Direct Current Electrical Performances of Cable Accessory Insulation EPDM Modified by Grafting Polar-Group Compound
Abstract
:1. Introduction
2. Experimental and Theoretical Methods
2.1. Material Preparation
2.2. Infrared Spectroscopy
2.3. Differential Scanning Calorimetry and Thermogravimetrics
2.4. Electric Conductance
2.5. Thermal Stimulation Current
2.6. Electric Breakdown Experiment
2.7. Electric-Thermal Coupling Simulation
2.8. Molecular Modeling and First-Principles Schemes
3. Results and Discussion
3.1. Molecular Group Characterization
3.2. Glassy–Elastomeric Phase Transition and Thermogravimetrics
3.3. Electric Conduction Characteristics
3.4. Charge Trap Characteristics
3.5. Dielectric Breakdown Strength
3.6. Electric Field in Cable Terminal
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mazzanti, G. Life and reliability models for high voltage DC extruded cables. IEEE Electr. Insul. Mag. 2017, 33, 42–52. [Google Scholar] [CrossRef]
- Hanley, T.L.; Burford, R.P.; Fleming, R.J.; Barber, K.W. A general review of polymeric insulation for use in HVDC cables. IEEE Electr. Insul. Mag. 2003, 19, 13–24. [Google Scholar] [CrossRef]
- Lewis, T.J. Nanometric Dielectrics. IEEE Trans. Dielectr. Electr. Insul. 1994, 1, 812–825. [Google Scholar] [CrossRef]
- Tanaka, T.; Montanari, G.C.; Mulhaupt, R. Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. IEEE Trans. Dielectr. Electr. Insul. 2004, 11, 763–784. [Google Scholar] [CrossRef]
- Venkatesulu, B.; Thomas, M.J. Corona aging studies on silicone rubber nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 625–634. [Google Scholar] [CrossRef]
- Tu, Y.P.; Zhou, F.W.; Cheng, Y.; Jiang, H.; Wang, C.; Bai, F.J.; Lin, J. The control mechanism of micron and nano SiO2/epoxy composite coating on surface charge in epoxy resin. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 1275–1284. [Google Scholar] [CrossRef]
- Li, Z.Y.; Sun, W.F.; Zhao, H. Significantly improved electrical properties of photo-initiated auxiliary crosslinking EPDM used for cable termination. Polymers 2019, 11, 2083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Nelson, J.K.; Schadler, L.S.; Hillborg, H. Mechanisms leading to nonlinear electrical response of a nano p-SiC/silicone rubber composite. IEEE Trans. Dielectr. Electr. Insul. 2010, 17, 1687–1696. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Z.; Xing, Y.; Zhu, W.; Su, J.; Kong, X.; Jiang, J.; Du, B. Improving the electric field distribution in stress cone of HTS DC cable terminals by nonlinear conductive epoxy/ZnO composites. IEEE Trans. Appl. Supercond. 2019, 29, 7000305. [Google Scholar] [CrossRef]
- Li, J.; Du, B.; Kong, X.X.; Li, Z.L. Nonlinear conductivity and interface charge behaviors between LDPE and EPDM/SiC composite for HVDC cable accessory. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1566–1573. [Google Scholar] [CrossRef]
- Xue, J.Y.; Chen, J.H.; Dong, J.H.; Wang, H.; Li, W.D.; Deng, J.B.; Zhang, G.J. The regulation mechanism of SiC/epoxy coatings on surface charge behavior and flashover performance of epoxy/alumina spacers. J. Phys. D Appl. Phys. 2019, 52, 405502. [Google Scholar] [CrossRef]
- Han, Y.; Li, S.; Min, D. Nonlinear conduction and surface potential decay of epoxy/SiC nanocomposites. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 3154–3164. [Google Scholar] [CrossRef]
