Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of HMG
2.2. Determination of Interfacial Tension
2.3. Preparation of LMs
2.4. Sphericity of the LMs
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aussillous, P.; Quere, D. Liquid marbles. Nature 2001, 411, 924–927. [Google Scholar] [CrossRef] [PubMed]
- McHale, G.; Newton, M.I. Liquid marbles: Topical context within soft matter and recent progress. Soft Matter 2015, 11, 2530–2546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pike, N.; Richard, D.; Foster, W.; Mahadevan, L. How aphids lose their marbles. Proc. R. Soc. B-Biol. Sci. 2002, 269, 1211–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elnaz, P.; Habib Badri, G. Experimental and simulation investigations of magnetic liquid marble manipulation with a permanent magnet. Colloid J. 2021, 83, 752–762. [Google Scholar] [CrossRef]
- Fujii, S.; Yusa, S.; Nakamura, Y. Stimuli-responsive liquid marbles: Controlling structure, shape, stability, and motion. Adv. Funct. Mater. 2016, 26, 7206–7223. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, G.; Xu, J.; Wang, K.; Mao, W.; Yao, G. Particle separation from liquid marbles by the viscous folding of liquid films. Langmuir 2022, 38, 2055–2065. [Google Scholar] [CrossRef]
- Feng, Y.; Yao, G.; Xu, J.; Wang, L.; Liu, G. Effect of surface roughness on the solar evaporation of liquid marbles. J. Colloid Interface Sci. 2023, 629, 644–653. [Google Scholar] [CrossRef]
- Yao, G.; Xu, J.; Feng, Y.; Wang, L.; Liu, G. Solar-driven interfacial evaporation of a hanging liquid marble. Sol. Energy Mater. Sol. Cells 2022, 234, 111430. [Google Scholar] [CrossRef]
- Sreejith, K.R.; Ooi, C.H.; Jin, J.; Dao, D.V.; Nguyen, N.T. Digital polymerase chain reaction technology-recent advances and future perspectives. Lab Chip 2018, 18, 3717–3732. [Google Scholar] [CrossRef]
- Avrămescu, R.-E.; Ghica, M.-V.; Dinu-Pirvu, C.; Udeanu, D.I.; Popa, L. Liquid marbles: From industrial to medical applications. Molecules 2018, 23, 1120. [Google Scholar] [CrossRef]
- Takei, T.; Yamasaki, Y.; Yuji, Y.; Sakoguchi, S.; Ohzuno, Y.; Hayase, G.; Yoshida, M. Millimeter-sized capsules prepared using liquid marbles: Encapsulation of ingredients with high efficiency and preparation of spherical core-shell capsules with highly uniform shell thickness using centrifugal force. J. Colloid Interface Sci. 2019, 536, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lin, X.; White, K.L.; Lin, S.; Wu, H.; Cao, S.; Huang, L.; Chen, L. Effect of the degree of substitution on the hydrophobicity of acetylated cellulose for production of liquid marbles. Cellulose 2016, 23, 811–821. [Google Scholar] [CrossRef]
- Shen, T.; Fan, S.; Li, Y.; Xu, G.; Fan, W. Preparation of edible non-wettable coating with soybean wax for repelling liquid foods with little residue. Materials 2020, 13, 3308. [Google Scholar] [CrossRef] [PubMed]
- Takei, T.; Yoshihara, R.; Danjo, S.; Fukuhara, Y.; Evans, C.; Tomimatsu, R.; Ohzuno, Y.; Yoshida, M. Hydrophobically-modified gelatin hydrogel as a carrier for charged hydrophilic drugs and hydrophobic drugs. Int. J. Biol. Macromol. 2020, 149, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Yoshizawa, K.; Taguchi, T. Enhanced bonding strength of hydrophobically modified gelatin films on wet blood vessels. Int. J. Mol. Sci. 2014, 15, 2142–2156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaelble, D.H. Dispersion-polar surface tension properties of organic solids. J. Adhes. 1970, 2, 66–81. [Google Scholar] [CrossRef]
- Owens, D.K.; Wendt, R.C. Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Rabel, W. Einige Aspekte der Benetzungstheorie und ihre Anwendung auf die Untersuchung und Veränderung der Oberflächeneigenschaften von Polymeren. Farbe und Lack 1971, 77, 997–1005. [Google Scholar]
- Kawamura, Y.; Mayama, H.; Nonomura, Y. Edible liquid marbles and capsules covered with lipid crystals. J. Oleo Sci. 2012, 61, 477–482. [Google Scholar] [CrossRef]
