Lignocellulosic Biomass as Sorbent for Fluoride Removal in Drinking Water
Abstract
:1. Introduction
2. Technologies for Fluoride Removal
3. Fluoride Removal by Biosorption
3.1. Fluoride Removal from Drinking Water by Lignocellulosic Biomasses
3.2. Methods for Bioadsorbent Preparation
3.2.1. Physical Treatments
3.2.2. Chemical Treatments
4. Biosorbents Characterization
4.1. ICP (Inductively Coupled Plasma)
4.2. TGA/DSC (Thermogravimetric Analysis—Differential Scanning Calorimetry)
4.3. SEM-EDS (Scanning Electron Microscope with Energy Dispersive Spectroscopy)
4.4. BET (Brunauer, Emmett, and Teller)
4.5. FTIR (Fourier Transform Infrared Transmission Spectroscopy)
4.6. XRD (X-ray Diffraction)
4.7. XPS (X-ray Photoelectron Spectroscopy)
5. Biosorbents Ionic Affinity
6. Materials Description and Reuse Cycles
7. Mechanism
- Molecular diffusion, external mass transfer, or fluoride ions transport from the aqueous medium to the external surface.
- Fluoride ion adsorption on the adsorbent particle surface.
8. Advantages and Disadvantages of Biosorbents
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fawell, J.; Bailey, K.; Chilton, J.; Dahi, L.; Fewtrell, L.; Magara, Y. Fluoride in drinking-water. In Who Drinking-Water Quality Series; Fewtrell, L., Bartram, J., Eds.; World Health Organization Titles with IWA Publishing: London, UK, 2006; p. 144. [Google Scholar]
- WHO. Preventing Disease through Healthy Environments: Inadequate or Excess Fluoride: A Major Public Health Concern; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Salifu, A. Fluoride Removal from Groundwater by Adsorption Technology the Occurrence, Adsorbent Synthesis, Regeneration and Disposal; Doctor. Delft University of Technology: Delft, The Netherlands, 2017; p. 302. [Google Scholar]
- Jamwal, K.D.; Slathia, D. A review of defluoridation techniques of global and indian prominence. Curr. World Environ. 2022, 17, 41–57. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First and Second Addenda; World Health Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Mukherjee, S.; Halder, G. A review on the sorptive elimination of fluoride from contaminated wastewater. J. Environ. Chem. Eng. 2018, 6, 1257–1270. [Google Scholar] [CrossRef]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride occurrence in groundwater systems at global scale and status of defluoridation–state of the art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- Pillai, P.; Dharaskar, S.; Pandian, S.; Panchal, H. Overview of fluoride removal from water using separation techniques. Environ. Technol. Innov. 2021, 21, 101246. [Google Scholar] [CrossRef]
- Ghosh, S.; Malloum, A.; Igwegbe, C.A.; Ighalo, J.O.; Ahmadi, S.; Dehghani, M.H.; Othmani, A.; Gökkuş, Ö.; Mubarak, N.M. New generation adsorbents for the removal of fluoride from water and wastewater: A review. J. Mol. Liq. 2022, 346, 118257. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Adeniyi, A.G. A mini-review of the morphological properties of biosorbents derived from plant leaves. SN Appl. Sci. 2020, 2, 509. [Google Scholar] [CrossRef] [Green Version]
- Aragaw, T.A.; Bogale, F.M. Biomass-based adsorbents for removal of dyes from wastewater: A review. Front. Environ. Sci. 2021, 9, 558. [Google Scholar] [CrossRef]
- Das, R.; Lindstrom, T.; Sharma, P.R.; Chi, K.; Hsiao, B.S. Nanocellulose for sustainable water purification. Chem. Rev. 2022, 122, 8936–9031. [Google Scholar] [CrossRef]
- Sharma, A.; Rana, H.; Goswami, S. A comprehensive review on the heavy metal removal for water remediation by the application of lignocellulosic biomass-derived nanocellulose. J. Polym. Environ. 2021, 30, 1–18. [Google Scholar] [CrossRef]
- Vázquez-Guerrero, A.; Alfaro-Cuevas-Villanueva, R.; Rutiaga-Quiñones, J.G.; Cortés-Martínez, R. Fluoride removal by aluminum-modified pine sawdust: Effect of competitive ions. Ecol. Eng. 2016, 94, 365–379. [Google Scholar] [CrossRef]