- Li, Z.; Su, J.; Du, B.; Hou, Z.; Han, C. Inhibition effect of graphene on space charge injection and accumulation in low-density polyethylene. Nanomaterials 2018, 8, 956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Hu, J.; Dang, B.; He, J.L. Mechanism of highly improved electrical properties in polypropylene by chemical modification of grafting maleic anhydride. J. Phys. D Appl. Phys. 2016, 49, 415301. [Google Scholar] [CrossRef]
- Zhao, X.D.; Sun, W.F.; Zhao, H. Enhanced insulation performances of crosslinked polyethylene modified by chemically grafting chloroacetic acid allyl ester. Polymers 2019, 11, 592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Zhang, C.; Zhao, H.; Zhang, H.; Wang, X.; Han, B. Grafted UV absorber as voltage stabilizer against electrical degradation and breakdown in cross-linked polyethylene for high voltage cable insulation. Polym. Degrad. Stab. 2021, 185, 109498. [Google Scholar] [CrossRef]
- Uydur, C.C.; Arikan, O.; Kalenderli, O. The Effect of insulation defects on electric field distribution of power cables. In Proceedings of the IEEE International Conference on High Voltage Engineering and Application (ICHVE), Athens, Greece, 10–13 September 2018; pp. 1–4. [Google Scholar]
- Rigby, D.; Roe, R.J. Molecular dynamics simulation of polymer liquid and glass. II. short range order and orientation correlation. J. Chem. Phys. 1988, 89, 5280. [Google Scholar] [CrossRef]
- Strümpler, R.; Glatz-Reichenbach, J. Conducting polymer composites. J. Electroceramics 1999, 3, 329–346. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z. Charge trapping and detrapping in polymeric materials. J. Appl. Phys. 2009, 106, 123707. [Google Scholar] [CrossRef]
Components | Dimension/mm |
---|---|
Core radius | 19 |
XLPE thickness | 16 |
Reinforced insulation thickness | 64 |
Shield layer thickness | 1 |
Axial length of stress cone | 160 |
Materials | Density /(g·cm−3) | Relative Permittivity | Thermal Conductivity Coefficient /(W·m−1·K−1) | Heat Capacity /(J·kg−1·K−1) |
---|---|---|---|---|
XLPE | 0.91 | 2.27 | 1640 | 0.285 |
Inner Shield | 0.95 | 100.00 | 2500 | 0.510 |
Material | Heat-Flow Peak Temperature /°C | |
---|---|---|
Heated | Cooling | |
EPDM | 39.36 | 23.73 |
EPDM-g-GMO | 39.51 | 22.73 |
Temperature /°C | Eth /(MV/mm) | β1 | β2 |
---|---|---|---|
30 | 17.5 | 1.01 | 2.66 |
40 | 16.5 | 1.11 | 2.62 |
50 | 13.8 | 1.12 | 2.41 |
70 | 9.5 | 1.05 | 2.15 |
Temperature /°C | Hopping Distance /nm | |
---|---|---|
EPDM | EPDM-g-GMO | |
30 | 3.34 | 4.82 |
40 | 2.36 | 4.73 |
50 | 2.27 | 4.67 |
70 | 2.23 | 3.83 |
Molecule | Eg /eV | IP /eV | EA /eV |
---|---|---|---|
EPDM | 7.25 | 7.05 | −1.45 |
GMO | 5.47 | 8.03 | −0.98 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.-Y.; Sun, W.-F.; Zhang, J.; Liang, J.-Q.; Wang, L.; Zhang, K.-X. Direct Current Electrical Performances of Cable Accessory Insulation EPDM Modified by Grafting Polar-Group Compound. Polymers 2022, 14, 4625. https://doi.org/10.3390/polym14214625
Li Z-Y, Sun W-F, Zhang J, Liang J-Q, Wang L, Zhang K-X. Direct Current Electrical Performances of Cable Accessory Insulation EPDM Modified by Grafting Polar-Group Compound. Polymers. 2022; 14(21):4625. https://doi.org/10.3390/polym14214625
Chicago/Turabian StyleLi, Zhong-Yuan, Wei-Feng Sun, Jian Zhang, Jian-Quan Liang, Lei Wang, and Ke-Xin Zhang. 2022. "Direct Current Electrical Performances of Cable Accessory Insulation EPDM Modified by Grafting Polar-Group Compound" Polymers 14, no. 21: 4625. https://doi.org/10.3390/polym14214625
APA StyleLi, Z. -Y., Sun, W. -F., Zhang, J., Liang, J. -Q., Wang, L., & Zhang, K. -X. (2022). Direct Current Electrical Performances of Cable Accessory Insulation EPDM Modified by Grafting Polar-Group Compound. Polymers, 14(21), 4625. https://doi.org/10.3390/polym14214625