Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Methods
2.2.1. Preparation of Plant Materials
2.2.2. Preparation of Extracts of Plant Materials
2.2.3. Bioactive Characterization of Extracts of Plant Materials
2.2.4. Preparation of Extracts for Biological Analyses
2.2.5. Biological Analyses of Extracts
Biological Test Systems
Effect of Extracts on DNA Model: Plasmid phiX174 RF1 DNA
Alkaline Comet Assay
Effect of Extracts on Protein Model: Bovine Serum Albumin
Effect of Extracts on Lipid Model: Linoleic Acid
2.2.6. Preparation of Edible Films: Casting Technique
2.2.7. Bioactive Characterization of Edible Films
2.2.8. Physical and Mechanical Characterization of Edible Films
2.2.9. Statistical Analysis
3. Results and Discussion
3.1. Bioactive Characterization of Banana and Red Beetroot Peel Extracts
3.2. Biological Activity of Banana and Red Beetroot Peel Extracts
3.3. Physical and Mechanical Characterization of Edible Films
3.4. Bioactive Characterization of Edible Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeya, J.; Chandrasekaran, M.; Venkatesan, S.P.; Sriram, V.; Britto, G.; Mageshwaran, G.; Durairaj, R.B. Scalling up difficulties and commercial aspects of edible films for food packaging: A review. Trends Food Sci. Technol. 2020, 100, 210–222. [Google Scholar] [CrossRef]
- Galus, S.; Kibar, E.A.A.; Gniewosz, M.; Krasniewska, K. Novel materials in the preparation of edible films and coatings—A review. Coatings 2020, 10, 674. [Google Scholar] [CrossRef]
- Barbosa, C.H.; Andrade, M.A.; Vilarinho, F.; Fernando, A.L.; Silva, A.S. Active edible packaging. Encyclopedia 2021, 1, 360–370. [Google Scholar] [CrossRef]
- Statista. Total Food Waste Produced Worldwide in 2019, by Sector. Available online: https://www.statista.com/statistics/1219836/global-food-waste-by-sector/ (accessed on 25 September 2022).
- Baiano, A. Recovery of biomolecules from food wastes—A review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [Green Version]
- de Simón, B.F.; Hernández, T.; Estrella, I.; Gómez-Cordovés, C. Variation in phenol content in grapes during ripening: Low-molecular-weight phenols. Z. Lebensm. Unters. Forsch. 1992, 194, 351–354. [Google Scholar] [CrossRef]
- Manach, C.; Scalbert, A.; Morand, C.; Rémésy, C.; Jiménez, L. Polyphenols: Food sources and bioavailability. Am. J. Clin. Nutr. 2004, 79, 727–747. [Google Scholar] [CrossRef] [Green Version]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of phenolic compounds: A review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef]
- Statista. Share of Food Wasted Globally as of 2017, by Food Category. Available online: https://www.statista.com/statistics/519611/percentage-of-wasted-food-by-category-global/ (accessed on 25 September 2022).
- World Atlas: The Most Popular Fruit in the World. Available online: https://www.worldatlas.com/articles/the-most-popular-fruit-in-the-world.html (accessed on 25 September 2022).
- Statista. Production Volume of Bananas Worldwide from 2010 to 2020. Available online: https://www.statista.com/statistics/716037/global-banana-market-volume/ (accessed on 25 September 2022).
- González-Montelongo, R.; Lobo, M.G.; González, M. Antioxidant activity in banana peel extracts: Testing extraction conditions and related bioactive compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Vu, H.T.; Scarlett, C.J.; Vuong, Q.V. Phenolic compounds within banana peel and their potential uses: A review. J. Funct. Food. 2018, 40, 238–248. [Google Scholar] [CrossRef]
- Lόpez, N.; Puértolas, E.; Condόn, S.; Raso, J.; Alvarez, I. Enhancement of the extraction of betanine from red beetroot by pulsed electric fields. J. Food Eng. 2009, 90, 60–66. [Google Scholar] [CrossRef]
- Transparency Market Research. Beet Root Extract Market–Global Industry Analysis, Size, Share, Growth, Trend and Forecast 2018–2026. Available online: https://www.transparencymarketresearch.com/beet-root-extract-market.html (accessed on 25 September 2022).
