Enhanced Actuation Performance of Polymeric Composites by Simultaneously Incorporating Covalent-Bond-Functionalized Dielectric Nanoparticles and Polar Plasticizer
Abstract
:1. Introduction
2. Experimental Methods
2.1. Raw Materials
2.2. Preparation of Si747@BTO Nanoparticles
2.3. Preparation of ENR DE Composites
2.4. Characterization
3. Results and Discussion
3.1. Effect of Si747@BTO Nanoparticles on Actuation Performance of ENR Composites
3.2. Effects of ESO on Actuation Performance of ENR Composites
Samples | Area-Based Actuated Strain (%) | Electrical Breakdown Field (kV/mm) | Enhancement of Actuated Strain (Fold) | Reference |
---|---|---|---|---|
20 phr TiO2/PDA/KH570/NBR | 16 | 60 | 0.5 | [31] |
16 vol% TiO2@SiO2/PDMS | 6.08 | 30 V/μm | 1.8 | [48] |
5 wt% PDA@SiO2@rGO/PDMS | 14.23 | 33.19 | 4.7 | [40] |
50 phr BT/PDA/HNBR | 20 | 45 | 0.54 | [49] |
10 wt% BT/PVDF/HNBR | 10 | 100 | 1 * | [50] |
2.0 wt% TGNPs/PDMS | 3.6 | 15 | 1.6 | [51] |
10 wt% WI/10 wt% HNT/MVSR | 16.22 | 59.31 | 1.7 | [52] |
10 wt% wp-TiO2/SEBS | 21.5 | 34 V/μm | 1.9 * | [53] |
5 wt% CCTO/PDMS | 33.8 | 14 | 0.7 * | [54] |
15 vol% PDVB@PANI/PDMS | 10 | 50 V/μm | 1.1 | [55] |
0.5 phr GNS-PDA/XNBR | 2.4 | 18 | 0.9 | [56] |
100 phr DMSO/TiO2/PDMS | 13 | 30 V/μm | 2.3 | [57] |
30 wt% ESO/10 wt% TiO2/HNBR | 13.6 | 30 | 1.3 | [58] |
0.5 vol% rGO-300/ PDMS | 13.32 | 20 | 1.6 | [59] |
3 vol% Gr /CNT/TPU | 2 | 7.5 | 3.4 | [60] |
0.5 vol% RGO/CNS/XNBR | 5.68 | 7 | 1.1 | [61] |
50 phr ESO/Si747@BTO/ENR | 8.89 | 22 | 5.1 | This work |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Jiang, L.; Wang, Y.; Wang, X.; Ning, F.; Wen, S.; Zhou, Y.; Chen, S.; Betts, A.; Jerrams, S.; Zhou, F. Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses. Compos. Part A Appl. Sci. Manuf. 2021, 147, 106461. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, Z.; Tang, J.; Xiao, Y.; Mao, J.; Cai, Y.; Zhao, J.; Gao, X.; Li, T.; Luo, Y. Adaptively reconstructing network of soft elastomers to increase strand rigidity: Towards free-standing electro-actuation strain over 100%. Mater. Horiz. 2021, 8, 2834–2841. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Li, B.; Zhang, F.; Fang, C.; Lu, Y.; Gao, X.; Cao, C.; Chen, G.; Zhang, C.; Wang, Z. TENG-bot: Triboelectric nanogenerator powered soft robot made of uni-directional dielectric elastomer. Nano Energy 2021, 85, 106012. [Google Scholar] [CrossRef]
- Yin, L.J.; Zhao, Y.; Zhu, J.; Yang, M.; Zhao, H.; Pei, J.; Zhong, S.; Dang, Z. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 2021, 12, 4517. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Dong, Y.; Jiang, Z.; Tang, L.; Chen, X.; Yao, Z.; Cao, K. Self-healing high-performance dielectric elastomer actuator with novel liquid-solid interpenetrating structure. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106519. [Google Scholar] [CrossRef]
- Hubertus, J.; Neu, J.; Croce, S.; Rizzello, G.; Seelecke, S.; Schultes, G. Nanoscale nickel-based thin films as highly conductive electrodes for dielectric elastomer applications with extremely high stretchability up to 200%. ACS Appl. Mater. Interfaces 2021, 13, 39894–39904. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; He, J.; Cui, T.; Liu, L.; Shi, Q.; Ma, L.; Liang, Y. Multiphase structure and electromechanical behaviors of aliphatic polyurethane elastomers. Macromolecules 2018, 51, 6369–6379. [Google Scholar] [CrossRef]
- Zhang, F.; Li, T.; Luo, Y. A new low moduli dielectric elastomer nano-structured composite with high permittivity exhibiting large actuation strain induced by low electric field. Compos. Sci. Technol. 2018, 156, 151–157. [Google Scholar] [CrossRef]
