Crabs Marine Waste—A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Analytical Methods
2.2. Chitin/Chitosan Extraction Procedure
2.3. Optimization of Chitin Extraction from Crab’s Shell
3. Results
3.1. Optimization Chitin/Chitosan Extraction
3.2. Chitosan Caracterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.K.; Mendis, E. Bioactive compounds from marine processing by products—A review. Food Res. Int. 2006, 39, 383–393. [Google Scholar] [CrossRef]
- Morganti, P. To Improve Quality of Life Minimizing the Environmental Effect. SOFW-J. 2013, 139, 66–72. [Google Scholar]
- Khoushab, F.; Yamabhai, M. Chitin Research Visited. Mar. Drugs 2010, 8, 1988–2012. [Google Scholar] [CrossRef] [Green Version]
- Alishahi, A.; Mirvaghefi, A.A.; Tehrani, M.R.; Farahmand, H.; Shojaosadati, S.A.; Dorkoosh, F.A.; Elsabee, M.Z. Enhancement and Characterization of Chitosan Extraction from the Wastes of Shrimp Packaging Plants. J. Polym. Environ. 2011, 19, 776–783. [Google Scholar] [CrossRef]
- Jo, G.H.; Park, R.D.; Jung, W.J. Enzymatic Production of Chitin from Crustacean Shell Waste. In Chitin, Chitosan, Oligosaccharides and Their Derivatives, 1st ed.; Kim, S.K., Ed.; CRC Press: Boca Raton, FL, USA, 2010; pp. 37–45. [Google Scholar]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Aranaz, I.; Mengibar, M.; Harris, R.; Panos, I.; Miralles, B.; Acosta, N.; Galed, G.; Heras, A. Functional Characterization of Chitin and Chitosan. Curr. Chem. Biol. 2012, 3, 203–230. [Google Scholar]
- Mao, J.S.; Zhao, L.G.; Yin, Y.J.; Yao, K.D. Structure and properties of bilayer chitosan-gelatin scaffolds. Biomaterials 2003, 24, 1067–1074. [Google Scholar] [CrossRef]
- Leung, S.W.; Cheng, C.-H.; Chou, C.-M.; Lin, C.; Kuo, Y.-C.; Lee, Y.-L.A.; Liu, C.-Y.; Mi, F.-L.; Cheng, P.-C. A novel low-molecular-weight chitosan/gamma-polyglutamic acid polyplexes for nucleic acid delivery into zebrafish larvae. Int. J. Biol. Macromol. 2022, 194, 384–394. [Google Scholar] [CrossRef]
- Singh, S.; Patel, M.; Schwendemann, D.; Zaccone, M.; Geng, S.; Maspoch, M.L.; Oksman, K. Effect of chitin nanocrystals on crystallization and properties of poly(lactic acid)-based nanocomposites. Polymers 2020, 12, 726. [Google Scholar] [CrossRef] [Green Version]
- Luna, R.; Touhami, F.; Uddin, M.J.; Touhami, A. Effect of temperature and pH on nanostructural and nanomechanical properties of chitosan films. Surf. Interfaces 2022, 29, 101706. [Google Scholar] [CrossRef]
- Acemi, R.K.; Acemi, A. Polymerization degree-dependent changes in the effects of in vitro chitosan treatments on photosynthetic pigment, protein, and dry matter contents of Ipomoea purpurea. EuroBiotech J. 2019, 3, 197–202. [Google Scholar] [CrossRef] [Green Version]
- Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol. 2016, 85, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Chuan, D.; Jin, T.; Fan, R.; Zhou, L.; Guo, G. Chitosan for gene delivery: Methods for improvement and applications. Adv. Colloid Interface Sci. 2019, 268, 25–38. [Google Scholar] [CrossRef] [PubMed]
- Tao, F.; Cheng, Y.; Shi, X.; Zheng, H.; Du, Y.; Xiang, W.; Deng, H. Applications of chitin and chitosan nanofibers in bone regenerative engineering. Carbohydr. Polym. 2020, 230, 115658. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, A.C.; Pérez-Recalde, M.; González Wusener, A.; Hermida, É.B. Collagen and chitosan blends for 3D bioprinting: A rheological and printability approach. Polym. Test. 2020, 82, 106297. [Google Scholar] [CrossRef]