- Kujala, T.S.; Loponen, J.M.; Klika, K.D.; Pihlaja, K. Phenolics and Betacyanins in Red Beetroot (Beta vulgaris) Root: Distribution and Effect of Cold Storage on the Content of Total Phenolics and Three Individual Compounds. J. Agric. Food Chem. 2000, 48, 5338–5342. [Google Scholar] [CrossRef] [PubMed]
- Tapre, A.R.; Jain, R.K. Study of Advanced Maturity Stages of Banana. Int. J. Adv. Eng. Res. Stud. 2012, 1, 272–274. [Google Scholar]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphotungstic acid reagents. Am. J. Enol. Viticult. 1965, 16, 144–158. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci.Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Šeremet, D.; Štefančić, M.; Petrović, P.; Kuzmić, S.; Doroci, S.; Mandura Jarić, A.; Vojvodić Cebin, A.; Pjanović, R.; Komes, D. Development, characterization and incorporation of alginate-plant protein covered liposomes containing ground ivy (Glechoma hederacea L.) extract into candies. Foods 2022, 11, 1816. [Google Scholar] [CrossRef]
- Stintzing, F.; Schieber, A.; Carle, R. Evaluation of colour properties and chemical quality parameters of cactus juice. Eur. Food Res. Technol. 2003, 216, 303–311. [Google Scholar] [CrossRef]
- Madhujith, T.; Wedamulla, N.E.; Gamage, D.A.S. Chapter 6—Biological macromolecules as antioxidants. In Biological Macromolecules; Nayak, A.K., Dhara, A.K., Pal, D., Eds.; Academic Press: London, UK, 2022; pp. 139–164. [Google Scholar]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA Sequencing with Chain-Terminating Inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Osmak, M.; Eljuga, D. The characterization of two human cervical carcinoma HeLa sublines resistant to cisplatin. Res. Exp. Med. 1993, 193, 389–396. [Google Scholar] [CrossRef]
- Singh, N.P. The comet assay: Reflections on its development, evolution and applications. Mutat. Res. Rev. Mutat. 2016, 767, 23–30. [Google Scholar] [CrossRef]
- Soglia, F.; Petracci, M.; Ertbjerg, P. Novel DNPH-based method for determination of protein carbonylation in muscle and meat. Food Chem. 2016, 197, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Petrović, V.; Milković, M.; Valdec, D. Comparison of characteristics of ink-jet prints obtained using water based, solvent and UV inks. Tech. J. 2013, 7, 191–197. [Google Scholar]
- Kanazawa, K.; Sakakibara, H. High content of dopamine, a strong antioxidant, in cavendish banana. J. Agric. Food Chem. 2000, 48, 844–848. [Google Scholar] [CrossRef] [PubMed]
- da Silva, D.V.T.; dos Santos Baião, D.; de Oliveira Silva, F.; Alves, G.; Perrone, D.; Del Aguila, E.M.; Paschoalin, V.M.F. Betanin, a Natural Food Additive: Stability, Bioavailability, Antioxidant and Preservative Ability Assessments. Molecules 2019, 24, 458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawicki, T.; Bączek, N.; Wiczkowski, W. Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. J. Funct. Food. 2016, 27, 249–261. [Google Scholar] [CrossRef]
- Choi, C.W.; Kim, S.C.; Hwang, S.S.; Choi, B.K.; Ahn, H.J.; Lee, M.Y.; Sang, H.; Park, S.H.; Kim, S.K. Antioxidant activity and free radical scavenging capacity between Korean medicinal plants and flavonoids by assay-guided comparison. Plant Sci. 2002, 163, 1161–1168. [Google Scholar] [CrossRef]