- Opris, D.M. Polar elastomers as novel materials for electromechanical actuator applications. Adv. Mater. 2018, 30, 1703678. [Google Scholar] [CrossRef]
- Pointner, T.; Wegener, M. Low voltage driven dielectric membrane actuators integrated into fast switching electronic circuit boards. Smart Mater. Struct. 2019, 28, 084002. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, Y.; Wen, S.; Zhou, Y.; Ma, J.; Chen, S.; Jerrams, S. Fabrication of dielectric elastomers with improved electromechanical properties using silicone rubber and walnut polyphenols modified dielectric particles. Mater. Des. 2020, 192, 108674. [Google Scholar] [CrossRef]
- Sun, H.; Liu, X.; Liu, S.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. A supramolecular silicone dielectric elastomer with a high dielectric constant and fast and highly efficient self-healing under mild conditions. J. Mater. Chem. A 2020, 8, 23330–23343. [Google Scholar] [CrossRef]
- Xu, Z.; Zheng, S.; Wu, X.; Liu, Z.; Bao, R.; Yang, W.; Yang, M. High actuated performance MWCNT/Ecoflex dielectric elastomer actuators based on layer-by-layer structure. Compos. Part A Appl. Sci. Manuf. 2019, 125, 105527. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Razzaghi-Kashani, M. Actuation behavior of PDMS dielectric elastomer composites containing optimized graphene oxide. Smart Mater. Struct. 2018, 27, 085021. [Google Scholar] [CrossRef]
- Ma, L.; Hu, J.; Dou, R. Multiwalled carbon nanotubes filled thermoplastic vulcanizate dielectric elastomer with excellent resilience properties via inhibiting MWCNT network formation. J. Appl. Polym. Sci. 2021, 138, 50129. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, X.; Ji, L.; Hu, P.; Li, Z. Largely enhanced energy storage performance in multilayered ferroelectric polymer nanocomposites with optimized spatial arrangement of ceramic nanofillers. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106111. [Google Scholar] [CrossRef]
- Huang, A.; Liu, F.; Cui, Z.; Wang, H.; Song, X.; Geng, L.; Wang, H.; Peng, X. Novel PTFE/CNT composite nanofiber membranes with enhanced mechanical, crystalline, conductive, and dielectric properties fabricated by emulsion electrospinning and sintering. Compos. Sci. Technol. 2021, 214, 108980. [Google Scholar] [CrossRef]
- Feng, Z.; Zhang, X. Highly stretchable poly(thiocarbonate)/graphene oxide dielectric composites toward a high dielectric constant and low dielectric loss. ACS Appl. Polym. Mater. 2021, 3, 3586–3594. [Google Scholar] [CrossRef]
- Feng, Z.; Guo, J.; Cao, X.; Feng, G.; Chen, Z.; Zhang, X. A thermo-reversible furfuryl poly(thioether)-b-polysiloxane-b-furfuryl poly(thioether) triblock copolymer as a promising material for high dielectric applications. Polym. Chem. 2022, 13, 1376–1386. [Google Scholar] [CrossRef]
- Zhang, X.; Ye, H.; Xu, L. Exploring the interfacial polarization in poly(vinylidene fluoride-chlorotrifluoroethylene) dielectric film with regulated surface conductivity of C@BT particles. Appl. Surf. Sci. 2022, 600, 154113. [Google Scholar] [CrossRef]
- Guan, S.; Tang, Y.; Song, S.; Liu, H.; Zhao, S. Influence of inter structure of BaTiO3-carbon nanotube hybrid particles on the dielectric properties of PDMS nanocomposites. Mater. Sci. Eng. B 2021, 271, 115280. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, Q.; Dai, Z.; Qi, X.; Yang, J.; Wang, Y. Enhanced high-temperature dielectric performances of polyetherimide-based composites via surface functionalized silicon carbide whiskers. Appl. Surf. Sci. 2022, 599, 153991. [Google Scholar] [CrossRef]
- Pang, S.; Yu, Y.; Zhang, L.; Wu, Y. Adjusting silica/rubber interfacial interactions and properties via the click reactions between liquid polybutadiene and silane. Compos. Sci. Technol. 2021, 213, 108903. [Google Scholar] [CrossRef]
