A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic
Abstract
:1. Introduction
2. Preparation of Starch Nanoparticles for Bioplastic Reinforcing Material
2.1. Physical Method
2.2. Chemical and Enzymatic Method
2.3. Combined Method
3. Properties of Starch Nanoparticles
3.1. Amylose Content
3.2. Granule Morphology Shape and Size
3.3. Crystallinity
3.4. Thermal Properties
4. Definition and Preparation of Bioplastic with Starch Nanoparticles as Reinforcing Material
5. Characteristics of Bioplastic with Starch Nanoparticles as Reinforcing Material
5.1. Mechanical Properties
5.2. Water Vapor Permeability
5.3. Thermal Properties
5.4. Biodegradability
6. Opportunities and Challenges
7. Conclusions
8. Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vasseghian, Y.; Dragoi, E.-N.; Almomani, F.; Le, V.T. Graphene Derivatives in Bioplastic: A Comprehensive Review of Properties and Future Perspectives. Chemosphere 2022, 286, 131892. [Google Scholar] [CrossRef] [PubMed]
- Almomani, F.A.; Shawaqfah, M.; Bhosale, R.R.; Kumar, A. Removal of Emerging Pharmaceuticals from Wastewater by Ozone-Based Advanced Oxidation Processes. Environ. Prog. Sustain. Energy 2016, 35, 982–995. [Google Scholar] [CrossRef]
- Jaderi, F.; Ibrahim, Z.Z.; Zahiri, M.R. Criticality Analysis of Petrochemical Assets Using Risk Based Maintenance and the Fuzzy Inference System. Process Saf. Environ. Prot. 2019, 121, 312–325. [Google Scholar] [CrossRef]
- Thunman, H.; Berdugo Vilches, T.; Seemann, M.; Maric, J.; Vela, I.C.; Pissot, S.; Nguyen, H.N.T. Circular Use of Plastics-Transformation of Existing Petrochemical Clusters into Thermochemical Recycling Plants with 100% Plastics Recovery. Sustain. Mater. Technol. 2019, 22, e00124. [Google Scholar] [CrossRef]
- da Silva, T.R.; de Azevedo, A.R.; Cecchin, D.; Marvila, M.T.; Amran, M.; Fediuk, R.; Vatin, N.; Karelina, M.; Klyuev, S.; Szelag, M. Application of Plastic Wastes in Construction Materials: A Review Using the Concept of Life-Cycle Assessment in the Context of Recent Research for Future Perspectives. Materials 2021, 14, 3549. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.J. Bioplastics and Their Role in Achieving Global Sustainability. J. Chem. Pharm. Res. 2014, 6, 226–231. [Google Scholar]
- Karimi-Maleh, H.; Kumar, B.G.; Rajendran, S.; Qin, J.; Vadivel, S.; Durgalakshmi, D.; Gracia, F.; Soto-Moscoso, M.; Orooji, Y.; Karimi, F. Tuning of Metal Oxides Photocatalytic Performance Using Ag Nanoparticles Integration. J. Mol. Liq. 2020, 314, 113588. [Google Scholar] [CrossRef]
- Wu, F.; Misra, M.; Mohanty, A.K. Tailoring the Toughness of Sustainable Polymer Blends from Biodegradable Plastics Via Morphology Transition Observed by Atomic Force Microscopy. Polym. Degrad. Stab. 2020, 173, 109066. [Google Scholar] [CrossRef]
- Friedrich, D.; Luible, A. Supporting the Development Process for Building Products by the Use of Research Portfolio Analysis: A Case Study for Wood Plastics Composite Materials. Case Stud. Constr. Mater. 2016, 4, 49–54. [Google Scholar] [CrossRef] [Green Version]
- Ansink, E.; Wijk, L.; Zuidmeer, F. No Clue About Bioplastics. Ecol. Econ. 2022, 191, 107245. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.-A.T. Environmental Impact of Bioplastic Use: A Review. Heliyon 2021, 7, e07918. [Google Scholar] [CrossRef]
- García-Depraect, O.; Bordel, S.; Lebrero, R.; Santos-Beneit, F.; Börner, R.A.; Börner, T.; Muñoz, R. Inspired by Nature: Microbial Production, Degradation and Valorization of Biodegradable Bioplastics for Life-Cycle-Engineered Products. Biotechnol. Adv. 2021, 53, 107772. [Google Scholar] [CrossRef]
- Gadhave, R.; Das, A.; Mahanwar, P.; Gadekar, P. Starch Based Bio-Plastics: The Future of Sustainable Packaging. Open J. Polym. Chem. 2018, 8, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Meereboer, K.; Misra, M.; Mohanty, A. Review of Recent Advances in the Biodegradability of Polyhydroxyalkanoate (Pha) Bioplastics and Their Composites. Green Chem. 2020, 22, 5519–5558. [Google Scholar] [CrossRef]
- Lim, C.; Yusoff, S.; Ng, C.G.; Lim, P.E.; Ching, Y.C. Bioplastic Made from Seaweed Polysaccharides with Green Production Methods. J. Environ. Chem. Eng. 2021, 9, 105895. [Google Scholar] [CrossRef]
- Abe, M.M.; Martins, J.R.; Sanvezzo, P.B.; Macedo, J.V.; Branciforti, M.C.; Halley, P.; Botaro, V.R.; Brienzo, M. Advantages and Disadvantages of Bioplastics Production from Starch and Lignocellulosic Components. Polymers 2021, 13, 2484. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Xu, G. Processing and Characterization of Glycerol-Plasticized Soy Protein Plastics Reinforced with Citric Acid-Modified Starch Nanoparticles. J. Polym. Environ. 2011, 19, 582–588. [Google Scholar] [CrossRef]
- Ramadoss, P.; Basha, K.; Kumari, S. Nanostarch Reinforced with Chitosan/Poly (Vinyl Pyrrolidone) Blend for in Vitro Wound Healing Application. Polym.-Plast. Technol. Eng. 2017, 57, 1400–1410. [Google Scholar]
- Costa, É.K.D.C.; de Souza, C.O.; da Silva, J.B.A.; Druzian, J.I. Hydrolysis of Part of Cassava Starch into Nanocrystals Leads to Increased Reinforcement of Nanocomposite Films. J. Appl. Polym. Sci. 2017, 134, 45311. [Google Scholar] [CrossRef]
- He, W.; Wei, C. A Critical Review on Structural Properties and Formation Mechanism of Heterogeneous Starch Granules in Cereal Endosperm Lacking Starch Branching Enzyme. Food Hydrocoll. 2020, 100, 105434. [Google Scholar] [CrossRef]
- Li, H.; Gilbert, R.G. Starch Molecular Structure: The Basis for an Improved Understanding of Cooked Rice Texture. Carbohydr. Polym. 2018, 195, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Apriyanto, A.; Compart, J.; Fettke, J. A Review of Starch, a Unique Biopolymer—Structure, Metabolism and in Planta Modifications. Plant Sci. 2022, 318, 111223. [Google Scholar] [CrossRef] [PubMed]
- Vianna, T.C.; Marinho, C.O.; Marangoni, L., Jr.; Ibrahim, S.A.; Vieira, R.P. Essential Oils as Additives in Active Starch-Based Food Packaging Films: A Review. Int. J. Biol. Macromol. 2021, 182, 1803–1819. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.N.; Pirsa, S.; Farzi, J. Biodegradable Nano Composite Film Based on Modified Starch-Albumin/Mgo; Antibacterial, Antioxidant and Structural Properties. Polym. Test. 2021, 97, 107182. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, D.; Guo, D.; Tong, X.; Zhang, Y.; Wang, L. Physicochemical and Digestive Properties of a- and B-Type Granules Isolated from Wheat Starch as Affected by Microwave-Ultrasound and Toughening Treatment. Int. J. Biol. Macromol. 2021, 183, 481–489. [Google Scholar] [CrossRef] [PubMed]