- Edziri, H.; Haddad, O.; Anthonissen, R.; Aouni, M.; Mastouri, M.; Verschaeve, L. Phytochemical analysis, antioxidant, anticoagulant and in vitro toxicity and genotoxicity testing of methanolic and juice extracts of Beta vulgaris L. S. Afr. J. Bot. 2019, 126, 170–175. [Google Scholar] [CrossRef]
- Stadtman, E.R. Protein oxidation in aging and age-related diseases. Ann. N. Y. Acad. Sci. 2001, 928, 22–38. [Google Scholar] [CrossRef]
- Levine, R.L.; Stadtman, E.R. Oxidative modification of proteins during aging. Exp. Gerontol. 2001, 36, 1495–1502. [Google Scholar] [CrossRef]
- Zhu, Q.; Qian, Y.; Zheng, Z.P.; Lo, C.; Chen, F.; Wang, M. Natural polyphenols alleviated lipid peroxidation-induced modification on BSA. J. Funct. Foods 2013, 5, 355–361. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; Giménez, B.; Montero, P.; Gómez-Guillén, M.C. Incorporation of antioxidant borage extract into edible films based on sole skin gelatin or a commercial fish gelation. J. Food Eng. 2009, 92, 78–85. [Google Scholar] [CrossRef]
- Otoni, C.G.; Avena-Bustillos, R.J.; Azeredo, H.M.C.; Lorevice, M.V.; Moura, M.R.; Matosso, L.H.C.; McHugh, T.H. Recent advantages on edible films based on fruits and vegetables. Compr. Rev. Food Sci. Food Saf. 2017, 16, 1151–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivarooban, T.; Hettiarachchy, N.S.; Johnson, M.G. Physical and antimicrobial properties of grape seed extract, nisin, and EDTA incorporated soy protein edible films. Food Res. Int. 2008, 41, 781–785. [Google Scholar] [CrossRef]
- López de Lacey, A.M.; Giménez, B.; Pérez-Santín, E.; Faulks, R.; Mandalari, G.; López-Caballero, M.E.; Montero, P. Bioaccessibility of green tea polyphenols incorporated into an edible agar film during simulated human digestion. Food Res. Int. 2012, 48, 462–469. [Google Scholar] [CrossRef]
Plant Material | Sample Mark | Mass of Ingredients | |||||
---|---|---|---|---|---|---|---|
Water (W) or Extract (E) | Alginate | Rice Proteins | Peanut Proteins | Pumpkin Proteins | Glycerol | ||
Control | C_A | 19.2 g W | 0.8 g | / | / | / | 0.2 g |
C_RP | 19.2 g W | 0.8 g | 0.2 g | / | / | 0.2 g | |
C_PB | 19.2 g W | 0.8 g | / | 0.2 g | / | 0.2 g | |
C_PP | 19.2 g W | 0.8 g | / | / | 0.2 g | 0.2 g | |
Banana peel | BP_A | 19.2 g E | 0.8 g | / | / | / | 0.2 g |
BP_RP | 19.2 g E | 0.8 g | 0.2 g | / | / | 0.2 g | |
BP_PB | 19.2 g E | 0.8 g | / | 0.2 g | / | 0.2 g | |
BP_PP | 19.2 g E | 0.8 g | / | / | 0.2 g | 0.2 g | |
Red beetroot peel | RBP_A | 19.2 g E | 0.8 g | / | / | / | 0.2 g |
RBP_RP | 19.2 g E | 0.8 g | 0.2 g | / | / | 0.2 g | |
RBP_PB | 19.2 g E | 0.8 g | / | 0.2 g | / | 0.2 g | |
RBP_PP | 19.2 g E | 0.8 g | / | / | 0.2 g | 0.2 g |
Sample | TPC (mg GAE L−1) | Antioxidant Capacity (mmol TroloxE L−1) | Dopamine (mg L−1) | Total Betacyanin Content (mg Betanin L−1) | |
---|---|---|---|---|---|
ABTS | DPPH | ||||
Banana peel extract | 507.1 ± 9.8 | 2.34 ± 0.02 | 1.52 ± 0.02 | 156.8 ± 1.1 | / |
Red beetroot peel extract | 239.6 ± 5.0 | 1.69 ± 0.04 | 1.04 ± 0.01 | / | 90.1 ± 0.1 |
Sample | Sample Mark | Soluble Dry Matter (%) | Thickness (µm) | L* | a* | b* | ΔE | Firmness (N) | Tensile Strength (MPa) * |
---|---|---|---|---|---|---|---|---|---|
Control | C_A | 92.7 ± 0.9 ab | 110.7 ± 14.5 abcdefgh | 92.6 ± 0.4 | −0.4 ± 0.0 abcdefg | 4.5 ± 0.3 | / | 30.8 ± 3.5 a | 0.15 ± 0.02 |
C_RIC | 75.0 ± 0.7 c | 105.3 ± 23.5 aijklmn | 88.0 ± 0.1 abc | 0.5 ± 0.0 ahijkl | 12.7 ± 0.5 abcdef | 9.5 ± 0.2 | 22.3 ± 0.3 | 0.11 ± 0.00 | |