- Liu, X.; Sun, H.; Liu, S.; Jiang, Y.; Yu, B.; Ning, N.; Tian, M.; Zhang, L. Mechanical, dielectric and actuated properties of carboxyl grafted silicone elastomer composites containing epoxy-functionalized TiO2 filler. Chem. Eng. J. 2020, 393, 124791. [Google Scholar] [CrossRef]
- Lerma-Canto, A.; Gomez-Caturla, J.; Herrero-Herrero, M.; Garcia-Garcia, D.; Fombuena, V. Development of polylactic acid thermoplastic starch formulations using maleinized hemp oil as biobased plasticizer. Polymers 2021, 13, 1392. [Google Scholar] [CrossRef]
- Nie, R.; Tang, W.; Chen, C.; Huang, H.; Li, Y.; Dai, K.; Lei, J.; Li, Z. Superior actuation performance and healability achieved in a transparent; highly stretchable dielectric elastomer film. J. Mater. Chem. C 2021, 9, 12239–12247. [Google Scholar] [CrossRef]
- Shan, S.; Mai, D.; Lin, Y.; Zhang, A. Self-healing, reprocessable, and degradable bio-based epoxy elastomer bearing aromatic disulfide bonds and its application in strain sensors. ACS Appl. Polym. Mater. 2021, 3, 5115–5124. [Google Scholar] [CrossRef]
- Yang, X.; Ren, C.; Liu, X.; Sun, P.; Xu, X.; Liu, H.; Shen, M.; Shang, S.; Song, Z. Recyclable non-isocyanate polyurethanes containing a dynamic covalent network derived from epoxy soybean oil and CO2. Mater. Chem. Front. 2021, 5, 6160–6170. [Google Scholar] [CrossRef]
- Lanna, A.; Suklueng, M.; Kasagepongsan, C.; Suchat, S. Performance of novel engineered materials from epoxy resin with modified epoxidized natural rubber and nanocellulose or nanosilica. Adv. Polym. Technol. 2020, 2020, 2123836. [Google Scholar] [CrossRef]
- Teng, J.; Wang, Z.; Liu, J.; Sun, X. Effect of dynamic vulcanization system on the thermodynamics and shape memory properties of TPI/HDPE hybrid shape memory polymers. Eur. Polym. J. 2020, 132, 109707. [Google Scholar] [CrossRef]
- Yang, D.; Ruan, M.; Huang, S.; Wu, Y.; Li, S.; Wang, H.; Shang, Y.; Li, B.; Guo, W.; Zhang, L. Improved electromechanical properties of NBR dielectric composites by poly(dopamine) and silane surface functionalized TiO2 nanoparticles. J. Mater. Chem. C 2016, 4, 7724–7734. [Google Scholar] [CrossRef]
- Yang, D.; Ni, Y.; Kong, X.; Xue, H.; Guo, W.; Zhang, L. Enhanced electromechanical properties of natural rubber using highly efficient and cost-effective mussel-inspired modification of TiO2 nanoparticles. Appl. Surf. Sci. 2019, 495, 143638. [Google Scholar] [CrossRef]
- Jin, K.; Heath, W.H.; Torkelson, J.M. Kinetics of multifunctional thiol-epoxy click reactions studied by differential scanning calorimetry: Effects of catalysis and functionality. Polymer 2015, 81, 70–78. [Google Scholar] [CrossRef]
- Huang, J.; Wang, F.; Ma, L.; Zhang, Z.; Meng, E.; Zeng, C.; Zhang, H.; Guo, D. Vinylsilane-rich silicone filled by polydimethylsiloxane encapsulated carbon black particles for dielectric elastomer actuator with enhanced out-of-plane actuations. Chem. Eng. J. 2022, 428, 131354. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, J.; Liu, H.; Jia, F.; Zhou, Y.; Zheng, J. Tailoring chain length and cross-link density in dielectric elastomer toward enhanced actuation strain. Appl. Phys. Lett. 2017, 111, 152901. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, A.; Dubrunfaut, O.; He, D.; Pichon, L.; Bai, J. Numerical modeling and experimental characterization of the AC conductivity and dielectric properties of CNT/polymer nanocomposites. Compos. Sci. Technol. 2020, 194, 108150. [Google Scholar] [CrossRef]
- Chen, C.; Xie, Y.; Wang, J.; Lan, Y.; Wei, X.; Zhang, Z. Enhancing high field dielectric properties of polymer films by wrapping a thin layer of self-assembled boron nitride film. Appl. Surf. Sci. 2021, 535, 147737. [Google Scholar] [CrossRef]