- Kan, J.; Liu, J.; Yong, H.; Liu, Y.; Qin, Y.; Liu, J. Development of active packaging based on chitosan-gelatin blend films functionalized with Chinese hawthorn (Crataegus pinnatifida) fruit extract. Int. J. Biol. Macromol. 2019, 140, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Pillai, C.K.; Paul, W.; Sharma, C.P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Prog. Polym. Sci. 2009, 34, 641–678. [Google Scholar] [CrossRef]
- Friedman, M.; Juneja, V.K. Review of antimicrobial and antioxidative activities of chitosans in food. J. Food Prot. 2010, 73, 1737–1761. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.; Boudrant, J.; Meyer, D.; Manno, N.; Demarchis, M.; Paoletti, M.G. Current views on fungal chitin/chitosan, human chitinases, food preservation, glucans, pectins and inulin: A tribute to Henri Braconnot, precursor of the carbohydrate polymers science, on the chitin bicentennial. Carbohydr. Polym. 2012, 87, 995–1012. [Google Scholar] [CrossRef]
- Knorr, D. Functional properties of chitin and chitosan. J. Food Sci. 1982, 47, 593–595. [Google Scholar] [CrossRef]
- Mayachiew, P.; Devahastin, S.; Mackey, B.M.; Niranjan, K. Effect of drying methods and conditions on antimicrobial activity of edible chitosan films enriched with galangal extract. Food Res. Int. 2010, 43, 125–132. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.; Tarsi, R.; Filippini, O.; Giovanetti, E.; Biagini, G.; Varaldo, P.E. Antimicrobial properties of N-carboxybutyl chitosan. Antimicrob. Agents Chemother. 1990, 34, 2019–2023. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Li, P.; Guo, Z. Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydr. Polym. 2020, 236, 116002. [Google Scholar] [CrossRef] [PubMed]
- Safdar, R.; Omar, A.A.; Arunagiri, A.; Regupathi, I.; Thanabalan, M. Potential of chitosan and its derivatives for controlled drug release applications—A review. J. Drug. Deliv. Sci. Technol. 2019, 49, 642–659. [Google Scholar] [CrossRef]
- Apetroaei, M.R.; Rău, I.; Pădurețu, C.C.; Lilios, G.; Schröder, V. Pharmaceutical Applications of Chitosan Extracted from Local Marine Sources. Rev. Chim. 2019, 70, 2618–2621. [Google Scholar] [CrossRef]
- Tang, D.; Wang, Y.; Kang, W.; Zhou, J.; Dong, R.; Feng, Q. Chitosan attenuates obesity by modifying the intestinal microbiota and increasing serum leptin levels in mice. J. Funct. Foods. 2020, 64, 103659. [Google Scholar]
- Darwesh, O.M.; Sultan, Y.Y.; Seif, M.M.; Marrez, D.A. Bio-evaluation of crustacean and fungal nano-chitosan for applying as food ingredient. Toxicol. Rep. 2018, 5, 348–356. [Google Scholar] [CrossRef]
- Pan, H.; Zhao, T.; Xu, L.; Shen, Y.; Wang, L.; Ding, Y. Preparation of novel chitosan derivatives and applications in functional finishing of textiles. Int. J. Biol. Macromol. 2020, 153, 971–976. [Google Scholar]
- Ge, Y.; Zhang, Y.; He, S.; Nie, F.; Teng, G.; Gu, N. Fluorescence modified chitosan-coated magnetic nanoparticles for high-efficient cellular imaging. Nanoscale Res. Lett. 2009, 4, 287–295. [Google Scholar]
- Wei, Y.; Huang, Y.H.; Cheng, K.C.; Song, Y.L. Investigations of the Influences of Processing Conditions on the Properties of Spray Dried Chitosan-Tripolyphosphate Particles loaded with Theophylline. Sci. Rep. 2020, 10, 1155. [Google Scholar]
- Águila-Almanza, E.; Low, S.S.; Hernández-Cocoletzi, H.; Atonal-Sandoval, A.; Rubio-Rosas, E.; Violante-González, J.; Show, P.L. Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan. J. Environ. Chem. Eng. 2021, 9, 2213–3437. [Google Scholar] [CrossRef]
- Pădurețu, C.C.; Isopescu, R.; Rău, I.; Apetroaei, M.R.; Schröder, V. Influence of the parameters of chitin deacetylation process on the chitosan obtained from crab shell waste. Korean J. Chem. Eng. 2019, 36, 1890–1899. [Google Scholar] [CrossRef]