- Zou, W.; Yu, L.; Liu, X.; Chen, L.; Zhang, X.; Qiao, D.; Zhang, R. Effects of Amylose/Amylopectin Ratio on Starch-Based Superabsorbent Polymers. Carbohydr. Polym. 2012, 87, 1583–1588. [Google Scholar] [CrossRef]
- Jha, P.; Dharmalingam, K.; Nishizu, T.; Katsuno, N.; Anandalakshmi, R. Effect of Amylose–Amylopectin Ratios on Physical, Mechanical, and Thermal Properties of Starch-Based Bionanocomposite Films Incorporated with Cmc and Nanoclay. Starch Stärke 2020, 72, 1900121. [Google Scholar] [CrossRef]
- Karakelle, B.; Kian-Pour, N.; Toker, O.S.; Palabiyik, I. Effect of Process Conditions and Amylose/Amylopectin Ratio on the Pasting Behavior of Maize Starch: A Modeling Approach. J. Cereal Sci. 2020, 94, 102998. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Bintang, S.; Soeherman, G.P.; Djali, M. Physicochemical and Pasting Properties of Corn Starch as Affected by Hydrothermal Modification by Various Methods. Int. J. Food Prop. 2022, 25, 792–812. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Arifin, H.R.; Khairani, L. Comparing the Effect of Four Different Thermal Modifications on Physicochemical and Pasting Properties of Breadfruit (Artocarpus altilis) Starch. Int. Food Res. J. 2019, 26, 269–276. [Google Scholar]
- Marta, H.; Cahyana, Y.; Djali, M. Densely Packed-Matrices of Heat Moisture Treated-Starch Determine the Digestion Rate Constant as Revealed by Logarithm of Slope Plots. J. Food Sci. Technol. 2021, 58, 2237–2245. [Google Scholar] [CrossRef] [PubMed]
- Cahyana, Y.; Rangkuti, A.; Siti Halimah, T.; Marta, H.; Yuliana, T. Application of Heat-Moisture-Treated Banana Flour as Composite Material in Hard Biscuit. CYTA J. Food 2020, 18, 599–605. [Google Scholar] [CrossRef]
- Ashfaq, A.; Khursheed, N.; Fatima, S.; Anjum, Z.; Younis, K. Application of Nanotechnology in Food Packaging: Pros and Cons. J. Agric. Food Res. 2022, 7, 100270. [Google Scholar] [CrossRef]
- Bel Haaj, S.; Thielemans, W.; Magnin, A.; Boufi, S. Starch Nanocrystals and Starch Nanoparticles from Waxy Maize as Nanoreinforcement: A Comparative Study. Carbohydr. Polym. 2016, 143, 310–317. [Google Scholar] [CrossRef]
- Le Corre, D.; Angellier-Coussy, H. Preparation and Application of Starch Nanoparticles for Nanocomposites: A Review. React. Funct. Polym. 2014, 85, 97–120. [Google Scholar] [CrossRef]
- Gong, B.; Liu, W.; Tan, H.; Yu, D.; Song, Z.; Lucia, L.A. Understanding Shape and Morphology of Unusual Tubular Starch Nanocrystals. Carbohydr. Polym. 2016, 151, 666–675. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, C.; Gong, C.; McClements, D.J.; Jin, Z.; Wang, J. Advances in Research on Preparation, Characterization, Interaction with Proteins, Digestion and Delivery Systems of Starch-Based Nanoparticles. Int. J. Biol. Macromol. 2020, 152, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Yu, M.; Ji, N.; Wang, Y.; Dai, L.; Xiong, L.; Sun, Q. Starch-Based Nanoparticles: Stimuli Responsiveness, Toxicity, and Interactions with Food Components. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1075–1100. [Google Scholar] [CrossRef]
- Boufi, S.; Bel Haaj, S.; Magnin, A.; Pignon, F.; Impéror-Clerc, M.; Mortha, G. Ultrasonic Assisted Production of Starch Nanoparticles: Structural Characterization and Mechanism of Disintegration. Ultrason. Sonochem. 2018, 41, 327–336. [Google Scholar] [CrossRef]
- Pérez-Masiá, R.; López-Nicolás, R.; Periago, M.J.; Ros, G.; Lagaron, J.M.; López-Rubio, A. Encapsulation of Folic Acid in Food Hydrocolloids through Nanospray Drying and Electrospraying for Nutraceutical Applications. Food Chem. 2015, 168, 124–133. [Google Scholar] [CrossRef] [Green Version]
- Raigond, P.; Raigond, B.; Kochhar, T.; Sood, A.; Singh, B. Conversion of Potato Starch and Peel Waste to High Value Nanocrystals. Potato Res. 2018, 61, 341–351. [Google Scholar] [CrossRef]
- Chin, S.F.; Azman, A.; Pang, S.C. Size Controlled Synthesis of Starch Nanoparticles by a Microemulsion Method. J. Nanomater. 2014, 2014, 763736. [Google Scholar] [CrossRef] [Green Version]
- Chin, S.F.; Pang, S.C.; Tay, S.H. Size Controlled Synthesis of Starch Nanoparticles by a Simple Nanoprecipitation Method. Carbohydr. Polym. 2011, 86, 1817–1819. [Google Scholar] [CrossRef]
- Kong, L.; Ziegler, G.R. Fabrication of Pure Starch Fibers by Electrospinning. Food Hydrocoll. 2014, 36, 20–25. [Google Scholar] [CrossRef]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of Nanomaterials Using Various Top-Down and Bottom-up Approaches, Influencing Factors, Advantages, and Disadvantages: A Review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.; Xiao, J.; Huang, Q. Pickering Emulsions Stabilized by Media-Milled Starch Particles. Food Res. Int. 2018, 105, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Patel, C.M.; Chakraborty, M.; Murthy, Z.V.P. Fast and Scalable Preparation of Starch Nanoparticles by Stirred Media Milling. Adv. Powder Technol. 2016, 27, 1287–1294. [Google Scholar] [CrossRef]
- Li, H.; Yan, S.; Ji, J.; Xu, M.; Mao, H.; Wen, Y.; Wang, J.; Sun, B. Insights into Maize Starch Degradation by High Pressure Homogenization Treatment from Molecular Structure Aspect. Int. J. Biol. Macromol. 2020, 161, 72–77. [Google Scholar] [CrossRef]
- Apostolidis, E.; Mandala, I. Modification of Resistant Starch Nanoparticles Using High-Pressure Homogenization Treatment. Food Hydrocoll. 2020, 103, 105677. [Google Scholar] [CrossRef]
- Ding, Y.; Kan, J. Optimization and Characterization of High Pressure Homogenization Produced Chemically Modified Starch Nanoparticles. J. Food Sci. Technol. 2017, 54, 4501–4509. [Google Scholar] [CrossRef]
- Chutia, H.; Mahanta, C.L. Properties of Starch Nanoparticle Obtained by Ultrasonication and High Pressure Homogenization for Developing Carotenoids-Enriched Powder and Pickering Nanoemulsion. Innov. Food Sci. Emerg. Technol. 2021, 74, 102822. [Google Scholar] [CrossRef]
- Noor, N.; Gani, A.; Jhan, F.; Ashraf Shah, M.; ul Ashraf, Z. Ferulic Acid Loaded Pickering Emulsions Stabilized by Resistant Starch Nanoparticles Using Ultrasonication: Characterization, in Vitro Release and Nutraceutical Potential. Ultrason. Sonochem. 2022, 84, 105967. [Google Scholar] [CrossRef] [PubMed]