- Li, X.; Tang, Y.; Cao, X.; Lu, D.; Luo, F.; Shao, W. Preparation and evaluation of orange peel cellulose adsorbents for effective removal of cadmium, zinc, cobalt and nickel. Colloids Surf. A Physicochem. Eng. Asp. 2008, 317, 512–521. [Google Scholar] [CrossRef]
- Kundu, M.C.; Mandal, B.; Hazra, G.C. Nitrate and fluoride contamination in groundwater of an intensively managed agroecosystem: A functional relationship. Sci. Total Environ. 2009, 407, 2771–2782. [Google Scholar] [CrossRef] [PubMed]
- Amar, I.A.; Zayid, E.A.; Dhikeel, S.A.; Nahem, M.Y. Biosorption removal of methylene blue dye from aqueous solutions using phosphoric acid-treated balanites aegyptiaca seed husks powder. Biointerface Res. Appl. Chem. 2021, 12, 7845–7862. [Google Scholar] [CrossRef]
- Fawzy, M.A.; Al-Yasi, H.M.; Galal, T.M.; Hamza, R.Z.; Abdelkader, T.G.; Ali, E.F.; Hassan, S.H.A. Statistical optimization, kinetic, equilibrium isotherm and thermodynamic studies of copper biosorption onto rosa damascena leaves as a low-cost biosorbent. Sci. Rep. 2022, 12, 8583. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Pakade, Y.B. Removal of Pb from water by adsorption on apple pomace: Equilibrium, kinetics, and thermodynamics studies. J. Chem. 2013, 2013, 164575. [Google Scholar] [CrossRef] [Green Version]
- Guleria, A.; Kumari, G.; Lima, E.C.; Ashish, D.K.; Thakur, V.; Singh, K. Removal of inorganic toxic contaminants from wastewater using sustainable biomass: A review. Sci. Total Environ. 2022, 823, 153689. [Google Scholar] [CrossRef] [PubMed]
- Chand, P.; Shil, A.K.; Sharma, M.; Pakade, Y.B. Improved adsorption of cadmium ions from aqueous solution using chemically modified apple pomace: Mechanism, kinetics, and thermodynamics. Int. Biodeterior. Biodegradation 2014, 90, 8–16. [Google Scholar] [CrossRef]
- Mallampati, R.; Valiyaveettil, S. Apple peels--a versatile biomass for water purification? ACS Appl. Mater. Interfaces 2013, 5, 4443–4449. [Google Scholar] [CrossRef]
- Chand, P.; Pakade, Y.B. Utilization of chemically modified apple juice industrial waste for removal of Ni2+ ions from aqueous solution. J. Mater. Cycles Waste Manag. 2014, 17, 163–173. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural waste peels as versatile biomass for water purification–a review. Chem. Eng. J. 2015, 270, 244–271. [Google Scholar] [CrossRef]
- Chand, P.; Bokare, M.; Pakade, Y.B. Methyl acrylate modified apple pomace as promising adsorbent for the removal of divalent metal ion from industrial wastewater. Environ. Sci. Pollut. Res. Int. 2017, 24, 10454–10465. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.; Mashkoor, F.; Nasar, A. Development, characterization, and utilization of magnetized orange peel waste as a novel adsorbent for the confiscation of crystal violet dye from aqueous solution. Groundw. Sustain. Dev. 2020, 10, 100322. [Google Scholar] [CrossRef]
- Akinhanmi, T.F.; Ofudje, E.A.; Adeogun, A.I.; Aina, P.; Joseph, I.M. Orange peel as low-cost adsorbent in the elimination of Cd(II) ion: Kinetics, isotherm, thermodynamic and optimization evaluations. Bioresour. Bioprocess. 2020, 7, 34. [Google Scholar] [CrossRef]
- Vidovix, T.B.; Januário, E.F.D.; Bergamasco, R.; Vieira, A.M.S. Evaluation of agro-industrial residue functionalized with iron oxide magnetic nanoparticles for chloroquine removal from contaminated water. Mater. Lett. 2022, 326, 132915. [Google Scholar] [CrossRef]
- Sehovic, E.; Memic, M.; Sulejmanovic, J.; Hameed, M.; Begic, S.; Ljubijankic, N.; Selovic, A.; Ghfar, A.A.; Sher, F. Thermodynamic valorisation of lignocellulosic biomass green sorbents for toxic pollutants removal. Chemosphere 2022, 307, 135737. [Google Scholar] [CrossRef] [PubMed]
- Šabanović, E.; Memic, M.; Sulejmanovic, J.; Selovic, A. Simultaneous adsorption of heavy metals from water by novel lemon-peel based biomateria. Pol. J. Chem. Technol. 2020, 22, 46–53. [Google Scholar] [CrossRef] [Green Version]