- Dima, J.B.; Sequeiros, C.; Zaritzky, N. Chitosan from Marine Crustaceans: Production, Characterization and Applications. In Biological Activities and Application of Marine Polysaccharides, 1st ed.; Shalaby, E.A., Ed.; InTech Open: London, UK, 2017; pp. 39–56. [Google Scholar]
- Fernandez-Kim, S.-O. Physicochemical and Functional Properties of Crawfish Chitosan as Affected by Different Processing Protocols. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2004. [Google Scholar]
- Pădurețu, C.C.; Apetroaei, M.R.; Rău, I.; Schröder, V. Characterization of chitosan extracted from different Romanian Black Sea Crustaceans. UPB Sci. Bull. B Chem. Mater. Sci. 2018, 80, 13–24. [Google Scholar]
- Apetroaei, M.R.; Manea, A.M.; Tihan, G.; Zgârian, R.; Schröder, V.; Rău, I. Improved method of chitosan extraction from different crustacean species of Romanian Black Sea coast. UPB Sci. Bull. B Chem. Mater. Sci. 2017, 79, 25–36. [Google Scholar]
- Hoqani, H.A.S.; Al-Shaqsi, N.; Hossain, M.A.; Al Sibani, M.A. Isolation and optimization of the method for industrial production of chitin and chitosan from Omani shrimp shell. Carbohydr. Res. 2020, 492, 108001. [Google Scholar]
- Younes, I.; Ghorbel-Bellaaj, O.; Nasri, R.; Chaabouni, M.; Rinaudo, M.; Nasri, M. Chitin and chitosan preparation from shrimp shells using optimized enzymatic deproteinization. Process Biochem. 2012, 47, 2032–2039. [Google Scholar]
- Ghorbel-Bellaaj, O.; Hajjia, S.; Younes, I.; Chaabouni, M.; Nasri, M.; Jellouli, K. Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Int. J. Biol. Macromol. 2013, 61, 243–250. [Google Scholar] [CrossRef] [PubMed]
- Rout, S.K. Physicochemical, Functional, and Spectroscopic Analysis of Crawfish Chitin and Chitosan as Affected by Process Modification. Ph.D. Thesis, Louisiana State University, Baton Rouge, LA, USA, 2001. [Google Scholar]
- Percot, A.; Viton, C.; Domard, A. Optimization of chitin extraction from shrimp shells. Biomacromolecules 2003, 4, 12–18. [Google Scholar] [PubMed]
- Behera, H.T.; Upadhyay, A.K.; Raina, V.; Raya, L. Optimization of media components for the production of n-acetylchitooligosaccharide from chitin by Streptomyces chilikensis through Taguchi experimental design. J. Microbiol. Methods 2019, 159, 194–199. [Google Scholar] [CrossRef]
- Pădurețu, C.C.; Isopescu, R.D.; Gîjiu, C.L.; Rău, I.; Apetroaei, M.R.; Schröder, V. Optimization of chitin extraction procedure from shrimp waste using Taguchi method and chitosan characterization. Mol. Cryst. Liq. Cryst. 2019, 695, 19–28. [Google Scholar] [CrossRef]
- Prashanth, K.V.H.; Kittur, F.S.; Tharanathan, R.N. Solid state structure of chitosan prepared under different N-deacetylating conditions, Carbohydr. Polym. 2002, 50, 27–33. [Google Scholar]
- Duarte, M.L.; Ferreira, M.C.; Marvao, M.R.; Rocha, J. An optimized method to determine the degree of acetylation of chitin and chitosan by FTIR spectroscopy. Int. J. Biol. Macromol. 2002, 31, 1–8. [Google Scholar] [CrossRef]
- Kaya, M.; Baran, T.; Mentes, A.; Asaroglu, M.; Sezen, G.; Tozak, K.O. Extraction and Characterization of α-Chitin and Chitosan from Six Different Aquatic Invertebrates. Food Biophys. 2014, 9, 145–157. [Google Scholar] [CrossRef]
Factor | Levels | ||
---|---|---|---|
Level 1 | Level 2 | Level 3 | |
NaOH concentration (%) | 3 | 5 | 7 |
Temperature, °C | 65 | 75 | 85 |
HCl concentration (%) | 4 | 6 | 8 |
Number of acidic treatments | 1 | 2 | 3 |
Run No. | Deproteinization | Demineralization | Characteristics of Obtained Chitosan | |||
---|---|---|---|---|---|---|