- Akhavan, A.; Ataeevarjovi, E. The Effect of Gamma Irradiation and Surfactants on the Size Distribution of Nanoparticles Based on Soluble Starch. Radiat. Phys. Chem. 2012, 81, 913–914. [Google Scholar] [CrossRef]
- Lamanna, M.; Morales, N.J.; García, N.L.; Goyanes, S. Development and Characterization of Starch Nanoparticles by Gamma Radiation: Potential Application as Starch Matrix Filler. Carbohydr. Polym. 2013, 97, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Teodoro, A.P.; Mali, S.; Romero, N.; de Carvalho, G.M. Cassava Starch Films Containing Acetylated Starch Nanoparticles as Reinforcement: Physical and Mechanical Characterization. Carbohydr. Polym. 2015, 126, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Fatima, F.; Kumar, A. Relevance of Nanomaterials in Food Packaging and Its Advanced Future Prospects. J. Inorg. Organomet. Polym. Mater. 2020, 30, 5180–5192. [Google Scholar] [CrossRef]
- Song, D.; Thio, Y.S.; Deng, Y. Starch Nanoparticle Formation Via Reactive Extrusion and Related Mechanism Study. Carbohydr. Polym. 2011, 85, 208–214. [Google Scholar] [CrossRef]
- Da Silva, N.M.C.; Correia, P.R.C.; Druzian, J.I.; Fakhouri, F.M.; Fialho, R.L.L.; de Albuquerque, E.C.M.C. Pbat/Tps Composite Films Reinforced with Starch Nanoparticles Produced by Ultrasound. Int. J. Polym. Sci. 2017, 2017, 4308261. [Google Scholar] [CrossRef] [Green Version]
- Minakawa, A.F.K.; Faria-Tischer, P.C.S.; Mali, S. Simple Ultrasound Method to Obtain Starch Micro- and Nanoparticles from Cassava, Corn and Yam Starches. Food Chem. 2019, 283, 11–18. [Google Scholar] [CrossRef]
- Bel Haaj, S.; Magnin, A.; Pétrier, C.; Boufi, S. Starch Nanoparticles Formation Via High Power Ultrasonication. Carbohydr. Polym. 2013, 92, 1625–1632. [Google Scholar] [CrossRef]
- Ahmad, A.N.; Lim, S.A.; Navaranjan, N.; Hsu, Y.-I.; Uyama, H. Green Sago Starch Nanoparticles as Reinforcing Material for Green Composites. Polymer 2020, 202, 122646. [Google Scholar] [CrossRef]
- Fu, Z.-Q.; Wang, L.-J.; Li, D.; Wei, Q.; Adhikari, B. Effects of High-Pressure Homogenization on the Properties of Starch-Plasticizer Dispersions and Their Films. Carbohydr. Polym. 2011, 86, 202–207. [Google Scholar] [CrossRef]
- Kim, H.-Y.; Lee, J.H.; Kim, J.-Y.; Lim, W.-J.; Lim, S.-T. Characterization of Nanoparticles Prepared by Acid Hydrolysis of Various Starches. Starch Stärke 2012, 64, 367–373. [Google Scholar] [CrossRef]
- Namazi, H.; Dadkhah, A. Convenient Method for Preparation of Hydrophobically Modified Starch Nanocrystals with Using Fatty Acids. Carbohydr. Polym. 2010, 79, 731–737. [Google Scholar] [CrossRef]
- Sadeghi, R.; Daniella, Z.; Uzun, S.; Kokini, J. Effects of Starch Composition and Type of Non-Solvent on the Formation of Starch Nanoparticles and Improvement of Curcumin stability in Aqueous Media. J. Cereal Sci. 2017, 76, 122–130. [Google Scholar] [CrossRef]
- Wu, X.; Chang, Y.; Fu, Y.; Ren, L.; Tong, J.; Zhou, J. Effects of Non-Solvent and Starch Solution on Formation of Starch Nanoparticles by Nanoprecipitation. Starch Stärke 2016, 68, 258–263. [Google Scholar] [CrossRef]
- Hebeish, A.; El-Rafie, M.H.; El-Sheikh, M.A.; El-Naggar, M.E. Ultra-Fine Characteristics of Starch Nanoparticles Prepared Using Native Starch with and without Surfactant. J. Inorg. Organomet. Polym. Mater. 2014, 24, 515–524. [Google Scholar] [CrossRef]
- Hao, Y.; Chen, Y.; Li, Q.; Gao, Q. Preparation of Starch Nanocrystals through Enzymatic Pretreatment from Waxy Potato Starch. Carbohydr. Polym. 2018, 184, 171–177. [Google Scholar] [CrossRef]
- Lin, X.; Sun, S.; Wang, B.; Zheng, B.; Guo, Z. Structural and Physicochemical Properties of Lotus Seed Starch Nanoparticles Prepared Using Ultrasonic-Assisted Enzymatic Hydrolysis. Ultrason. Sonochem. 2020, 68, 105199. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Park, D.-J.; Lim, S.-T. Fragmentation of Waxy Rice Starch Granules by Enzymatic Hydrolysis. Cereal Chem. 2008, 85, 182–187. [Google Scholar] [CrossRef]
- Saeng-on, J.; Aht-Ong, D. Production of Starch Nanocrystals from Agricultural Materials Using Mild Acid Hydrolysis Method: Optimization and Characterization. Polym. Renew. Resour. 2017, 8, 91–116. [Google Scholar] [CrossRef]
- Gonçalves, P.M.; Noreña, C.P.Z.; da Silveira, N.P.; Brandelli, A. Characterization of Starch Nanoparticles Obtained from Araucaria Angustifolia Seeds by Acid Hydrolysis and Ultrasound. LWT Food Sci. Technol. 2014, 58, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Yadav, B.S.; Yadav, R.B. Synthesis and Modification Approaches for Starch Nanoparticles for Their Emerging Food Industrial Applications: A Review. Food Res. Int. 2020, 128, 108765. [Google Scholar] [CrossRef] [PubMed]
- Rajisha, K.R.; Maria, H.J.; Pothan, L.A.; Ahmad, Z.; Thomas, S. Preparation and Characterization of Potato Starch Nanocrystal Reinforced Natural Rubber Nanocomposites. Int. J. Biol. Macromol. 2014, 67, 147–153. [Google Scholar] [CrossRef]
- Valodkar, M.; Thakore, S. Thermal and Mechanical Properties of Natural Rubber and Starch Nanobiocomposites. Int. J. Polym. Anal. Charact. 2010, 15, 387–395. [Google Scholar] [CrossRef]
- Campelo, P.H.; Sant’Ana, A.S.; Pedrosa Silva Clerici, M.T. Starch Nanoparticles: Production Methods, Structure, and Properties for Food Applications. Cur. Opin. Food Sci. 2020, 33, 136–140. [Google Scholar] [CrossRef]
- Lin, N.; Huang, J.; Chang, P.R.; Anderson, D.P.; Yu, J. Preparation, Modification, and Application of Starch Nanocrystals in Nanomaterials: A Review. J. Nanomater. 2011, 2011, 573687. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Huang, Y.; Yao, R.; Deng, S.; Li, F.; Bian, X. Preparation and Characterization of Starch Nanoparticles from Potato Starch by Combined Solid-State Acid-Catalyzed Hydrolysis and Nanoprecipitation. Starch Stärke 2019, 71, 1900095. [Google Scholar] [CrossRef]
- Sun, Q.; Li, G.; Dai, L.; Ji, N.; Xiong, L. Green Preparation and Characterisation of Waxy Maize Starch Nanoparticles through Enzymolysis and Recrystallisation. Food Chem. 2014, 162, 223–228. [Google Scholar] [CrossRef]
- Dukare, A.S.; Arputharaj, A.; Bharimalla, A.K.; Saxena, S.; Vigneshwaran, N. Nanostarch Production by Enzymatic Hydrolysis of Cereal and Tuber Starches. Carbohydr. Polym. Technol. Appl. 2021, 2, 100121. [Google Scholar] [CrossRef]
