Influence of Selected Crosslinking Agents and Selected Unsaturated Copolymerizable Photoinitiators Referring to the Shrinkage Resistance of Solvent-Based Acrylic Pressure-Sensitive Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Investigated Solvent-Based Acrylic Pressure-Sensitive Adhesives
2.2. Viscosity and Molecular Weights (MW and Mn) of the Prepared Acrylic PSAs, including Photoreactive Acrylic PSA Containing Unsaturated Photoinitiators
2.3. Amount of Solid Materials
2.4. The Coating Weight of the Acrylic PSA
2.5. Type of Carrier, Drying Terms in Drier and Cover Material
2.6. UV-Crosslinking
2.7. Conditioning
2.8. Evaluation of the Shrinkage
2.9. Chemical Substances Used in the Research
3. Results and Discussion
3.1. Viscosity and the Molecular Weights (MW and Mn) of the Synthesized Acrylic PSAs, including Photoreactive Acrylic PSAs Containing Unsaturated Photoinitiators
3.2. Shrinkage of the Investigated Solvent-Based Acrylic PSAs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Lee, T.H.; Shim, K.S.; Park, J.W.; Kim, H.J.; Kim, Y.; Jung, S. Effect of crosslinking density on adhesion performance and flexibility properties of acrylic pressure sensitive adhesives for flexible display applications. Int. J. Adhes. Adhes. 2017, 74, 137–143. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Tabuchi, S.; Kawahara, S.; Murakami, H. Sharp “Warm-off” function of an Acrylic Pressure-sensitive Adhesive Based on a Side-chain Crystalline graft-Copolymer. Chem. Lett. 2016, 45, 463–465. [Google Scholar] [CrossRef]
- Verdier, C.; Piau, J.-M.; Benyahia, L. Peeling of Acrylic Pressure Sensitive Adhesives: Cross-Linked versus Uncross-Linked Adhesives. J. Adhes. 1998, 68, 93–116. [Google Scholar] [CrossRef]
- Murakami, H.; Futashima, K.; Nanchi, M.; Kawahara, S. Unique thermal behavior of acrylic PSAs bearing long alkyl side groups and crosslinked by aluminum chelate. Eur. Polym. J. 2011, 47, 378–384. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S.; Nakanishi, R.; Nanchi, M.; Kawahara, S.; Murakami, H. “Cool-off” Function and Heat Resistance of an Acrylic Pressure Sensitive Adhesive Bearing a Mesogenic Group. Chem. Lett. 2018, 47, 344–346. [Google Scholar] [CrossRef]
- Kaczmarek, H.; Ołdak, D.; Szalla, A. Networks of photocrosslinked poly(meth)acrylates in linear poly(vinyl chloride). J. Appl. Polym. Sci. 2002, 86, 3725–3734. [Google Scholar] [CrossRef]
- Jian, Y.; He, Y.; Zhao, L.; Kowalczyk, A.; Yang, W.; Nie, J. Effect of Monomer Structure on Real-Time UV-Curing Shrinkage Studied by a Laser Scanning Approach. Adv. Polym. Technol. 2013, 32. [Google Scholar] [CrossRef]
- Horigome, K.; Ebe, K.; Kuroda, S. UV curable pressure-sensitive adhesives for fabricating semiconductors. II. The effect of functionality of acrylate monomers on the adhesive properties. J. Appl. Polym. Sci. 2004, 93, 2889–2895. [Google Scholar] [CrossRef]
- Wu, G.; Jiang, Y.; Ye, L.; Zeng, S.; Yu, P.; Xu, W. A novel UV-crosslinked pressure-sensitive adhesive based on photoinitiator-grafted SBS. Int. J. Adhes. Adhes. 2010, 30, 43–46. [Google Scholar] [CrossRef]
- Park, S.H.; Lee, T.H.; Park, Y.I.; Noh, S.M.; Kim, J.C. Effect of the n -butyl acrylate/2-ethylhexyl acrylate weight ratio on the performances of waterborne core–shell PSAs. J. Ind. Eng. Chem. 2017, 53, 111–118. [Google Scholar] [CrossRef]
- Mozelewska, K.; Antosik, A.K. UV-Crosslinkable pressure-sensitive adhesives containing a benzophenone-based unsaturated photoinitiator. Przem. Chem. 2018, 97, 1533–1534. [Google Scholar] [CrossRef]
- Lee, S.W.; Park, J.W.; Park, C.H.; Kim, H.J.; Kim, E.A.; Woo, H.S. Optical properties and adhesion performance of optically clear acrylic pressure sensitive adhesives using chelate metal acetylacetonate. Int. J. Adhes. Adhes. 2013, 47, 21–25. [Google Scholar] [CrossRef]
- Świderska, J.; Czech, Z.; Świderski, W.; Kowalczyk, A. Reducing of on polymerization shrinkage by application of UV curable dental restorative composites. Pol. J. Chem. Technol. 2014, 16, 51–55. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Mhaisalkar, S.G.; Wong, E.H. Cure shrinkage measurement of nonconductive adhesives by means of a thermomechanical analyzer. J. Electron. Mater. 2005, 34, 1177–1182. [Google Scholar] [CrossRef]
- Kelch, S.; Choi, N.-Y.; Wang, Z.; Lendlein, A. Amorphous, Elastic AB Copolymer Networks from Acrylates and Poly[(L-lactide)-ran-glycolide]dimethacrylates. Adv. Eng. Mater. 2008, 10, 494–502. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Yu, G.; Guan, J.; Pan, C.; Du, Y.; Xiong, X.; Wang, Z. Facile Preparation of Dibenzoheterocycle-Functional Nanoporous Polymeric Networks with High Gas Uptake Capacities. Macromolecules 2014, 47, 2875–2882. [Google Scholar] [CrossRef]