- Walker, G.M.; McEleney, P.; Al-Muhtaseb, A.H.; Bell, S.E.J. Liquid marble granulation using super-hydrophobic powders. Chem. Eng. J. 2013, 228, 984–992. [Google Scholar] [CrossRef]
- Al-Kaidy, H.; Tippkotter, N. Superparamagnetic hydrophobic particles as shell material for digital microfluidic droplets and proof-of-principle reaction assessments with immobilized laccase. Eng. Life. Sci. 2016, 16, 222–230. [Google Scholar] [CrossRef]
- De Gennes, P.G. Wetting: Statics and dynamics. Rev. Mod. Phys. 1985, 57, 827–863. [Google Scholar] [CrossRef]
- Hapgood, K.P.; Khanmohammadi, B. Granulation of hydrophobic powders. Powder Technol. 2009, 189, 253–262. [Google Scholar] [CrossRef]
- Eshtiaghi, N.; Liu, J.S.; Shen, W.; Hapgood, K.P. Liquid marble formation: Spreading coefficients or kinetic energy? Powder Technol. 2009, 196, 126–132. [Google Scholar] [CrossRef] [Green Version]
- Matsukuma, D.; Watanabe, H.; Yamaguchi, H.; Takahara, A. Preparation of low-surface-energy poly[2-(perfluorooctyl)ethyl acrylate] microparticles and its application to liquid marble formation. Langmuir 2011, 27, 1269–1274. [Google Scholar] [CrossRef]
- Aussillous, P.; Quéré, D. Properties of liquid marbles. Proc. R. Soc. A-Math. Phys. Eng. Sci. 2006, 462, 973–979s99. [Google Scholar] [CrossRef]
Name | Alkyl Chain Length of Fatty Aldehyde | Feeding Molar Ratios of Fatty Aldehyde to Amino Groups of Gelatin (%) | Degree of Substitution (%) | Particle Size (μm) | |||
---|---|---|---|---|---|---|---|
Unmodified gelatin | — | — | — | 32.1 ± 3.5 | 16.8 ± 8.2 | 48.8 ± 5.3 | 30 ± 12 |
C4-99% | C4 | 500 | 99 | 29.6 ± 3.4 | 25.1 ± 9.9 | 54.6 ± 6.8 | 48 ± 32 |
C6-99% | C6 | 500 | 99 | 30.8 ± 2.5 | 18.6 ± 3.2 | 49.4 ± 4.1 | 61 ± 38 |
C8-99% | C8 | 500 | 99 | 36.4 ± 1.6 | 1.1 ± 0.8 | 37.5 ± 0.9 | 33 ± 16 |
C12-25% | C12 | 50 | 25 | 35.7 ± 0.1 | 1.9 ± 0.4 | 37.6 ± 0.3 | 56 ± 45 |
C12-53% | C12 | 100 | 53 | 35.3 ± 0.4 | 1.7 ± 0.1 | 37.0 ± 0.4 | 48 ± 33 |
C12-91% | C12 | 200 | 91 | 35.4 ± 0.1 | 1.4 ± 0.4 | 36.9 ± 0.3 | 51 ± 28 |
C12-99% | C12 | 500 | 99 | 34.5 ± 4.2 | 0.6 ± 0.4 | 35.1 ± 4.1 | 44 ± 31 |
Formation of Water LM a | ||||
---|---|---|---|---|
Unmodified gelatin | – | 14.1 | −36.3 | |
HMG | C4-99% | – | 14.0 | −25.7 |
C6-99% | – | 14.8 | −32.5 | |
C8-99% | + | −4.8 | −76.0 | |
C12-25% | + | 0.3 | −70.0 | |
C12-53% | + | 0.0 | −71.5 | |
C12-91% | + | −1.1 | −73.0 | |
C12-99% | + | −7.1 | −82.3 | |
Acetylated cellulose | 0 (60.7 mN/m) b,c | – b | 3.1 b | −21.1 |
0.14 (58.5 ± 3.7 mN/m) b,c | – b | 6.2 b | −22.5 | |
0.39 (54.6 ± 3.3 mN/m) b,c | + b | 8.9 b | −27.5 | |
1.26 (49.9 ± 2.5 mN/m) b,c | + b | 9.5 b | −42.1 | |
2.61 (38.6 ± 2.1 mN/m) b,c | + b | 10.1 b | −58.5 |
Liquid | Formation of LM a | Time until LM on Water Collapsed | |
---|---|---|---|
Component | Surface Tension (mN/m) | ||
Water | 72.8 | + | >24 h |
Glycerin | 63.4 | + | 7.8 ± 2.3 min |
Formamide | 58.2 | + | 2.8 ± 0.8 min |
Glycerin (25%)/DMSO (75%) b | 57.0 ± 0.2 c | + | 42 ± 24 sec |
Glycerin (50%)/DMSO (50%) b | 52.6 ± 0.3 c | + | <0.1 sec |
Diiodomethane | 50.8 | – | – |
DMSO | 45.1 | – | – |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takei, T.; Tomimatsu, R.; Matsumoto, T.; Sreejith, K.R.; Nguyen, N.-T.; Yoshida, M. Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles. Polymers 2022, 14, 4849. https://doi.org/10.3390/polym14224849
Takei T, Tomimatsu R, Matsumoto T, Sreejith KR, Nguyen N-T, Yoshida M. Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles. Polymers. 2022; 14(22):4849. https://doi.org/10.3390/polym14224849
Chicago/Turabian StyleTakei, Takayuki, Rio Tomimatsu, Takanori Matsumoto, Kamalalayam Rajan Sreejith, Nam-Trung Nguyen, and Masahiro Yoshida. 2022. "Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles" Polymers 14, no. 22: 4849. https://doi.org/10.3390/polym14224849
APA StyleTakei, T., Tomimatsu, R., Matsumoto, T., Sreejith, K. R., Nguyen, N. -T., & Yoshida, M. (2022). Hydrophobically Modified Gelatin Particles for Production of Liquid Marbles. Polymers, 14(22), 4849. https://doi.org/10.3390/polym14224849