- Hedayati, S.; Niakousari, M.; Mohsenpour, Z. Production of Tapioca Starch Nanoparticles by Nanoprecipitation-Sonication Treatment. Int. J. Biol. Macromol. 2020, 143, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Liu, C.; Jiang, S.; Xiong, L.; Sun, Q. Characterization of Starch Nanoparticles Prepared by Nanoprecipitation: Influence of Amylose Content and Starch Type. Ind. Crops Prod. 2016, 87, 182–190. [Google Scholar] [CrossRef]
- Torres, F.G.; Arroyo, J.; Tineo, C.; Troncoso, O. Tailoring the Properties of Native Andean Potato Starch Nanoparticles Using Acid and Alkaline Treatments. Starch Stärke 2019, 71, 1800234. [Google Scholar] [CrossRef]
- Suriya, M.; Reddy, C.K.; Haripriya, S.; Harsha, N. Influence of Debranching and Retrogradation Time on Behavior Changes of Amorphophallus paeoniifolius Nanostarch. Int. J. Biol. Macromol. 2018, 120, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Mukurumbira, A.R.; Mellem, J.J.; Amonsou, E.O. Effects of Amadumbe Starch Nanocrystals on the Physicochemical Properties of Starch Biocomposite Films. Carbohydr. Polym. 2017, 165, 142–148. [Google Scholar] [CrossRef]
- Putro, J.N.; Ismadji, S.; Gunarto, C.; Soetaredjo, F.E.; Ju, Y.H. A Study of Anionic, Cationic, and Nonionic Surfactants Modified Starch Nanoparticles for Hydrophobic Drug Loading and Release. J. Mol. Liq. 2020, 298, 112034. [Google Scholar] [CrossRef]
- LeCorre, D.; Bras, J.; Dufresne, A. Influence of Botanic Origin and Amylose Content on the Morphology of Starch Nanocrystals. J. Nanopart. Res. 2011, 13, 7193–7208. [Google Scholar] [CrossRef]
- Zhou, L.; He, X.; Ji, N.; Dai, L.; Li, Y.; Yang, J.; Xiong, L.; Sun, Q. Preparation and Characterization of Waxy Maize Starch Nanoparticles Via Hydrochloric Acid Vapor Hydrolysis Combined with Ultrasonication Treatment. Ultrason. Sonochem. 2021, 80, 105836. [Google Scholar] [CrossRef]
- Wang, B.; Lin, X.; Zheng, Y.; Zeng, M.; Huang, M.; Guo, Z. Effect of Homogenization-Pressure-Assisted Enzymatic Hydrolysis on the Structural and Physicochemical Properties of Lotus-Seed Starch Nanoparticles. Int. J. Biol. Macromol. 2021, 167, 1579–1586. [Google Scholar] [CrossRef]
- Shi, A.; Li, D.; Wang, L.-J.; Li, B.-Z.; Adhikari, B. Preparation of Starch-Based Nanoparticles through High-Pressure Homogenization and Miniemulsion Cross-Linking: Influence of Various Process Parameters on Particle Size and Stability. Carbohydr. Polym. 2011, 83, 1604–1610. [Google Scholar] [CrossRef]
- Dong, H.; Zhang, Q.; Gao, J.; Chen, L.; Vasanthan, T. Preparation and Characterization of Nanoparticles from Cereal and Pulse Starches by Ultrasonic-Assisted Dissolution and Rapid Nanoprecipitation. Food Hydrocoll. 2022, 122, 107081. [Google Scholar] [CrossRef]
- Ding, Y.; Zheng, J.; Zhang, F.; Kan, J. Synthesis and Characterization of Retrograded Starch Nanoparticles through Homogenization and Miniemulsion Cross-Linking. Carbohydr. Polym. 2016, 151, 656–665. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.M.; Oliveira, A.V.; Pontes, S.M.A.; Pereira, A.L.S.; Souza Filho, M.D.S.M.; Rosa, M.F.; Azeredo, H.M.C. Mango Kernel Starch Films as Affected by Starch Nanocrystals and Cellulose Nanocrystals. Carbohydr. Polym. 2019, 211, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, A.V.; da Silva, A.P.M.; Barros, M.O.; Filho, M.D.S.M.S.; Rosa, M.F.; Azeredo, H.M.C. Nanocomposite Films from Mango Kernel or Corn Starch with Starch Nanocrystals. Starch Stärke 2018, 70, 1800028. [Google Scholar] [CrossRef]
- Hakke, V.S.; Landge, V.K.; Sonawane, S.H.; Babu, G.U.B.; Ashokkumar, M.; Flores, E.M.M. The Physical, Mechanical, Thermal and Barrier Properties of Starch Nanoparticle (Snp)/Polyurethane (Pu) Nanocomposite Films Synthesised by an Ultrasound-Assisted Process. Ultrason. Sonochem. 2022, 88, 106069. [Google Scholar] [CrossRef] [PubMed]
- Sanchez de la Concha, B.B.; Agama-Acevedo, E.; Nuñez-Santiago, M.C.; Bello-Perez, L.A.; Garcia, H.S.; Alvarez-Ramirez, J. Acid Hydrolysis of Waxy Starches with Different Granule Size for Nanocrystal Production. J. Cereal Sci. 2018, 79, 193–200. [Google Scholar] [CrossRef]
- Jeong, O.; Shin, M. Preparation and Stability of Resistant Starch Nanoparticles, Using Acid Hydrolysis and Cross-Linking of Waxy Rice Starch. Food Chem. 2018, 256, 77–84. [Google Scholar] [CrossRef]
- Piyada, K.; Sridach, W.; Thawien, W. Mechanical, Thermal and Structural Properties of Rice Starch Films Reinforced with Rice Starch Nanocrystals. Int. Food Res. J. 2013, 20, 439–449. [Google Scholar]
- Jiang, S.; Liu, C.; Han, Z.; Xiong, L.; Sun, Q. Evaluation of Rheological Behavior of Starch Nanocrystals by Acid Hydrolysis and Starch Nanoparticles by Self-Assembly: A Comparative Study. Food Hydrocoll. 2016, 52, 914–922. [Google Scholar] [CrossRef]
- Mohammad Amini, A.; Razavi, S.M.A. A Fast and Efficient Approach to Prepare Starch Nanocrystals from Normal Corn Starch. Food Hydrocoll. 2016, 57, 132–138. [Google Scholar] [CrossRef]
- Dai, L.; Li, C.; Zhang, J.; Cheng, F. Preparation and Characterization of Starch Nanocrystals Combining Ball Milling with Acid Hydrolysis. Carbohydr. Polym. 2018, 180, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Chavan, P.; Sinhmar, A.; Nehra, M.; Thory, R.; Pathera, A.K.; Sundarraj, A.A.; Nain, V. Impact on Various Properties of Native Starch after Synthesis of Starch Nanoparticles: A Review. Food Chem. 2021, 364, 130416. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Jaimes, C.; Bello-Pérez, L.A.; Vernon-Carter, E.J.; Alvarez-Ramirez, J. Plantain Starch Granules Morphology, Crystallinity, Structure Transition, and Size Evolution Upon Acid Hydrolysis. Carbohydr. Polym. 2013, 95, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Ji, N.; Li, M.; Qiu, L.; Sun, C.; Bian, X.; Qiu, H.; Xiong, L.; Sun, Q. Green Preparation and Characterization of Starch Nanoparticles Using a Vacuum Cold Plasma Process Combined with Ultrasonication Treatment. Ultrason. Sonochem. 2019, 58, 104660. [Google Scholar] [CrossRef]
- Chang, Y.; Yan, X.; Wang, Q.; Ren, L.; Tong, J.; Zhou, J. High Efficiency and Low Cost Preparation of Size Controlled Starch Nanoparticles through Ultrasonic Treatment and Precipitation. Food Chem. 2017, 227, 369–375. [Google Scholar] [CrossRef]