- Gordon, M.B.; French, J.M.; Wagner, N.J.; Kloxin, C.J. Dynamic Bonds in Covalently Crosslinked Polymer Networks for Photoactivated Strengthening and Healing. Adv. Mater. 2015, 27, 8007–8010. [Google Scholar] [CrossRef]
- Petrie, E.M. Handbook of Adhesives and Sealants, 3rd ed.; McGraw Hill: New York, NY, USA, 2021; ISBN 9781260440447. [Google Scholar]
- Nam, I.; Ha, K.; Lee, K.; Kim, L.J.; Kim, M.; Seong, I.; Chang, T. Novel versatile pressure-sensitive adhesives for polarizing film of TFT-LCDs: Viscoelastic characteristics and light leakage performance. Int. J. Adhes. Adhes. 2011, 31, 708–714. [Google Scholar] [CrossRef]
- Lee, T.; Kim, J.; Lee, J.; Kim, H. Pressure-Sensitive Adhesives for Flexible Display Applications. In Hybrid Nanomaterials—Flexible Electronics Materials; Vargas-Bernal, R., He, P., Zhang, S., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Kovrov, A.; Helgesen, M.; Boeffel, C.; Kröpke, S.; Søndergaard, R.R. Novel acrylic monomers for organic photovoltaics encapsulation. Sol. Energy Mater. Sol. Cells 2020, 204, 110210. [Google Scholar] [CrossRef]
- Antosik, A.K.; Antosik, N.A. Effect of the addition of selected silicon fillers on Si-PSA shrinkage. J. Anal. Pharm Res. 2021, 10, 157–159. [Google Scholar] [CrossRef]
- Mozelewska, K.; Antosik, A.K. Influence of Silicone Additives on the Properties of Pressure-Sensitive Adhesives. Materials 2022, 15, 5713. [Google Scholar] [CrossRef] [PubMed]
- FINAT Association. Available online: https://www.finat.com/knowledge/finat-test-methods (accessed on 20 September 2022).
Raw Material | Abbreviation | Chemical Formula | Supplier | Type * |
---|---|---|---|---|
aluminium acetylacetonate | AlACA | Wacker Chemie Germany | EC | |
titanium acetylacetonate | TiACA | Union Carbide USA | EC | |
N-methylolacrylamide | N-MAA | BASF Germany | IC | |
modified polycarbodiimide | Permutex XR-5580 | Stahl Chemistry Netherland | EC | |
highly methylated amine resin | Cymel 303 | Cytec Netherlands | EC | |
partially methylated amine resin | Cymel 370 | Cytec Netherlands | EC | |
highly alkylated benzoguanamine resin | Cymel 1123 | Cytec Netherlands | EC | |
3-isocyanatemethyl-3,5,5- trimethyl-cyclo-hexylene diisocyanate | IPDI | BASF Germany | EC | |
N,N′-bis-propylene isophthalic acid amide | BPIA | self-synthesized | EC | |
trimethylolpropane-tris-(N-methylaziridinyl) propionate | Neocryl CX-100 | ICI USA | EC | |
1-hydroxycyclohexyl acetophenone | Irgacure 184 | Ciba Swiss | EPh | |
Bis[4-(dimethylamino)phenyl]methanone | Michler‘s ketone | BASF Germany | EPh | |
tris-benzophenyloxy phosphineoxide | TBPO | BASF Germany | EPh | |
2,4-bis-trichloromethyl-6(1-naphthyl)-s-triazine | BN-s-T | self-synthesized | EPh | |
2-hydroxy-1-[4-(2-acryloyloxyethoxy)phenyl]-2-methyl-1-propanone | ZLI 3331 | Merck Germany | CoPh | |
4-acryloyloxy benzophenone | ABP | Poly-Chem Germany | CoPh | |
4-acrylamidocarbonyl-dioxy benzophenone | ACDP | self-synthesized | CoPh | |
4-benzophenylvinyl carbonate | BVCN | self-synthesized | CoPh | |
4-propyleneimine-carbonyl benzophenone | PCB | self-synthesized | CoPh |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Licbarski, A.; Bartkowiak, M.; Czech, Z. Influence of Selected Crosslinking Agents and Selected Unsaturated Copolymerizable Photoinitiators Referring to the Shrinkage Resistance of Solvent-Based Acrylic Pressure-Sensitive Adhesives. Polymers 2022, 14, 5190. https://doi.org/10.3390/polym14235190
Licbarski A, Bartkowiak M, Czech Z. Influence of Selected Crosslinking Agents and Selected Unsaturated Copolymerizable Photoinitiators Referring to the Shrinkage Resistance of Solvent-Based Acrylic Pressure-Sensitive Adhesives. Polymers. 2022; 14(23):5190. https://doi.org/10.3390/polym14235190
Chicago/Turabian StyleLicbarski, Adam, Marcin Bartkowiak, and Zbigniew Czech. 2022. "Influence of Selected Crosslinking Agents and Selected Unsaturated Copolymerizable Photoinitiators Referring to the Shrinkage Resistance of Solvent-Based Acrylic Pressure-Sensitive Adhesives" Polymers 14, no. 23: 5190. https://doi.org/10.3390/polym14235190
APA StyleLicbarski, A., Bartkowiak, M., & Czech, Z. (2022). Influence of Selected Crosslinking Agents and Selected Unsaturated Copolymerizable Photoinitiators Referring to the Shrinkage Resistance of Solvent-Based Acrylic Pressure-Sensitive Adhesives. Polymers, 14(23), 5190. https://doi.org/10.3390/polym14235190