C_PEA | 86.1 ± 0.4 d | 153.3 ± 3.9 bopr | 88.2 ± 1.4 ade | −0.3 ± 0.1 bhmnopr | 9.6 ± 0.4 aghis | 6.7 ± 0.5 a | 19.8 ± 1.8 | 0.10 ± 0.01 | |
C_PUM | 90.8 ± 0.6 a | 56.7 ± 12.7 sštuv | 89.5 ± 0.1 bd | −1.7 ± 0.0 cmsšt | 10.1 ± 0.2 bgjklš | 6.5 ± 0.3 a | 31.0 ± 1.1 a | 0.16 ± 0.00 | |
Banana peel (BP) | BP_A | 81.8 ± 0.9 e | 90.7 ± 10.6 ciszž123 | 80.5 ± 0.4 f | 0.6 ± 0.1 dinuvz | 15.9 ± 0.3 mn | 16.6 ± 0 b | 25.0 ± 1.2 b | 0.13 ± 0.01 |
BP_RIC | 80.2 ± 1.0 e | 119.3 ± 33.5 djoz456 | 84.0 ± 0.4 fg | −0.2 ± 0.0 ejosuž1 | 13.1 ± 0.5 cjmo | 12.1 ± 0.2 | 15.5 ± 0.4 | 0.08 ± 0.00 | |
BP_PEA | 85.2 ± 0.6 d | 138.8 ± 15.9 ekp47 | 81.0 ± 0.4 | −1.0 ± 0.0 fkpšvž2 | 15.1 ± 0.6 dno | 15.7 ± 0.2 b | 12.3 ± 0.5 | 0.06 ± 0.00 | |
BP_PUM | 94.6 ± 0.4 bf | 63.7 ± 5.3 šž8β | 86.0 ± 1.0 ceg | −0.5 ± 0.0 glrtz12 | 9.6 ± 1.0 ehkpr | 8.3 ± 0.4 | 5.1 ± 0.1 c | 0.03 ± 0.00 | |
Red beetroot peel (RBP) | RBP_A | 74.1 ± 0.3 cg | 81.3 ± 5.5 flš159αδ | 52.4 ± 0.4 | 25.9 ± 0.5 | 9.6 ± 0.3 filpt | 48.2 ± 0.7 c | 5.4 ± 0.7 c | 0.30 ± 0.00 |
RBP_RIC | 67.0 ± 0.3 | 71.7 ± 4.3 gmu289δ | 58.9 ± 0.7 | 15.0 ± 0.4 | 20.4 ± 0.7 | 40.3 ± 0.1 | 26.8 ± 0.2 b | 0.13 ± 0.01 | |
RBP_PEA | 75.1 ± 0.8 g | 124.2 ± 14.7 hnr367α | 61.9 ± 0.5 | 16.0 ± 0.2 | 26.7 ± 0.4 | 38.4 ± 0.3 | 3.0 ± 1.0 | 0.02 ± 0.00 | |
RBP_PUM | 95.2 ± 0.9 f | 40.2 ± 5.1 vβγδ | 55.9 ± 1.8 | 28.9 ± 2.3 | 9.0 ± 1.5 rsšt | 47.2 ± 0.4 c | 7.5 ± 0.6 | 0.04 ± 0.01 |
Sample | Sample Mark | TPC (mg g−1 dw) | Antioxidant Capacity (µmol TroloxE g−1 dw) | Dopamine (mg g−1 dw) | Total Betacyanin Content (mg Betanin g−1 dw) | |
---|---|---|---|---|---|---|
ABTS | DPPH | |||||
Banana Peel (BP) | BP_A | 13.00 ± 1.38 a | 38.28 ± 4.48 | 28.60 ± 0.45 | 11.49 ± 0.12 a | / |
BP_RIC | 13.27 ± 1.07 a | 44.19 ± 3.89 | 34.88 ± 1.34 | 9.77 ± 0.08 b | / | |
BP_PEA | 17.40 ± 1.00 b | 76.76 ± 0.24 | 63.96 ± 2.55 | 10.46 ± 0.62 bc | / | |
BP_PUM | 16.90 ± 0.46 b | 51.51 ± 8.95 | 43.42 ± 1.06 | 10.72 ± 0.17 ac | / | |
Red Beetroot Peel (RBP) | RBP_A | 8.52 ± 0.06 a | 24.84 ± 0.79 a | 16.30 ± 1.76 a | / | 101.04 ± 0.09 |
RBP_RIC | 9.13 ± 0.18 ab | 26.69 ± 2.85 a | 20.24 ± 0.22 ab | / | 128.05 ± 0.13 | |
RBP_PEA | 14.68 ± 0.68 | 37.69 ± 0.75 | 33.28 ± 3.58 | / | 175.58 ± 1.39 | |
RBP_PUM | 9.93 ± 0.67 b | 31.73 ± 1.12 | 23.67 ± 1.23 b | / | 134.20 ± 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šeremet, D.; Durgo, K.; Komljenović, A.; Antolić, M.; Mandura Jarić, A.; Huđek Turković, A.; Komes, D.; Šantek, B. Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers 2022, 14, 4724. https://doi.org/10.3390/polym14214724
Šeremet D, Durgo K, Komljenović A, Antolić M, Mandura Jarić A, Huđek Turković A, Komes D, Šantek B. Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers. 2022; 14(21):4724. https://doi.org/10.3390/polym14214724
Chicago/Turabian StyleŠeremet, Danijela, Ksenija Durgo, Anamaria Komljenović, Mihaela Antolić, Ana Mandura Jarić, Ana Huđek Turković, Draženka Komes, and Božidar Šantek. 2022. "Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films" Polymers 14, no. 21: 4724. https://doi.org/10.3390/polym14214724
APA StyleŠeremet, D., Durgo, K., Komljenović, A., Antolić, M., Mandura Jarić, A., Huđek Turković, A., Komes, D., & Šantek, B. (2022). Red Beetroot and Banana Peels as Value-Added Ingredients: Assessment of Biological Activity and Preparation of Functional Edible Films. Polymers, 14(21), 4724. https://doi.org/10.3390/polym14214724