- González Seligra, P.; Eloy Moura, L.; Famá, L.; Druzian, J.I.; Goyanes, S. Influence of Incorporation of Starch Nanoparticles in Pbat/Tps Composite Films. Polym. Int. 2016, 65, 938–945. [Google Scholar] [CrossRef]
- Jiang, S.; Liu, C.; Wang, X.; Xiong, L.; Sun, Q. Physicochemical Properties of Starch Nanocomposite Films Enhanced by Self-Assembled Potato Starch Nanoparticles. LWT Food Sci. Technol. 2016, 69, 251–257. [Google Scholar] [CrossRef]
- Marta, H.; Cahyana, Y.; Djali, M.; Arcot, J.; Tensiska, T. A Comparative Study on the Physicochemical and Pasting Properties of Starch and Flour from Different Banana (Musa Spp.) Cultivars Grown in Indonesia. Int. J. Food Prop. 2019, 22, 1562–1575. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Qiu, C.; Xiong, L.; Sun, Q. Characterisation of Corn Starch-Based Films Reinforced with Taro Starch Nanoparticles. Food Chem. 2015, 174, 82–88. [Google Scholar] [CrossRef]
- Shlush, E.; Davidovich-Pinhas, M. Bioplastics for Food Packaging. Trends Food Sci. Technol. 2022, 125, 66–80. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Qi, P.; Rostagno, M.; Feteha, A.; Miller, S.A. The Quest for High Glass Transition Temperature Bioplastics. J. Mater. Chem. A 2018, 6, 9298–9331. [Google Scholar] [CrossRef]
- Naser, A.Z.; Deiab, I.; Darras, B.M. Poly(Lactic Acid) (Pla) and Polyhydroxyalkanoates (Phas), Green Alternatives to Petroleum-Based Plastics: A Review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef]
- Van Roijen, E.C.; Miller, S.A. A Review of Bioplastics at End-of-Life: Linking Experimental Biodegradation Studies and Life Cycle Impact Assessments. Resour. Conserv. Recycl. 2022, 181, 106236. [Google Scholar] [CrossRef]
- Andreasi Bassi, S.; Boldrin, A.; Frenna, G.; Astrup, T.F. An Environmental and Economic Assessment of Bioplastic from Urban Biowaste. The Example of Polyhydroxyalkanoate. Bioresour. Technol. 2021, 327, 124813. [Google Scholar] [CrossRef]
- Kumar, P.; Tanwar, R.; Gupta, V.; Upadhyay, A.; Kumar, A.; Gaikwad, K.K. Pineapple Peel Extract Incorporated Poly(Vinyl Alcohol)-Corn Starch Film for Active Food Packaging: Preparation, Characterization and Antioxidant Activity. Int. J. Biol. Macromol. 2021, 187, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Chia, W.Y.; Ying Tang, D.Y.; Khoo, K.S.; Kay Lup, A.N.; Chew, K.W. Nature’s Fight against Plastic Pollution: Algae for Plastic Biodegradation and Bioplastics Production. Environ. Sci. Ecotechnol. 2020, 4, 100065. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Kumar, V.; Sar, T.; Harirchi, S.; Dregulo, A.M.; Sirohi, R.; Sindhu, R.; Binod, P.; Liu, X.; Zhang, Z.; et al. Agro Waste as a Potential Carbon Feedstock for Poly-3-Hydroxy Alkanoates Production: Commercialization Potential and Technical Hurdles. Bioresour. Technol. 2022, 364, 128058. [Google Scholar] [CrossRef]
- Bátori, V.; Jabbari, M.; Åkesson, D.; Lennartsson, P.R.; Taherzadeh, M.J.; Zamani, A. Production of Pectin-Cellulose Biofilms: A New Approach for Citrus Waste Recycling. Int. J. Polym. Sci. 2017, 2017, 9732329. [Google Scholar] [CrossRef] [Green Version]
- Giosafatto, C.; Al-Asmar, A.; D’Angelo, A.; Roviello, V.; Esposito, M.; Mariniello, L. Preparation and Characterization of Bioplastics from Grass Pea Flour Cast in the Presence of Microbial Transglutaminase. Coatings 2018, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Adorna, J.A.; Ventura, R.L.G.; Dang, V.D.; Doong, R.-A.; Ventura, J.-R.S. Biodegradable Polyhydroxybutyrate/Cellulose/Calcium Carbonate Bioplastic Composites Prepared by Heat-Assisted Solution Casting Method. J. Appl. Polym. Sci. 2022, 139, 51645. [Google Scholar] [CrossRef]
- Félix, M.; Lucio-Villegas, A.; Romero, A.; Guerrero, A. Development of Rice Protein Bio-Based Plastic Materials Processed by Injection Molding. Ind. Crops Prod. 2016, 79, 152–159. [Google Scholar] [CrossRef]
- Alonso-González, M.; Felix, M.; Romero, A. Influence of the Plasticizer on Rice Bran-Based Eco-Friendly Bioplastics Obtained by Injection Moulding. Ind. Crops Prod. 2022, 180, 114767. [Google Scholar] [CrossRef]
- Srisuwan, Y.; Baimark, Y. Mechanical Properties and Heat Resistance of Stereocomplex Polylactide/Copolyester Blend Films Prepared by in Situ Melt Blending Followed with Compression Molding. Heliyon 2018, 4, e01082. [Google Scholar] [CrossRef] [Green Version]
- Jiménez-Rosado, M.; Zarate-Ramírez, L.S.; Romero, A.; Bengoechea, C.; Partal, P.; Guerrero, A. Bioplastics Based on Wheat Gluten Processed by Extrusion. J. Clean. Prod. 2019, 239, 117994. [Google Scholar] [CrossRef]
- Mathiot, C.; Ponge, P.; Gallard, B.; Sassi, J.-F.; Delrue, F.; Le Moigne, N. Microalgae Starch-Based Bioplastics: Screening of Ten Strains and Plasticization of Unfractionated Microalgae by Extrusion. Carbohydr. Polym. 2019, 208, 142–151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gug, J.; Soule, J.; Tan, B.; Sobkowicz, M.J. Effects of Chain-Extending Stabilizer on Bioplastic Poly(Lactic Acid)/Polyamide Blends Compatibilized by Reactive Extrusion. Polym. Degrad. Stab. 2018, 153, 118–129. [Google Scholar] [CrossRef]
- Gustafsson, J.; Landberg, M.; Bátori, V.; Åkesson, D.; Taherzadeh, M.J.; Zamani, A. Development of Bio-Based Films and 3d Objects from Apple Pomace. Polymers 2019, 11, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perez-Puyana, V.; Felix, M.; Romero, A.; Guerrero, A. Effect of the Injection Moulding Processing Conditions on the Development of Pea Protein-Based Bioplastics. J. Appl. Polym. Sci. 2016, 133, 43306. [Google Scholar] [CrossRef]
- Afiq, M.M.; Azura, A.R. Effect of Sago Starch Loadings on Soil Decomposition of Natural Rubber Latex (Nrl) Composite Films Mechanical Properties. Int. Biodeterior. Biodegrad. 2013, 85, 139–149. [Google Scholar] [CrossRef]
- Jayathilaka, L.P.I.; Ariyadasa, T.U.; Egodage, S.M. Development of Biodegradable Natural Rubber Latex Composites by Employing Corn Derivative Bio-Fillers. J. Appl. Polym. Sci. 2020, 137, 49205. [Google Scholar] [CrossRef]
- García, N.L.; Ribba, L.; Dufresne, A.; Aranguren, M.I.; Goyanes, S. Physico-Mechanical Properties of Biodegradable Starch Nanocomposites. Macromol. Mat. Eng. 2009, 294, 169–177. [Google Scholar] [CrossRef]
