Microstructural and Thermo-Mechanical Characterization of Furfurylated Douglas Fir
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Weight Percent Gain (WPG) Measurement
2.2. Microstructural Visualization
2.2.1. Fluorescence Microscopy (FM)
2.2.2. Scanning Electron Microscopy (SEM)
2.2.3. Confocal Raman Microscopy (CRM)
2.3. Thermal Properties Characterization
2.3.1. Differential Scanning Calorimetry Analysis (DSC)
2.3.2. Thermogravimetric Analysis (TGA)
2.3.3. Dynamic Mechanical Analysis (DMA)
3. Results
3.1. WPG Analysis
3.2. Microstructural Characterization
3.3. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bian, X.; Cai, Y.; Kong, F.; Chai, H. Properties of Fast-growing Poplar Wood by Impregnation Strengthening of Furfuryl Alcohol Resin. J. Northeast For. Univ. 2019, 47, 74–80. [Google Scholar] [CrossRef]
- Furuno, T.; Imamura, Y.; Kajita, H. The Modification of Wood by Treatment with Low Molecular Weight Phenol-Formaldehyde Resin: A Properties Enhancement with Neutralized Phenolic-Resin and Resin Penetration into Wood Cell Walls. Wood Sci. Technol. 2004, 37, 349–361. [Google Scholar] [CrossRef]
- Kristak, L.; Antov, P.; Bekhta, P.; Lubis, M.A.R.; Iswanto, A.H.; Reh, R.; Sedliacik, J.; Savov, V.; Taghiyari, H.R.; Papadopoulos, A.N.; et al. Recent Progress in Ultra-Low Formaldehyde Emitting Adhesive Systems and Formaldehyde Scavengers in Wood-Based Panels: A Review. Wood Mater. Sci. Eng. 2022, 1–20. [Google Scholar] [CrossRef]
- Pilgård, A.; De Vetter, L.; Van Acker, J.; Westin, M. Toxic Hazard of Leachates from Furfurylated Wood: Comparison between Two Different Aquatic Organisms. Environ. Toxicol. Chem. 2010, 29, 1067–1071. [Google Scholar] [CrossRef] [PubMed]
- Zavaglia, R.; Guigo, N.; Sbirrazzuoli, N.; Mija, A.; Vincent, L. Complex Kinetic Pathway of Furfuryl Alcohol Polymerization Catalyzed by Green Montmorillonite Clays. J. Phys. Chem. B 2012, 116, 8259–8268. [Google Scholar] [CrossRef]
- Li, W.; Liu, M.; Wang, H.; Yu, Y. Fabrication of Highly Stable and Durable Furfurylated Wood Materials. Part I: Process Optimization. Holzforschung 2020, 74, 1135–1146. [Google Scholar] [CrossRef]
- Lande, S.; Eikenes, M.; Westin, M. Chemistry and Ecotoxicology of Furfurylated Wood. Scand. J. For. Res. 2004, 19, 14–21. [Google Scholar] [CrossRef]
- Li, W. The Study on the Modification Technology and Mechanism of Fururylation of Wood and Bamboo. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2016. [Google Scholar]
- Nordstierna, L.; Lande, S.; Westin, M.; Karlsson, O.; Furó, I. Towards Novel Wood-Based Materials: Chemical Bonds between Lignin-like Model Molecules and Poly(Furfuryl Alcohol) Studied by NMR. Holzforschung 2008, 62, 709–713. [Google Scholar] [CrossRef]
- Dong, Y.; Yan, Y.; Zhang, S.; Li, J.; Wang, J. Flammability and Physical–Mechanical Properties Assessment of Wood Treated with Furfuryl Alcohol and Nano-SiO2. Eur. J. Wood Wood Prod. 2015, 73, 457–464. [Google Scholar] [CrossRef]
- Standfest, G.; Kutnar, A.; Plank, B.; Petutschnigg, A.; Kamke, F.A.; Dunky, M. Microstructure of Viscoelastic Thermal Compressed (VTC) Wood Using Computed Microtomography. Wood Sci. Technol. 2013, 47, 121–139. [Google Scholar] [CrossRef]
- Domec, J.; Gartner, B.L. How Do Water Transport and Water Storage Differ in Coniferous Earlywood and Latewood? J. Exp. Bot. 2002, 53, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humar, M.; Vek, V.; Oven, P.; Lesar, B.; Krzisnik, D.; Kerzic, E.; Hocevar, M.; Brus, R. Durability and Moisture Dynamics of Douglas-Fir Wood from Slovenia. Front. Plant Sci. 2022, 13, 860734. [Google Scholar] [CrossRef] [PubMed]
