoke | 85 | 42 | ||
50/50 Chitosan/cassava peel starch, 30% v/v glycerol, 2 mL liquid smoke | 55 | 28 | ||
Chitosan | 13.5 | 56 | - | [83] |
Chitosan/1.0% v/v essential oil | 12.5 | 22 | ||
Chitosan/2.0% v/v essential oil | 10.0 | 32 | ||
Starch film | 9.54 ± 0.84 | 51.01 ± 1.32 | 16.50 ± 1.10 | [86] |
Starch/1% w/w Chitosan nanoparticle | 14.74 ± 16.7 | 46.19 ± 1.71 | 24.20 ± 1.04 | |
Starch/4% w/w Chitosan nanoparticle | 24.91 ± 0.81 | 34.29 ± 1.69 | 47.11 ± 2.51 | |
Chitosan film | 40 | 27 | 1200 | [88] |
Chitosan/3% w/w microcrystalline cellulose | 43 | 20 | 1350 | |
Chitosan/3% w/w nanocrystalline cellulose | 50 | 24 | 1400 | |
Polylactic acid film | 46 | 5 | - | [89] |
PLA/2% w/w chitosan nanoparticle | 33 | 6.5 | ||
PLA/4% w/w chitosan nanoparticle | 27 | 7.3 | ||
PLA/10% w/w chitosan nanoparticle | 23 | 6.3 | ||
70/30 Chitosan/starch, 30% v/v glycerol | 2 | 28 | - | [91] |
70/30 Chitosan/starch, 1% w/w ZnO, 30% v/v glycerol | 30 | 10 | ||
70/30 Chitosan/starch, 3% w/w ZnO, 30% w/w glycerol | 35 | 8 | ||
70/30 Chitosan/starch, 5% w/w ZnO, 30% w/w glycerol | 17 | 7 | ||
Starch | 1.5 | 77 | 5 | [97] |
Starch/5% w/w chitin nanocrystals | 2 | 35 | 25 | |
Starch/20% w/w chitin nanocrystals | 3 | 18 | 60 | |
Starch/5% w/w chitin nanofibers | 5 | 16 | 30 | |
Starch/20% w/w chitin nanofibers | 10.5 | 3 | 400 | |
Maize starch | 1.64 ± 0.11 | 175 ± 7.07 | - | [99] |
Maize starch/0.5% w/w chitin nanowhiskers | 2.79 ± 0.08 | 176 ± 8.65 | ||
Maize starch/1% w/w chitin nanowhiskers | 3.69 ± 0.07 | 179 ± 7.07 | ||
Maize starch/5% w/w chitin nanowhiskers | 2.37 ± 0.04 | 111 ± 4.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kozma, M.; Acharya, B.; Bissessur, R. Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers 2022, 14, 3989. https://doi.org/10.3390/polym14193989
Kozma M, Acharya B, Bissessur R. Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers. 2022; 14(19):3989. https://doi.org/10.3390/polym14193989
Chicago/Turabian StyleKozma, Michael, Bishnu Acharya, and Rabin Bissessur. 2022. "Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications" Polymers 14, no. 19: 3989. https://doi.org/10.3390/polym14193989
APA StyleKozma, M., Acharya, B., & Bissessur, R. (2022). Chitin, Chitosan, and Nanochitin: Extraction, Synthesis, and Applications. Polymers, 14(19), 3989. https://doi.org/10.3390/polym14193989