- Kong, J.; Yu, Y.; Pei, X.; Han, C.; Tan, Y.; Dong, L. Polycaprolactone Nanocomposite Reinforced by Bioresource Starch-Based Nanoparticles. Int. J. Biol. Macromol. 2017, 102, 1304–1311. [Google Scholar] [CrossRef]
- Zou, J.; Zhang, F.; Huang, J.; Chang, P.R.; Su, Z.; Yu, J. Effects of Starch Nanocrystals on Structure and Properties of Waterborne Polyurethane-Based Composites. Carbohydr. Polym. 2011, 85, 824–831. [Google Scholar] [CrossRef]
- Dai, L.; Zhang, J.; Cheng, F. Cross-Linked Starch-Based Edible Coating Reinforced by Starch Nanocrystals and Its Preservation Effect on Graded Huangguan Pears. Food Chem. 2020, 311, 125891. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Qiu, C.; Ji, N.; Sun, C.; Xiong, L.; Sun, Q. Mechanical, Barrier and Morphological Properties of Starch Nanocrystals-Reinforced Pea Starch Films. Carbohydr. Polym. 2015, 121, 155–162. [Google Scholar] [CrossRef] [PubMed]
- González, A.; Alvarez Igarzabal, C.I. Nanocrystal-Reinforced Soy Protein Films and Their Application as Active Packaging. Food Hydrocoll. 2015, 43, 777–784. [Google Scholar] [CrossRef]
- Duan, B.; Sun, P.; Wang, X.; Yang, C. Preparation and Properties of Starch Nanocrystals/Carboxymethyl Chitosan Nanocomposite Films. Starch Starke 2011, 63, 528–535. [Google Scholar] [CrossRef]
- Kristo, E.; Biliaderis, C.G. Physical Properties of Starch Nanocrystal-Reinforced Pullulan Films. Carbohydr. Polym. 2007, 68, 146–158. [Google Scholar] [CrossRef]
- Viguié, J.; Molina-Boisseau, S.; Dufresne, A. Processing and Characterization of Waxy Maize Starch Films Plasticized by Sorbitol and Reinforced with Starch Nanocrystals. Macromol. Biosci. 2007, 7, 1206–1216. [Google Scholar] [CrossRef]
- García, N.L.; Ribba, L.; Dufresne, A.; Aranguren, M.; Goyanes, S. Effect of Glycerol on the Morphology of Nanocomposites Made from Thermoplastic Starch and Starch Nanocrystals. Carbohydr. Polym. 2011, 84, 203–210. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.-H. Advances in Functional Biopolymer-Based Nanocomposites for Active Food Packaging Applications. Polymers 2021, 13, 4198. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, R.; Palanisami, T.; Pugazhendi, A.; Gnanamani, A.; Karthik, O. Plastic to Bioplastic (P2bp): A Green Technology for Circular Bioeconomy. Front. Microbiol. 2022, 13, 851045. [Google Scholar] [CrossRef] [PubMed]
- Roy, K.; Thory, R.; Sinhmar, A.; Pathera, A.K.; Nain, V. Development and Characterization of Nano Starch-Based Composite Films from Mung Bean (Vigna radiata). Int. J. Biol. Macromol. 2020, 144, 242–251. [Google Scholar] [CrossRef]
- Wadaugsorn, K.; Panrong, T.; Wongphan, P.; Harnkarnsujarit, N. Plasticized Hydroxypropyl Cassava Starch Blended Pbat for Improved Clarity Blown Films: Morphology and Properties. Ind. Crops Prod. 2022, 176, 114311. [Google Scholar] [CrossRef]
- Wongphan, P.; Khowthong, M.; Supatrawiporn, T.; Harnkarnsujarit, N. Novel Edible Starch Films Incorporating Papain for Meat Tenderization. Food Packag. Shelf Life 2022, 31, 100787. [Google Scholar] [CrossRef]
- Srisa, A.; Promhuad, K.; San, H.; Laorenza, Y.; Wongphan, P.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Tansin, K.; Harnkarnsujarit, N. Antibacterial, Antifungal and Antiviral Polymeric Food Packaging in Post-COVID-19 Era. Polymers 2022, 14, 4042. [Google Scholar] [CrossRef] [PubMed]
- Promhuad, K.; Srisa, A.; San, H.; Laorenza, Y.; Wongphan, P.; Sodsai, J.; Tansin, K.; Phromphen, P.; Chartvivatpornchai, N.; Ngoenchai, P.; et al. Applications of Hemp Polymers and Extracts in Food, Textile and Packaging: A Review. Polymers 2022, 14, 4274. [Google Scholar] [CrossRef]
- San, H.; Laorenza, Y.; Behzadfar, E.; Sonchaeng, U.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Promhuad, K.; Srisa, A.; Wongphan, P.; et al. Functional Polymer and Packaging Technology for Bakery Products. Polymers 2022, 14, 3793. [Google Scholar] [CrossRef]
- Fonseca, L.M.; Cruxen, C.E.D.S.; Bruni, G.P.; Fiorentini, Â.M.; Zavareze, E.D.R.; Lim, L.-T.; Dias, A.R.G. Development of Antimicrobial and Antioxidant Electrospun Soluble Potato Starch Nanofibers Loaded with Carvacrol. Int. J. Biol. Macromol. 2019, 139, 1182–1190. [Google Scholar] [CrossRef]
Starch Source | Method | Treatment | Results | Ref. |
---|---|---|---|---|
Cassava | Ultrasonication | Time: 30 min Frequency: 20 kHz Temperature: 25 °C | Particle diameter: 35–65 nm Yield: 12% | [59] |
Corn | Milling | Media: water Milling speed: 3500 rpm Time: 90 min | Particle size: 245 nm | [47] |
Corn | Extrusion | The ratio of starch: water: glycerol = 100:22:23 Storage temperature: 2 °C Storage time: 24 h Extrusion speed: 100–360 rpm Extrusion temperature: 55–110 °C | The higher the extrusion temperature, the smaller the particle size (160 nm) | [57] |
Waxy maize | Ultrasonication | Temperature: 8 °C Frequency: 20 kHz Time: 75 min | Particle size: 37 nm | [60] |
Cassava | Gamma irradiation | Dose: 20 kGy Speed: 14 kGy/h | Particle size: 31 nm | [54] |
Sago | HPH | Media: aquadest Pressure: 250 MPa Time: in 1 h | Particle diameter: 28.514 nm | [61] |
Amaranth | AH | Acid: H2SO4 3.16 M Temperature: 40 °C Time: 3, 5, and 10 days | Yield on day 3: 17% Particle size: 374 nm | [96] |
Potato | EH | Enzyme: α-amylase Incubation time: 30 min Incubation temperature: of 60 °C | Yield: 29% Size: 301 nm | [80] |
Potato | AH | Acid: H2SO4 3.16 M Homogenization speed: 200 rpm Temperature: 40 °C Time: 5 days | Diameter: 237.03 nm | [83] |
Corn | EH | Enzyme: pullulanase Temperature: 58 °C Time: 8 h | Yield: >85% | [79] |
Waxy maize | AH | Acid: HCl 2.2 N Temperature: 35 °C Time: 10 days | Size: 30–300 nm | [97] |
Elephant foot yam | EH | Enzyme: pullulanase Temperature: 60 °C Time: 8 h | Yield: 61.33% Particle size: 198.14 nm | [84] |
Waxy maize | AH | Acid: H2SO4 3.16 M Temperature: 40 °C Time: 6 days | Particle size: 47 nm Shape: elliptical | [87] |
High-amylose maize | Particle size: 118 nm | |||
Rice | AH | Acid: H2SO4 3 M Temperature: 40 °C Time: 5 days | Crystallinity: 13.3% Crystalline type: A | [98] |
Amadumbe | AH | Acid: H2SO4 3.16 M Temperature: 40 °C Time: 5 days | Yield: 25% Particle size: 50–100 nm | [85] |
Waxy maize | Self-assembly | Enzyme: pullulanase Incubation time: 8 h Incubation temperature: 4 °C | Particle size: 200–300 nm | [99] |
High-amylose maize | NP | Solvent: ethanol Temperature: room temperature Time: 8 h | Particle size: 20–80 nm | [82] |
Pea | Particle size: 30–150 nm | |||
