Iodine Immobilized UiO-66-NH2 Metal-Organic Framework as an Effective Antibacterial Additive for Poly(ε-caprolactone)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of UiO-66-NH2 and Adsorbing Iodine
2.3. Orthogonal Experiments
2.4. Preparation of UiO66@I2/PCL Composite
2.5. Determination of Iodine in UiO66@I2 and UiO66@I2/PCL Composite
2.6. Antibacterial Activity Measurement
2.7. Characterization
3. Results and Discussion
3.1. UiO-66-NH2 Loading Iodine
3.2. Preparation and Characterization of UiO66@I2/PCL Composite
3.3. Antibacterial Properties of UiO66@I2/PCL
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Wu, C. Synthesis, functionalization, and applications of metal-organic frameworks in biomedicine. Dalton Trans. 2018, 47, 2114–2133. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Cordova, K.E.; O’Keeffe, M.; Yaghi, O.M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444. [Google Scholar] [CrossRef] [Green Version]
- Mallakpour, S.; Nikkhoo, E.; Hussain, C.M. Application of MOF materials as drug delivery systems for cancer therapy and dermal treatment. Coordin. Chem. Rev. 2022, 451, 214262. [Google Scholar] [CrossRef]
- O’Keeffe, M.; Yaghi, O.M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 2012, 112, 675–702. [Google Scholar] [CrossRef]
- Vinothkumar, K.; Shivanna Jyothi, M.; Lavanya, C.; Sakar, M.; Valiyaveettil, S.; Balakrishna, R.G. Strongly coordinated MOF-PSF matrix for selective adsorption, separation and photodegradation of dyes. Chem. Eng. J. 2022, 428, 132561. [Google Scholar] [CrossRef]
- Xu, S.; Liang, J.; Mohammad, M.I.B.; Lv, D.; Cao, Y.; Qi, J.; Liang, K.; Ma, J. Biocatalytic metal-organic framework membrane towards efficient aquatic micropollutants removal. Chem. Eng. J. 2021, 426, 131861. [Google Scholar] [CrossRef]
- Zornoza, B.; Tellez, C.; Coronas, J.; Gascon, J.; Kapteijn, F. Metal organic framework based mixed matrix membranes: An increasingly important field of research with a large application potential. Micropor. Mesopor. Mat. 2013, 166, 67–78. [Google Scholar] [CrossRef]
- Denny, M.S.; Moreton, J.C.; Benz, L.; Cohen, S.M. Metal-organic frameworks for membrane-based separations. Nat. Rev. Mat. 2016, 1, 16078. [Google Scholar] [CrossRef]
- Liu, M.; Wang, L.; Zheng, X.; Xie, Z. Zirconium-based nanoscale metal-organic framework/poly(ε-caprolactone) mixed-matrix membranes as effective antimicrobials. ACS Appl. Mater. Int. 2017, 9, 41512–41520. [Google Scholar] [CrossRef]
- Moulay, S. Molecular iodine/polymer complexes. J. Polym. Eng. 2013, 33, 389–443. [Google Scholar] [CrossRef]
- Kopelman, D.; Klein, Y.; Zaretsky, A.; Ben-Izhak, O.; Michaelson, M.; Hashmonai, M. Cryohemostasis of uncontrolled hemorrhage from liver injury. Cryobiology 2000, 40, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Kovacs, B.J.; Aprecio, R.M.; Kettering, J.D.; Chen, Y.K. Efficacy of various disinfectants in killing a resistant strain of pseudomonas aeruginosa by comparing zones of inhibition: Implications for endoscopic equipment reprocessing. Am. J. Gastroenterol. 1998, 93, 2057–2059. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Mazumdar, N.; Kumar, S. Functionalization of natural gum: An effective method to prepare iodine complex. Carbohyd. Polym. 2013, 92, 497–502. [Google Scholar] [CrossRef]
- Some, S.; Sohn, J.S.; Kim, J.; Lee, S.-H.; Lee, S.C.; Lee, J.; Shackery, I.; Kim, S.K.; Kim, S.H.; Choi, N.; et al. Graphene-iodine nanocomposites: Highly potent bacterial inhibitors that are bio-compatible with human cells. Sci. Rep. 2016, 6, 20015. [Google Scholar] [CrossRef] [PubMed]
- Patel, S.; Jammalamadaka, U.; Sun, L.; Tappa, K.; Mills, D.K. Sustained release of antibacterial agents from doped halloysite nanotubes. Bioengineering 2016, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Au-Duong, A.-N.; Lee, C.-K. Iodine-loaded metal organic framework as growth-triggered antimicrobial agent. Mater. Sci. Eng. C 2017, 76, 477–482. [Google Scholar] [CrossRef]