- Gao, X.; Wang, J.; Liu, D.; Wang, X.; Wang, H.; Wei, L.; Ren, H. Enhanced dielectric properties of acrylic resin elastomer (AE)-based percolative composite with modified MXene. Polym. Test. 2021, 102, 107344. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, F.; Zuo, Y.; Zhang, Y.; Chen, X.; Li, B.; Zhang, N.; Niu, G.; Ren, W.; Ye, Z. Improving actuation strain and breakdown strength of dielectric elastomers using core-shell structured CNT-Al2O3. Compos. Sci. Technol. 2020, 200, 108393. [Google Scholar] [CrossRef]
- Liu, L.; Lei, Y.; Zhang, Z.; Liu, J.; Lv, S.; Guo, Z. Fabrication of PDA@SiO2@ rGO/PDMS dielectric elastomer composites with good electromechanical properties. React. Funct. Polym. 2020, 154, 104656. [Google Scholar] [CrossRef]
- Zhang, C.; Sun, H.; Zhu, Q. Study on flexible large-area Poly(vinylidene fluoride)-based piezoelectric films prepared by extrusion-casting process for sensors and microactuators. Mater. Chem. Phys. 2022, 275, 125221. [Google Scholar] [CrossRef]
- Fan, Y.; Huang, X.; Wang, G.; Jiang, P. Core-shell structured biopolymer@BaTiO3 nanoparticles for biopolymer nanocomposites with significantly enhanced dielectric properties and energy storage capability. J. Phys. Chem. C 2015, 119, 27330–27339. [Google Scholar] [CrossRef] [Green Version]
- Shi, L.; Zhang, C.; Du, Y.; Zhu, H.; Zhang, Q.; Zhu, S. Improving dielectric constant of polymers through liquid electrolyte inclusion. Adv. Funct. Mater. 2021, 31, 2007863. [Google Scholar] [CrossRef]
- Zhang, Y.; Seveyrat, L.; Lebrun, L. Correlation between dielectric, mechanical properties and electromechanical performance of functionalized graphene/polyurethane nanocomposites. Compos. Sci. Technol. 2021, 211, 108843. [Google Scholar] [CrossRef]
- Abdullah, A.M.; Aziz, S.B.; Brza, M.; Saeed, S.R.; Al-Asbahi, B.A.; Sadiq, N.M.; Ahmed, A.A.A.; Murad, A.R. Glycerol as an efficient plasticizer to increase the DC conductivity and improve the ion transport parameters in biopolymer based electrolytes: XRD, FTIR and EIS studies. Arab. J. Chem. 2022, 15, 103791. [Google Scholar] [CrossRef]
- Yang, D.; Huang, S.; Ruan, M.; Li, S.; Wu, Y.; Guo, W.; Zhang, L. Improved electromechanical properties of silicone dielectric elastomer composites by tuning molecular flexibility. Compos. Sci. Technol. 2018, 155, 160–168. [Google Scholar] [CrossRef]
- Michel, S.; Zhang, X.Q.; Wissler, M.; Löwe, C.; Kovacs, G. A comparison between silicone and acrylic elastomers as dielectric materials in electroactive polymer actuators. Polym. Int. 2010, 59, 391–399. [Google Scholar] [CrossRef]
- Gao, S.; Zhao, H.; Zhang, N.; Bai, J. Enhanced electromechanical property of silicone elastomer composites containing TiO2@SiO2 core-shell nano-architectures. Polymers 2021, 13, 368. [Google Scholar] [CrossRef]
- Yang, D.; Tian, M.; Li, D.; Wang, W.; Ge, F.; Zhang, L. Enhanced dielectric properties and actuated strain of elastomer composites with dopamine-induced surface functionalization. J. Mater. Chem. A 2013, 1, 12276–12284. [Google Scholar] [CrossRef]
- Saha, S.; Bhowmick, A.K.; Kumar, A.; Patra, K.; Cottinet, P.; Thetpraphi, K. Polyvinylidene fluoride/hydrogenated nitrile rubber-based flexible electroactive polymer blend and its nanocomposites with improved actuated strain: Characterization and analysis of electrostrictive behavior. Ind. Eng. Chem. Res. 2020, 59, 3413–3424. [Google Scholar] [CrossRef]
- Tian, M.; Wei, Z.; Zan, X.; Zhang, L.; Zhang, J.; Ma, Q.; Ning, N.; Nishi, T. Thermally expanded graphene nanoplates/polydimethylsiloxane composites with high dielectric constant, low dielectric loss and improved actuated strain. Compos. Sci. Technol. 2014, 99, 37–44. [Google Scholar] [CrossRef]