Potato | Particle size: 50–225 nm | |||
Corn | Particle size: 15–80 nm | |||
Tapioca | Particle size: 30–110 nm | |||
Sweet potato | Particle size: 40–100 nm | |||
Waxy maize | Particle size: 20–200 nm | |||
Corn | AH + ultrasonication | Acid: H2SO4 3.16 M Hydrolysis time: 10 days Ultrasonication frequency: 40 kHz Ultrasonication time: 45 min Ultrasonication temperature: 40 °C | Yield: 22% Particle size: 109.9 nm | [100] |
Tapioca | NP + sonication | Solvent: ethanol and aquadest Temperature: 22 °C Ultrasonication time: 60 min Ultrasonication frequency of 20 kHz | Particle size: 163 nm | [81] |
Waxy maize | Milling + AH | Milling media: ethanol anhydrate Milling speed: 300 rpm Milling time: 15, 30, 45, 60, 75, and 90 min Milling temperature: 40 °C Acid: H2SO4 3.16 M Hydrolysis temperature: 40 °C Hydrolysis time: 5 days | The longer the hydrolysis time, the decrease in extraction yield and a reduction in particle size | [101] |
Potato | NP | Solution: NaOH Tween (non-ionic surfactant) Solvent: ethanol Solution pH: 7 | Diameter: 71.81 nm | [83] |
Mango kernel | AH + sonication | Acid: HCl 3.16 M and H3PO4 3.16 M Incubation temperature: 40 °C Incubation time: 5 days Sonication was performed within 20 min with frequency of 450 W | Yield: 24.4% Particle size: 24.4 nm | [93] |
Mango kernel | AH + sonication | Acid: HCl 3.16 M and H3PO4 3.16 M Incubation temperature: 40 °C Incubation time: 5 days Sonication was performed within 20 min with frequency of 450 W | Yield: 31.7% Particle size: 79 nm | [94] |
Corn | Yield: 19.4% Particle size: 61.1 nm |
Starch Source | Method | Granule Morphology Shape | Particle Size (nm) | Ref. |
---|---|---|---|---|
Banana | NP | Irregular | 135 | [103] |
Waxy maize | Milling + AH | Round to irregular | 67.2 | [101] |
Potato | AH | Elliptic–polyhedric | 237.03 | [83] |
AH + ultrasonication | 153.63 | |||
NP | 71.81 | |||
Waxy rice | AH | Irregular | 20–420 | [97] |
Waxy maize | Cold plasma + ultrasonication | Round and polyhedral | 342 | [104] |
Potato | 336 | |||
Tapioca | NP + sonication | Round | 163 | [81] |
NP | Round | 219 | ||
Corn | AH + ultrasonication | Grape-like and parallelepiped | 83.9 | [100] |
Corn | Ultrasonication | Round | 36–68 | [59] |
Cassava | 35–65 | |||
Yam | 8–32 | |||
Amaranth | AH | Parallelepiped | 374 | [96] |
Waxy maize | 322 | |||
Potato | Ultrasonication | Round | 74.8 | [105] |
Waxy maize | Self-assembly | Spherical | 200–300 | [99] |
Corn | Ultrasonication | Round irregular | 82 | [60] |
Waxy maize | 297 | |||
Waxy maize | AH | Spherical | 58 | [34] |
Ultrasonication | Ellipsoidal | 37 | ||
Amadumbe | AH | Parallelepiped | 50–100 | [85] |
Mango kernel | AH + sonication | Round | 67.1 | [93] |
Cassava | Gamma irradiation | NR | 31 | [54] |
Waxy maize | NR | 41 | ||
Mango kernel | AH + sonication | Spherical | 79 | [94] |
Corn | Spherical | 61.1 | ||
Cassava | Gamma irradiation | NR | 50–100 | [106] |
High-amylose maize | NP | Round and oval | 20–80 | [82] |
Pea | 30–150 | |||
Potato | 50–225 | |||
Corn | 15–80 | |||
Tapioca | 30–110 | |||
Sweet potato | 40–100 | |||
Waxy maize | 20–200 | |||
Potato | Self-assembly | Round to irregular | 9–40 | [107] |
Waxy maize | 50–120 |
Starch Source | Method | Relative Crystallinity (%) | Crystalline Type | Ref. |
---|---|---|---|---|
Plantain | AH | 90 | Type-B | [103] |
Waxy maize | Milling + AH | 49 | NR | [101] |
Potato | AH | 42.2 | Type-B | [83] |
AH + ultrasonication | 61.3 | Type-B | ||
NP | 44.1 | Type-V | ||
Potato Maize Cassava | EH | 17.5 21.3 13.2 | NR NR NR | [80] |
Waxy rice | AH | NR | Type-A | [97] |
Waxy maize | Cold plasma + ultrasonication | 43 | Type-A | [104] |
Potato | 29.1 | Type-B | ||
Tapioca | NP + sonication | 15.21 | Type-V | [81] |
NP | 12.53 | Type-V | ||
Corn | AH + ultrasonication | 36.6 | NR | [100] |
Corn | Ultrasonication | 8 | Type-A | [59] |
Cassava | 0 | Type-V | ||
Yam | 9 | Type-B | ||
Amaranth | AH | 35 | Type-A | [96] |
Waxy maize | 36.5 | Type-A | ||
Potato | Ultrasonication | NR | Type-V | [105] |
Waxy maize | EH | 55.41 | Type B+V | [79] |
Corn | Ultrasonication | NR | Type-V | [60] |
Waxy maize | NR | Type-V | ||
Waxy maize | AH | 69 | Type-A | [34] |
Ultrasonication | 0 | NR | ||
Rice | AH | 13.3 | Type-A | [98] |
Amadumbe | AH | NR | Type-A | [85] |
Mango kernel | AH + sonication | 62.2 | Type-A | [93] |
Mango kernel | AH + sonication | NR | Type-A | [94] |
Corn | NR | Type-A | ||
Taro | EH | NR | Type B+V | [109] |
High-amylose maize | NP | 39.8 | Type-V | [82] |
Pea | 31.5 | |||
Potato | 26.3 | |||
Corn | 23.2 | |||
Tapioca | 19.3 | |||
Sweet potato | 20.7 | |||
Waxy maize | 7.1 | |||
Potato | Self-assembly | 54.31 | Type-B | [107] |
Waxy maize | 55.41 |
Starch Source | Method | To (°C) | Tp (°C) | Tc (°C) | Tc−To (°C) | AH (J/g) | Ref. |
---|---|---|---|---|---|---|---|
Plantain | AH | 74.6 | 93.6 | 106.9 | 32.3 | 24.6 | [103] |
Waxy maize | Cold plasma + ultrasonication | 63.18 | 68.95 | 77.54 | 14.36 | 14.13 | [104] |
Potato | 53.24 | 56.98 | 61.95 | 8.71 | 12.83 | ||
Tapioca | NP + sonication | 52.88 | 60.15 | 70.42 | 23.03 | 6.61 | [81] |
NP | 40.77 | 55.14 | 67.08 | 20.7 | 4.64 | ||
Waxy rice | AH | 62.68 | 68.62 | 77.95 | 15.27 | 3.3 | [97] |
High-amylose maize | NP | 48.19 | 61.20 | 71.20 | 23.01 | 6.16 | [82] |
Pea | 46.51 | 60.42 | 73.47 | 26.96 | 4.57 | ||
Potato | 43.45 | 66.42 | 73.31 | 29.86 | 4.34 | ||
Corn | 41.21 | 55.29 | 70.31 | 29.10 | 4.21 | ||
Tapioca | 44.21 | 54.14 | 67.62 | 23.41 | 2.37 | ||
Sweet potato | 42.74 | 56.24 | 70.21 | 27.47 | 3.02 | ||
Waxy maize | 44.13 | 59.54 | 70.44 | 26.31 | 0.96 | ||
Potato | Self-assembly | 65.97 | 97.39 | 101.32 | 35.35 | −5.34 | [107] |
Waxy maize | 62.4 | 78.31 | 93.24 | 30.84 | −10.17 | ||
Waxy maize | AH | 57.70 | 92.40 | 81.90 | 24.20 | 34.6 | [63] |
Corn | 60.20 | 89.10 | 116.70 | 56.50 | 20.20 |
Bioplastic Composition | Elongation at Break (%E) | Young Modulus (MPa) | Tensile Strength (MPa) | Ref. | ||
---|---|---|---|---|---|---|
Matrix | Reinforcing Material | Plasticizer | ||||
Polyurethane | Corn SNP 0% 5% 10% 20% 30% | - | 29.8 44.6 67 61.1 70.3 | NR | 8.5 11.8 15.9 16.2 17.1 | [95] |
Cassava starch (4) | Cassava SNP (0) (0.5) (5) (10) | Glycerol (2.1) | NR | 4.8 5 15.2 29.8 | 1 1.24 1.98 3.15 | [19] |