- Balanzategui, D.; Nordhauß, H.; Heinrich, I.; Biondi, F.; Miley, N.; Hurley, A.G.; Ziaco, E. Wood Anatomy of Douglas-Fir in Eastern Arizona and Its Relationship with Pacific Basin Climate. Front. Plant Sci. 2021, 12, 442. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Guan, H.; Wang, X. In Situ Polymerization of Furfuryl Alcohol with Ammonium Dihydrogen Phosphate in Poplar Wood for Improved Dimensional Stability and Flame Retardancy. ACS Sustain. Chem. Eng. 2018, 6, 3349–3357. [Google Scholar] [CrossRef]
- Dong, Y.; Qin, Y.; Wang, K.; Yan, Y.; Zhang, S.; Li, J.; Zhang, S. Assessment of the Performance of Furfurylated Wood and Acetylated Wood: Comparison among Four Fast-Growing Wood Species. BioResources 2016, 11, 3679–3690. [Google Scholar] [CrossRef] [Green Version]
- Domec, J.-C.; Lachenbruch, B.; Meinzer, F.C. Bordered Pit Structure and Function Determine Spatial Patterns of Air-Seeding Thresholds in Xylem of Douglas-Fir (Pseudotsuga menziesii; Pinaceae) Trees. Am. J. Bot. 2006, 93, 1588–1600. [Google Scholar] [CrossRef]
- Gierlinger, N.; Sapei, L.; Paris, O. Insights into the Chemical Composition of Equisetum hyemale by High Resolution Raman Imaging. Planta 2008, 227, 969–980. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, U.P. Raman Imaging of Lignin and Cellulose Distribution in Black Spruce Wood (Picea mariana) Cell Walls. In Proceedings of the 59th APPITA Annual Conference and Exhibition incorporating the 13th ISWFPC (International Symposium on Wood, Fibre, and Pulping Chemistry), Auckland, New Zealand, 16–19 May 2005; APPITA: Melbourne, Australia, 2005; pp. 377–384. [Google Scholar]
- Kim, T.; Assary, R.S.; Kim, H.; Marshall, C.L.; Gosztola, D.J.; Curtiss, L.A.; Stair, P.C. Effects of Solvent on the Furfuryl Alcohol Polymerization Reaction: UV Raman Spectroscopy Study. Catal. Today 2013, 205, 60–66. [Google Scholar] [CrossRef]
- Ray, D.; Sarkar, B.K.; Basak, R.K.; Rana, A.K. Study of the Thermal Behavior of Alkali-Treated Jute Fibers. J. Appl. Polym. Sci. 2002, 85, 2594–2599. [Google Scholar] [CrossRef]
- Ibbett, R.; Gaddipati, S.; Davies, S.; Hill, S.; Tucker, G. The Mechanisms of Hydrothermal Deconstruction of Lignocellulose: New Insights from Thermal–Analytical and Complementary Studies. Bioresour. Technol. 2011, 102, 9272–9278. [Google Scholar] [CrossRef]
- Miki, T.; Sugimoto, H.; Kojiro, K.; Furuta, Y.; Kanayama, K. Thermal Behaviors and Transitions of Wood Detected by Temperature-Modulated Differential Scanning Calorimetry. J. Wood Sci. 2012, 58, 300–308. [Google Scholar] [CrossRef]
- Bergmann, I.; Müller, U.; Rätzsch, M.; Steiner, M. Investigations on the Crosslinking Reactions of Melamine Resins in the Presence of Wood. Monatsh. Chem. 2006, 137, 881–886. [Google Scholar] [CrossRef]
- Sadler, J.M.; Yeh, I.; Toulan, F.R.; McAninch, I.M.; Rinderspacher, B.C.; La Scala, J.J. Kinetics Studies and Characterization of Poly(Furfuryl Alcohol) for Use as Bio-based Furan Novolacs. J. Appl. Polym. Sci. 2018, 135, 46608. [Google Scholar] [CrossRef]
- Herold, N.; Dietrich, T.; Grigsby, W.; Franich, R.; Winkler, A.; Buchelt, B.; Pfriem, A. Effect of Maleic Anhydride Content and Ethanol Dilution on the Polymerization of Furfuryl Alcohol in Wood Veneer Studied by Differential Scanning Calorimetry. Bioresources 2013, 8, 1064–1075. [Google Scholar] [CrossRef]
- Falco, G.; Guigo, N.; Vincent, L.; Sbirrazzuoli, N. FA Polymerization Disruption by Protic Polar Solvents. Polymers 2018, 10, 529. [Google Scholar] [CrossRef] [Green Version]
- Lande, S.; Eikenes, M.; Westin, M.; Schneider, M.H. Furfurylation of Wood: Chemistry, Properties, and Commercialization. Dev. Commer. Wood Preserv. 2008, 982, 337–355. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Yeo, J.Y.; Chin, B.L.F.; Tan, J.K.; Loh, Y.S. Comparative Studies on the Pyrolysis of Cellulose, Hemicellulose, and Lignin Based on Combined Kinetics. J. Energy Inst. 2019, 92, 27–37. [Google Scholar] [CrossRef]