- Gai, W.-Z.; Deng, Z.-Y. A comprehensive review of adsorbents for fluoride removal from water: Performance, water quality assessment and mechanism. Environ. Sci. Water. Res. Technol. 2021, 7, 1362–1386. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Adhikari, B.; Thomas, S.; Das, P. Biomass for water defluoridation and current understanding on biosorption mechanisms: A review. Environ. Prog. Sustain. 2018, 37, 1560–1572. [Google Scholar] [CrossRef]
- Tang, X.; Zhou, C.; Xia, W.; Liang, Y.; Zeng, Y.; Zhao, X.; Xiong, W.; Cheng, M.; Wang, Z. Recent advances in metal–organic framework-based materials for removal of fluoride in water: Performance, mechanism, and potential practical application. Chem. Eng. J. 2022, 446, 137299. [Google Scholar] [CrossRef]
- Issaoui, M.; Jellali, S.; Zorpas, A.A.; Dutournie, P. Membrane technology for sustainable water resources management: Challenges and future projections. Sustain. Chem. Pharm. 2022, 25, 100590. [Google Scholar] [CrossRef]
- Yaashikaa, P.R.; Kumar, P.S.; Karishma, S. Review on biopolymers and composites-evolving material as adsorbents in removal of environmental pollutants. Environ. Res. 2022, 212, 113114. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Luo, Z.; Huang, X.; Wang, Y.; Yan, J.; Liu, W.; Guo, Y.; Arulmani, S.R.B.; Shao, M.; Zhang, H. Applications of biomass-based materials to remove fluoride from wastewater: A review. Chemosphere 2022, 301, 134679. [Google Scholar] [CrossRef]
- Yao, G.; Zhu, X.; Wang, M.; Qiu, Z.; Zhang, T.; Qiu, F. Controlled fabrication of the biomass cellulose–CeO2 nanocomposite membrane as efficient and recyclable adsorbents for fluoride removal. Ind. Eng. Chem. Res. 2021, 60, 5914–5923. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Matsueda, M.; Suzuki, R.; Kawakita, H.; Ohto, K.; Biswas, B.K.; Alam, S. Adsorption behavior of fluoride ions on zirconium(IV)-loaded orange waste gel from aqueous solution. Separ. Sci. Technol. 2012, 47, 96–103. [Google Scholar] [CrossRef]
- Yadav, A.K.; Abbassi, R.; Gupta, A.; Dadashzadeh, M. Removal of fluoride from aqueous solution and groundwater by wheat straw, sawdust and activated bagasse carbon of sugarcane. Ecol. Eng. 2013, 52, 211–218. [Google Scholar] [CrossRef]
- Tomar, V.; Prasad, S.; Kumar, D. Adsorptive removal of fluoride from aqueous media using citrus limonum (lemon) leaf. Microchem. J. 2014, 112, 97–103. [Google Scholar] [CrossRef]
- Mondal, N.K. Natural banana (musa acuminate) peel: An unconventional adsorbent for removal of fluoride from aqueous solution through batch study. Water Conserv. Sci. Eng. 2017, 1, 223–232. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Huang, K. Grape pomace as a biosorbent for fluoride removal from groundwater. RSC Adv. 2019, 9, 7767–7776. [Google Scholar] [CrossRef] [Green Version]
- Cai, H.M.; Chen, G.J.; Peng, C.Y.; Zhang, Z.Z.; Dong, Y.Y.; Shang, G.Z.; Gao, H.J.; Wan, X.C. Removal of fluoride from drinking water using tea waste loaded with Al/Fe oxides: A novel, safe and efficient biosorbent. Appl. Surf. Sci. 2015, 328, 34–44. [Google Scholar] [CrossRef]
- Manna, S.; Saha, P.; Roy, D.; Sen, R.; Adhikari, B. Defluoridation potential of jute fibers grafted with fatty acyl chain. Appl. Surf. Sci. 2015, 356, 30–38. [Google Scholar] [CrossRef]
- Ramos-Vargas, S.; Alfaro-Cuevas-Villanueva, R.; Huirache-Acuña, R.; Cortés-Martínez, R. Removal of fluoride and arsenate from aqueous solutions by aluminum-modified guava seeds. Appl. Sci. 2018, 8, 1807. [Google Scholar] [CrossRef] [Green Version]
- Mwakabona, H.T.; Mlay, H.R.; van der Bruggen, B.; Njau, K.N. Water defluoridation by Fe(III)-loaded sisal fibre: Understanding the influence of the preparation pathways on biosorbents’ defluoridation properties. J. Hazard. Mater. 2019, 362, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xiong, L.; Xiu, Y.; Huang, K. Defluoridation in fixed bed column filled with Zr(IV)-loaded garlic peel. Microchem. J. 2019, 145, 476–485. [Google Scholar] [CrossRef]