Sago starch | Sago SNP 0% 2% 4% 6% 8% | - | 1.24 1.5 1.62 1.67 1.58 | 2.314 2.87 3.21 2.532 2.444 | 2.469 2.902 3.578 2.669 2.546 | [61] |
Waterborne polyurethane | Pea SNP 0% 5% 10% 20% 30% | - | 825 718 600 526 300 | 3 7 115 195 208 | 11.5 29 31 25 14 | [133] |
Polycaprolactone | Corn SNP 0% 2.25% 5% 10% | - | 1550 1455 1410 905 | 274.8 310.7 333.6 339.3 | 13.5 17.7 19.5 19.9 | [132] |
Rice starch | Rice SNP 0% 5% 10% 15% 20% 25% 30% | Sorbitol 40% | 53.46 34.76 28.75 17.12 8.89 2.51 2.48 | NR | 7.12 10.82 11.53 12.79 16.43 13.91 12.86 | [98] |
Potato starch | Amadumbe SNP 0% 2.5% 5% 10% | Glycerol | NR | NR | 2.09 8.11 5.91 6.7 | [85] |
Amadumbe starch | Amadumbe SNP 0% 2.5% 5% 10% | Glycerol | NR | NR | 2.4 3.89 3.37 2.08 | |
Cross-linked cassava starch | Cassava SNP 0% 2% 4% 6% 8% | Glycerol | 175.87 138.21 98.85 76.46 60 | 10 10.98 11.87 12.96 12.5 | 5.48 7 8.97 9.17 8.75 | [134] |
Corn starch | Corn SNP 0 2.5% 5% 7.5% 10% | Glycerol | 770.5 746.3 997 1112.9 1462 | 10.95 9.32 11.95 12.12 15.87 | 20.34 20.98 9.86 9.35 2.85 | [94] |
Mango kernel starch | Mango kernel SNP 0% 2.5% 5% 7.5% 10% | Glycerol | 659.1 793.8 1466.2 1899.4 1437 | 9.3 10.39 17.51 18.96 15.47 | 22.85 19.61 11.15 1.53 2.03 | |
Pea starch | Potato SNP 0% 3% 6% 9% 12% | Glycerol 3 g | 53.4 52.7 48.6 45 37 | NR | 8.8 11.5 15 9.8 9.5 | [99] |
Corn starch | Taro SNP 0% 0.5% 2% 5% 10% 15% | Glycerol 3 g | 84.5 80 74.7 66.8 64.1 58 | NR | 1.1 1.53 1.74 2.51 2.87 2.28 | [109] |
Pea starch | Waxy maize SNP 0% 1% 3% 5% 7% 9% | Glycerol 3% | 29.23 26.18 20.46 12.58 21.6 26.7 | 21.15 27.95 37.89 85.72 36.59 27.56 | 5.76 6.56 6.95 9.96 7.12 6.68 | [135] |
Soy protein isolate 0.25 g | Corn SNP 0% 2% 5% 10% 20% 40% | Glycerol 0.125 g | 65.95 53.79 58.67 32.17 41.89 21.35 | 26.89 55.31 39.42 71.05 102.23 310.34 | 1.1 1.42 1.34 1.79 2.61 5.08 | [136] |
Carboxymethyl chitosan 5 g | Waxy maize SNP 0% 3% 6% 10% 15% 20% 30% 40% | Glycerol 2 g | 180.24 180 160 148.79 137.68 115.47 97.36 62 | NR | 15.36 17 18.78 19.94 21.5 26.87 28.32 26.9 | [137] |
Pullulan | Waxy maize SNP 0% 3% 6% 10% 15% 20% 30% 40% | Sorbitol 30% | 237 139 120 110 67 58 40 16 | 94 100 124 586 687 700 1004 1295 | 6 8 9.3 9.5 14 15.2 19.8 26.2 | [138] |
Waxy maize starch | Waxy maize SNP 0% 5% 10% 15% | Sorbitol 25% | 63 57 58 41 | 17.2 36.6 38.3 46.2 | 0.38 0.99 1.37 1.59 | [139] |
Bioplastic Composition | WVP (g/ Pa.m.h) | Ref. | ||
---|---|---|---|---|
Matrix | Reinforcing Material | Plasticizer | ||
Sago starch | Sago SNP 0% 2% 4% 6% 8% | - | 12.08 × 10−3 7.80 × 10−3 6.81 × 10−3 5.93 × 10−3 6.42 × 10−3 | [61] |
Starch rice | SNP rice 0% 5% 10% 15% 20% | Sorbitol 40% | 0.75 × 10−13 0.66 × 10−13 0.60 × 10−13 0.31 × 10−13 0.30 × 10−13 | [98] |
Potato starch | Amadumbe SNP 0% 2.5% 5% 10% | Glycerol | 1.8 × 10−5 1.6 × 10−5 1.5 × 10−5 1.5 × 10−5 | [85] |
Amadumbe starch | Amadumbe SNP 0% 2.5% 5% 10% | Glycerol | 2.3 × 10−5 2.1 × 10−5 2.0 × 10−5 1.8 × 10−5 | |
Waxy maize starch | Waxy maize SNP 0% 2.5% | Glycerol 33% | 1.37 × 10−6 2.45 × 10−6 | [140] |
Corn starch | Corn SNP 0% 2.5% 5% 7.5% 10% | Glycerol | 1.41 × 10−6 1.25 × 10−6 1.15 × 10−6 1.11 × 10−6 1.12 × 10−6 | [94] |
Mango kernel starch | Mango kernel SNP 0% 2.5% 5% 7.5% 10% | Glycerol | 1.37 × 10−6 1.35 × 10−6 1.21 × 10−6 1.08 × 10−6 1.00 × 10−6 | |
Corn starch 7.5 g | Taro SNP 0% 0.5% 2% 5% 10% 15% | Glycerol 3 g | 2.74 × 10−7 2.05 × 10−7 1.83 × 10−7 1.49 × 10−7 1.20 × 10−7 1.37 × 10−7 | [109] |
Pea starch 5 g | Waxy maize SNP 0% 1% 3% 5% 7% 9% | Glycerol 1.5 g | 11.18 × 10−3 7.57 × 10−3 6.09 × 10−3 4.26 × 10−3 5.41 × 10−3 5.50 × 10−3 | [135] |
Soy protein isolate 0.25 g | Corn SNP 0% 5% 20% 40% | Glycerol 0.125 g | 4.3 × 10−6 4.8 × 10−6 3.9 × 10−6 3.57 × 10−6 | [136] |
Cassava starch 10 g | Waxy maize SNP 0% 2.5% | Glycerol 5 g | 1.62 × 10−6 0.97 × 10−6 | [131] |
Bioplastic Composition | Tg (°C) | Tm (°C) | To (°C) | ∆H (J/g) | Ref. | ||
---|---|---|---|---|---|---|---|
Matrix | Reinforcing Material | Plasticizer | |||||
Potato starch | Amadumbe SNP 0% 2.5% 5% 10% | Glycerol 30% | 64 72 94 94 | 78.19 88.59 107.31 105.52 | 78.19 88.59 107.31 105.52 | 14.32 16.69 2.39 0.91 | [85] |
Amadumbe starch | Amadumbe SNP 0% 2.5% 5% 10% | Glycerol 30% | 60 70 86 92 | 66.03 72.49 73.07 96.24 | 6603 72.49 73.07 96.24 | 24.92 20.68 15.63 15.27 | |
Corn starch 7.5 g | Taro SNP 0% 0.5% 2% 5% 10% 15% | Glycerol 3 g | NR | 210.21 219.47 223.19 218.1 222.34 209.91 | 171.75 187.59 187.43 184.08 187.28 180.3 | 45.49 51.9 50.84 50.03 55.34 36.95 | [109] |
Pea starch 7.5 g | Potato SNP 0% 3% 6% 9% 12% | Glycerol 3 g | NR | 225.81 226.91 227.2 231.98 235.81 | 192.97 195.01 196.43 199.58 200.08 | 42.75 24.72 22.24 32.51 34.32 | [107] |
Pea starch 5 g | Waxy maize SNP 0 1% 3% 5% 7% 9% | Glycerol 3% | NR | 188.51 190.81 189.56 193.92 189.66 190.1 | 186.61 186.26 186.79 187.35 186.61 187.54 | 23.51 24.34 24.75 26.76 22.31 22.17 | [135] |
Waxy maize starch | Waxy maize SNP 0% 5% 10% 15% | Sorbitol 25% | 40.1 46.3 52.3 58.8 | 150.1 152.7 160.4 169.7 | NR | 99.8 122.4 150.7 165.2 | [139] |
Bioplastic Composition | Duration | Weight Loss | Ref. | ||
---|---|---|---|---|---|
Matrix | Reinforcing Material | Plasticizer | |||
Cassava starch (4) | Cassava SNP (0) (0.5) (5) (10) | Glycerol (2.1) | 17 weeks | 82.8% 82.4% 82.5% 84.7% | [19] |
Polycaprolactone | Corn SNP 0 2.25 5 10 | - | 4 days | 7 mg/cm2 10 mg/cm2 15.7 mg/cm2 17.6 mg/cm2 | [132] |
Pea starch | Pea SNP 0% 0.5% 1% 2% 5% 10% | Glycerol 50% | 1 week | 28.67% 49.25% 83.46% 100% 100% 100% | [143] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marta, H.; Wijaya, C.; Sukri, N.; Cahyana, Y.; Mohammad, M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers 2022, 14, 4875. https://doi.org/10.3390/polym14224875
Marta H, Wijaya C, Sukri N, Cahyana Y, Mohammad M. A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers. 2022; 14(22):4875. https://doi.org/10.3390/polym14224875
Chicago/Turabian StyleMarta, Herlina, Claudia Wijaya, Nandi Sukri, Yana Cahyana, and Masita Mohammad. 2022. "A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic" Polymers 14, no. 22: 4875. https://doi.org/10.3390/polym14224875
APA StyleMarta, H., Wijaya, C., Sukri, N., Cahyana, Y., & Mohammad, M. (2022). A Comprehensive Study on Starch Nanoparticle Potential as a Reinforcing Material in Bioplastic. Polymers, 14(22), 4875. https://doi.org/10.3390/polym14224875