- Yang, T.; Liu, L.; Li, X.; Zhang, L. High performance silicate/silicone elastomer dielectric composites. Polymer 2022, 240, 124470. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, B.; Li, B.; Li, C.; Wang, Y.; Wen, S.; Zhou, Y.; Jiang, L.; Zhou, F.; Betts, A.; et al. Printable dielectric elastomers of high electromechanical properties based on SEBS ink incorporated with polyphenols modified dielectric particles. Eur. Polym. J. 2021, 159, 110730. [Google Scholar] [CrossRef]
- Wang, W.; Ren, G.; Zhou, M.; Deng, W. Preparation and characterization of CCTO/PDMS dielectric elastomers with high dielectric constant and low dielectric loss. Polymers 2021, 13, 1075. [Google Scholar] [CrossRef] [PubMed]
- Molberg, M.; Crespy, D.; Rupper, P.; Nüesch, F.; Månson, J.A.E.; Löwe, C.; Opris, D.M. High breakdown field dielectric elastomer actuators using encapsulated polyaniline as high dielectric constant filler. Adv. Funct. Mater. 2010, 20, 3280–3291. [Google Scholar] [CrossRef]
- Yang, D.; Kong, X.; Ni, Y.; Ruan, M.; Huang, S.; Shao, P.; Guo, W.; Zhang, L. Improved mechanical and electrochemical properties of XNBR dielectric elastomer actuator by poly(dopamine) functionalized graphene nano-sheets. Polymers 2019, 11, 218. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Wang, D.; Zha, J.; Zhao, J.; Dang, Z. Increased electroaction through a molecular flexibility tuning process in TiO2-polydimethylsilicone nanocomposites. J. Mater. Chem. A 2013, 1, 3140–3145. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, L.; Ning, N.; Li, D.; Wang, Z.; Nishi, T.; Itod, K.; Tian, M. Large increase in actuated strain of HNBR dielectric elastomer by controlling molecular interaction and dielectric filler network. RSC Adv. 2013, 3, 21896–21904. [Google Scholar] [CrossRef]
- Panahi-Sarmad, M.; Chehrazi, E.; Noroozi, M.; Raef, M.; Razzaghi-Kashani, M.; Haghighat Baian, M.A. Tuning the surface chemistry of graphene oxide for enhanced dielectric and actuated performance of silicone rubber composites. ACS Appl. Electron. Mater. 2019, 1, 198–209. [Google Scholar] [CrossRef]
- Liu, S.; Sun, H.; Ning, N.; Zhang, L.; Tian, M.; Zhu, W.; Chan, T. Aligned carbon nanotubes stabilized liquid phase exfoliated graphene hybrid and their polyurethane dielectric elastomers. Compos. Sci. Technol. 2016, 125, 30–37. [Google Scholar] [CrossRef]
- Tian, M.; Ma, Q.; Li, X.; Zhang, L.; Nishi, T.; Ning, N. High performance dielectric composites by latex compounding of graphene oxide-encapsulated carbon nanosphere hybrids with XNBR. J. Mater. Chem. A 2014, 2, 11144–11154. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Yang, D. Enhanced Actuation Performance of Polymeric Composites by Simultaneously Incorporating Covalent-Bond-Functionalized Dielectric Nanoparticles and Polar Plasticizer. Polymers 2022, 14, 4218. https://doi.org/10.3390/polym14194218
Lu H, Yang D. Enhanced Actuation Performance of Polymeric Composites by Simultaneously Incorporating Covalent-Bond-Functionalized Dielectric Nanoparticles and Polar Plasticizer. Polymers. 2022; 14(19):4218. https://doi.org/10.3390/polym14194218
Chicago/Turabian StyleLu, Huiwan, and Dan Yang. 2022. "Enhanced Actuation Performance of Polymeric Composites by Simultaneously Incorporating Covalent-Bond-Functionalized Dielectric Nanoparticles and Polar Plasticizer" Polymers 14, no. 19: 4218. https://doi.org/10.3390/polym14194218
APA StyleLu, H., & Yang, D. (2022). Enhanced Actuation Performance of Polymeric Composites by Simultaneously Incorporating Covalent-Bond-Functionalized Dielectric Nanoparticles and Polar Plasticizer. Polymers, 14(19), 4218. https://doi.org/10.3390/polym14194218