- Lu, S.; Ren, X.; Guo, T.; Cao, Z.; Sun, H.; Wang, C.; Wang, F.; Shu, Z.; Hao, J.; Gui, S.; et al. Controlled release of iodine from cross-linked cyclodextrin metal-organic frameworks for prolonged periodontal pocket therapy. Carbohyd. Polym. 2021, 267, 118187. [Google Scholar] [CrossRef]
- Du, L.; Chen, W.; Wang, J.; Cai, W.; Kong, S.; Wu, C. Folic acid-functionalized zirconium metal-organic frameworks based electrochemical impedance biosensor for the cancer cell detection. Sens. Actuator. B Chem. 2019, 301, 127073. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, P.; Xing, R.; Liu, S. Antimicrobial activity of hydroxylbenzenesulfonailides derivatives of chitosan, chitosan sulfates and carboxymethyl chitosan. Int. J. Biol. Macromol. 2009, 45, 163. [Google Scholar] [CrossRef]
- Ahmadijokani, F.; Mohammadkhani, R.; Ahmadipouya, S.; Shokrgozar, A.; Rezakazemi, M.; Molavi, H.; Aminabhavi, T.M.; Arjmand, M. Superior chemical stability of UiO-66-NH2 metal-organic frameworks (MOFs) for selective dye adsorption. Chem. Eng. J. 2020, 399, 125346. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, Y.; Wu, T.; He, Z.; Guo, T.; Feng, N. Optimizing glycerosome formulations an orthogonal experimental design to enhance transdermal triptolide delivery. Acta Pharm. 2022, 72, 135–146. [Google Scholar] [CrossRef]
- Wen, J.; Gao, X.; Zhang, Q.; Sahito, B.; Si, H.; Li, G.; Ding, Q.; Wu, W.; Nepovimova, E.; Jiang, S.; et al. Optimization of tilmicosin-loaded nanostructured lipid carriers using orthogonal design for overcoming oral administration obstacle. Pharmaceutics 2021, 13, 303. [Google Scholar] [CrossRef]
- Papadopoulou, E.L.; Valentini, P.; Mussino, F.; Pompa, P.P.; Athanassiou, A.; Bayer, I.S. Antibacterial bioelastomers with sustained povidone-iodine release. Chem. Eng. J. 2018, 347, 19–26. [Google Scholar] [CrossRef]
- Sai, M.; Guo, R.; Chen, L.; Xu, N.; Tang, Y.; Ding, D. Research on the preparation and characterization of chitosan grafted polyvinylpyrrolidone gel membrane with iodine. J. Appl. Polym. Sci. 2015, 132, 41797. [Google Scholar] [CrossRef]
- Jones, D.S.; Djokic, J.; McCoy, C.P.; Gorman, S.P. Effects of storage on thermomechanical properties of poly(ε-caprolactone) blends containing poly(vinyl pyrrolidone/iodine). Plast. Rubber Compos. 2000, 29, 371–379. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Bayer, I.S.; Pompa, P.P.; Cingolani, R.; Athanassiou, A. controlled antiseptic release by alginate polymer films and beads. Carbohyd. Polym. 2013, 92, 176–183. [Google Scholar] [CrossRef]
Level | A (mg/mL) | B (mol/mol) | C (h) | D (°C) |
---|---|---|---|---|
1 | 50 | 50 | 4 | 20 |
2 | 100 | 100 | 8 | 40 |
3 | 200 | 200 | 24 | 60 |
FN | A | B | C | D | IL(%) |
---|---|---|---|---|---|
1 | 1 | 1 | 1 | 1 | 11.10 |
2 | 1 | 2 | 2 | 2 | 18.45 |
3 | 1 | 3 | 3 | 3 | 12.69 |
4 | 2 | 1 | 2 | 3 | 4.98 |
5 | 2 | 2 | 3 | 1 | 12.69 |
6 | 2 | 3 | 1 | 2 | 10.64 |
7 | 3 | 1 | 3 | 2 | 9.13 |
8 | 3 | 2 | 1 | 3 | 5.64 |
9 | 3 | 3 | 2 | 1 | 12.10 |
K1 | 14.08 | 8.40 | 9.12 | 11.96 | |
K2 | 9.43 | 12.26 | 11.84 | 12.74 | |
K3 | 8.95 | 11.81 | 11.50 | 7.77 | |
Range | 5.13 | 3.86 | 2.73 | 4.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, W.; Zhu, P.; Chen, Y.; Liu, Y.; Du, L.; Wu, C. Iodine Immobilized UiO-66-NH2 Metal-Organic Framework as an Effective Antibacterial Additive for Poly(ε-caprolactone). Polymers 2022, 14, 283. https://doi.org/10.3390/polym14020283
Chen W, Zhu P, Chen Y, Liu Y, Du L, Wu C. Iodine Immobilized UiO-66-NH2 Metal-Organic Framework as an Effective Antibacterial Additive for Poly(ε-caprolactone). Polymers. 2022; 14(2):283. https://doi.org/10.3390/polym14020283
Chicago/Turabian StyleChen, Wei, Ping Zhu, Yating Chen, Yage Liu, Liping Du, and Chunsheng Wu. 2022. "Iodine Immobilized UiO-66-NH2 Metal-Organic Framework as an Effective Antibacterial Additive for Poly(ε-caprolactone)" Polymers 14, no. 2: 283. https://doi.org/10.3390/polym14020283
APA StyleChen, W., Zhu, P., Chen, Y., Liu, Y., Du, L., & Wu, C. (2022). Iodine Immobilized UiO-66-NH2 Metal-Organic Framework as an Effective Antibacterial Additive for Poly(ε-caprolactone). Polymers, 14(2), 283. https://doi.org/10.3390/polym14020283