NaOH Conc., % | Temperature, °C | HCl Conc., % | No of Acid Treatments | Deacetylation Degree (DD), % | Molar Mass, kDa | |
1 | 3 | 65 | 4 | 1 | 81 | 331 |
2 | 3 | 75 | 6 | 2 | 68 | 111 |
3 | 3 | 85 | 8 | 3 | 78 | 156 |
4 | 5 | 65 | 6 | 3 | 93 | 314 |
5 | 5 | 75 | 8 | 1 | 78 | 287 |
6 | 5 | 85 | 4 | 2 | 89 | 198 |
7 | 7 | 65 | 8 | 2 | 87 | 309 |
8 | 7 | 75 | 4 | 3 | 70 | 350 |
9 | 7 | 85 | 6 | 1 | 79 | 450 |
Run No. | NaOH Conc. % | T, °C | HCl Conc. % | No of Acid Treatments | Y1 Molar Mass kDa | Y2 (DD) % | d1 | d2 | D |
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 65 | 4 | 1 | 331 | 81 | 0.649 | 0.513 | 0.577 |
2 | 3 | 75 | 6 | 2 | 111 | 68 | 0.000 | 0.000 | 0.000 |
3 | 3 | 85 | 8 | 3 | 156 | 78 | 0.133 | 0.389 | 0.228 |
4 | 5 | 65 | 6 | 3 | 314 | 93 | 0.598 | 1.000 | 0.773 |
5 | 5 | 75 | 8 | 1 | 287 | 78 | 0.517 | 0.387 | 0.447 |
6 | 5 | 85 | 4 | 2 | 198 | 89 | 0.255 | 0.839 | 0.462 |
7 | 7 | 65 | 8 | 2 | 309 | 87 | 0.583 | 0.759 | 0.665 |
8 | 7 | 75 | 4 | 3 | 350 | 70 | 0.704 | 0.084 | 0.244 |
9 | 7 | 85 | 6 | 1 | 450 | 79 | 1.000 | 0.427 | 0.654 |
Run No. | NaOH Conc. % | T, °C | HCl Conc., % | No of Acid Treatments | Y1 Molar Mass kDa | Y2 DD % | d1 | d2 | D |
---|---|---|---|---|---|---|---|---|---|
1 | 3 | 65 | 4 | 1 | 331 | 81 | 0.351 | 0.513 | 0.424 |
2 | 3 | 75 | 6 | 2 | 111 | 68 | 1.000 | 0.000 | 0.000 |
3 | 3 | 85 | 8 | 3 | 156 | 78 | 0.867 | 0.389 | 0.581 |
4 | 5 | 65 | 6 | 3 | 314 | 93 | 0.402 | 1.000 | 0.634 |
5 | 5 | 75 | 8 | 1 | 287 | 78 | 0.483 | 0.387 | 0.432 |
6 | 5 | 85 | 4 | 2 | 198 | 89 | 0.745 | 0.839 | 0.791 |
7 | 7 | 65 | 8 | 2 | 309 | 87 | 0.417 | 0.759 | 0.563 |
8 | 7 | 75 | 4 | 3 | 350 | 70 | 0.296 | 0.084 | 0.158 |
9 | 7 | 85 | 6 | 1 | 450 | 79 | 0.000 | 0.427 | 0.000 |
Sample | Characterisation | ||||||
---|---|---|---|---|---|---|---|
Deacetylation Degree, % | Molecular Mass, kDa | Moisture, % | Fat binding Capacity, % | Water Binding Capacity, % | Solubility, % | Ash, % | |
1 | 81 | 331 | 8.81 | 673.88 | 993.11 | 98.49 | 3.01 |
2 | 68 | 111 | 6.86 | 572.03 | 618.74 | 95.33 | 16.97 |
3 | 78 | 156 | 9.31 | 624.20 | 821.86 | 99.51 | 4.04 |
4 | 93 | 314 | 8.44 | 688.31 | 706.18 | 96.09 | 2.59 |
5 | 78 | 287 | 9.04 | 501.35 | 698.81 | 97.02 | 6.34 |
6 | 89 | 198 | 8.67 | 661.32 | 890.84 | 98.53 | 6.45 |
7 | 87 | 309 | 10.19 | 809.09 | 892.66 | 92.45 | 4.33 |
8 | 70 | 350 | 9.30 | 661.50 | 848.83 | 97.02 | 4.27 |
9 | 79 | 450 | 9.15 | 743.47 | 882.31 | 90.23 | 8.44 |
Validation Experiment | 92 | 535 | 4.53 | 532.69 | 890.84 | 93.60 | 3.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gîjiu, C.L.; Isopescu, R.; Dinculescu, D.; Memecică, M.; Apetroaei, M.-R.; Anton, M.; Schröder, V.; Rău, I. Crabs Marine Waste—A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization. Polymers 2022, 14, 4492. https://doi.org/10.3390/polym14214492
Gîjiu CL, Isopescu R, Dinculescu D, Memecică M, Apetroaei M-R, Anton M, Schröder V, Rău I. Crabs Marine Waste—A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization. Polymers. 2022; 14(21):4492. https://doi.org/10.3390/polym14214492
Chicago/Turabian StyleGîjiu, Cristiana Luminița, Raluca Isopescu, Daniel Dinculescu, Maria Memecică, Manuela-Rossemary Apetroaei, Mirela Anton, Verginica Schröder, and Ileana Rău. 2022. "Crabs Marine Waste—A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization" Polymers 14, no. 21: 4492. https://doi.org/10.3390/polym14214492
APA StyleGîjiu, C. L., Isopescu, R., Dinculescu, D., Memecică, M., Apetroaei, M. -R., Anton, M., Schröder, V., & Rău, I. (2022). Crabs Marine Waste—A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization. Polymers, 14(21), 4492. https://doi.org/10.3390/polym14214492