- Song, C.; Wang, T.; Wang, X. Preparation and O2/N2 Separation Performance of Carbon Molecular Sieve Membranes Derived from Poly(Furfuryl Alcohol). Acta Polym. Sin. 2010, 54, 609–613. [Google Scholar] [CrossRef]
- Guigo, N.; Mija, A.; Zavaglia, R.; Vincent, L.; Sbirrazzuoli, N. New Insights on the Thermal Degradation Pathways of Neat Poly(Furfuryl Alcohol) and Poly(Furfuryl Alcohol)/SiO2 Hybrid Materials. Polym. Degrad. Stab. 2009, 94, 908–913. [Google Scholar] [CrossRef]
- Gutiérrez-Pardo, A.; Ramírez-Rico, J.; de Arellano-López, A.R.; Martínez-Fernández, J. Characterization of Porous Graphitic Monoliths from Pyrolyzed Wood. J. Mater. Sci. 2014, 49, 7688–7696. [Google Scholar] [CrossRef]
- Geng, A.; Xu, L.; Gan, L.; Mei, C.; Wang, L.; Fang, X.; Li, M.; Pan, M.; Han, S.; Cui, J. Using Wood Flour Waste to Produce Biochar as the Support to Enhance the Visible-Light Photocatalytic Performance of BiOBr for Organic and Inorganic Contaminants Removal. Chemosphere 2020, 250, 126291. [Google Scholar] [CrossRef]
- Herold, N.; Grigsby, W.J.; Franich, R.A.; Pfriem, A. Investigations of Wood Veneer during Furfuryl Alcohol Modification Using DMTA. Eur. J. Wood Prod. 2015, 73, 693–695. [Google Scholar] [CrossRef]
- Dong, Y.; Ma, E.; Li, J.; Zhang, S.; Hughes, M. Thermal Properties Enhancement of Poplar Wood by Substituting Poly(Furfuryl Alcohol) for the Matrix. Polym. Compos. 2020, 41, 1066–1073. [Google Scholar] [CrossRef]
- Islam, M.S.; Hamdan, S.; Talib, Z.A.; Ahmed, A.S.; Rahman, M.R. Tropical Wood Polymer Nanocomposite (WPNC): The Impact of Nanoclay on Dynamic Mechanical Thermal Properties. Compos. Sci. Technol. 2012, 72, 1995–2001. [Google Scholar] [CrossRef]
- Deka, H.; Mohanty, A.; Misra, M. Renewable-Resource-Based Green Blends from Poly(Furfuryl Alcohol) Bioresin and Lignin: Renewable-Resource-Based Green Blends from Poly(Furfuryl Alcohol) Bioresin and Lignin. Macromol. Mater. Eng. 2014, 299, 552–559. [Google Scholar] [CrossRef]
FA (wt%) | Maleic Anhydride (wt%) | Sodium Tetraborate (wt%) | Deionized Water |
---|---|---|---|
30 | 2 | 2 | 66 |
40 | 2 | 2 | 56 |
50 | 2 | 2 | 46 |
Concentrations of FA/% | Tg/°C |
---|---|
Untreated wood | 28.3 |
30 | 48.8 |
40 | 58.2 |
50 | 69.8 |
Temperature/°C | Pyrolysis Weight Loss Percentage/% | |||
---|---|---|---|---|
Untreated Wood | 30% FA | 40% FA | 50% FA | |
25–250 °C | 4.14 | 11.24 | 10.36 | 11.09 |
250–365 °C | 45.50 | 52.22 | 51.81 | 49.36 |
365–700 °C | 30.47 | 14.69 | 14.84 | 15.23 |
25–700 °C | 80.11 | 78.15 | 77.01 | 75.68 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Wang, J.; Wang, Z.; Hua, F.; He, S.; Lu, B.; Wang, X.; Zhang, X.; Leng, W. Microstructural and Thermo-Mechanical Characterization of Furfurylated Douglas Fir. Polymers 2022, 14, 4641. https://doi.org/10.3390/polym14214641
Jiang X, Wang J, Wang Z, Hua F, He S, Lu B, Wang X, Zhang X, Leng W. Microstructural and Thermo-Mechanical Characterization of Furfurylated Douglas Fir. Polymers. 2022; 14(21):4641. https://doi.org/10.3390/polym14214641
Chicago/Turabian StyleJiang, Xuefei, Jing Wang, Ziheng Wang, Feiyue Hua, Sheng He, Buyun Lu, Xiang Wang, Xuefeng Zhang, and Weiqi Leng. 2022. "Microstructural and Thermo-Mechanical Characterization of Furfurylated Douglas Fir" Polymers 14, no. 21: 4641. https://doi.org/10.3390/polym14214641
APA StyleJiang, X., Wang, J., Wang, Z., Hua, F., He, S., Lu, B., Wang, X., Zhang, X., & Leng, W. (2022). Microstructural and Thermo-Mechanical Characterization of Furfurylated Douglas Fir. Polymers, 14(21), 4641. https://doi.org/10.3390/polym14214641