- Srinivasulu, D.; Pindi, P.K. Activated tamarind seed coat: A green biosorbent to remove fluoride from aqueous solutions. Water Supply 2021, 21, 1594–1607. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Ghimire, K.N.; Inoue, K.; Ohto, K.; Kawakita, H.; Alam, S. Adsorption behavior of orange waste gel for some rare earth ions and its application to the removal of fluoride from water. Chem. Eng. J. 2012, 195, 289–296. [Google Scholar] [CrossRef]
- Manna, S.; Roy, D.; Saha, P.; Adhikari, B. Defluoridation of aqueous solution using alkali–steam treated water hyacinth and elephant grass. J. Taiwan Inst. Chem. Eng. 2015, 50, 215–222. [Google Scholar] [CrossRef]
- Jha, R.; Jha, U.; Dey, R.K.; Mishra, S.; Swain, S.K. Fluoride sorption by zirconium (IV) loaded carboxylated orange peel. Desalin. Water Treat. 2015, 53, 2144–2157. [Google Scholar] [CrossRef]
- Gandhi, N.; Sirisha, D.; Sekhar, K.B.C. Adsorption of fluoride (F-) from aqueous solution by using pineapple (ananas comosus) peel and orange (cityrus sinensis) peel powders. Int. J. Environ. Bioremediat. Biodegrad. 2016, 4, 55–67. [Google Scholar] [CrossRef]
- Mukherjee, S.; Halder, G. Assessment of fluoride uptake performance of raw biomass and activated biochar of colocasia esculentastem: Optimization through response surface methodology. Environ. Prog. Sustain. Energy 2016, 35, 1305–1316. [Google Scholar] [CrossRef]
- Nagaraj, A.; Sadasivuni, K.K.; Rajan, M. Investigation of lanthanum impregnated cellulose, derived from biomass, as an adsorbent for the removal of fluoride from drinking water. Carbohydr. Polym. 2017, 176, 402–410. [Google Scholar] [CrossRef]
- Peng, C.; Xi, J.; Chen, G.; Feng, Z.; Ke, F.; Ning, J.; Li, D.; Ho, C.-T.; Cai, H.; Wan, X. Highly selective defluoridation of brick tea infusion by tea waste supported aluminium oxides. J. Sci. Food Agric. 2017, 97, 1509–1516. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Brahman, K.D.; Baig, J.A.; Afridi, H.I. A new efficient indigenous material for simultaneous removal of fluoride and inorganic arsenic species from groundwater. J. Hazard. Mater. 2018, 357, 159–167. [Google Scholar] [CrossRef] [PubMed]
- Mahvi, A.H.; Dobaradaran, S.; Saeedi, R.; Mohammadi, M.J.; Keshtkar, M.; Hosseini, A.; Moradi, M.; Ghasemi, F.F. Determination of fluoride biosorption from aqueous solutions using ziziphus leaf as an environmentally friendly cost effective biosorbent. Fluoride 2018, 51, 220–229. [Google Scholar]
- Naga Babu, A.; Reddy, D.S.; Kumar, G.S.; Ravindhranath, K.; Mohan, G.V.K. Removal of lead and fluoride from contaminated water using exhausted coffee grounds based bio-sorbent. J. Environ. Manag. 2018, 218, 602–612. [Google Scholar] [CrossRef] [PubMed]
- Keshtkar, M.; Dobaradaran, S.; Keshmiri, S.; Ramavandi, B.; Arfaeinia, H.; Ghaedi, H. Effective parameters, equilibrium, and kinetics of fluoride adsorption onprosopis cinerariaandsyzygium cuminileaves. Environ. Prog. Sustain. Energy 2019, 38, S429–S440. [Google Scholar] [CrossRef]
- Garg, R.; Garg, R.; Thakur, A.; Arif, S.M. Water remediation using biosorbent obtained from agricultural and fruit waste. Mater. Today Proc. 2021, 46, 6669–6672. [Google Scholar] [CrossRef]
- Srinivasulu, D. Senna auriculata L. Flower petal biomass: An alternative green biosorbent for the removal of fluoride from aqueous solutions. Acta Ecol. Sin. 2021, in press. [Google Scholar] [CrossRef]
- Paudyal, H.; Pangeni, B.; Inoue, K.; Kawakita, H.; Ohto, K.; Ghimire, K.N.; Harada, H.; Alam, S. Adsorptive removal of trace concentration of fluoride ion from water by using dried orange juice residue. Chem. Eng. J. 2013, 223, 844–853. [Google Scholar] [CrossRef]
- Li, R.; Zhang, T.; Zhong, H.; Song, W.; Zhou, Y.; Yin, X. Bioadsorbents from algae residues for heavy metal ions adsorption: Chemical modification, adsorption behaviour and mechanism. Environ. Technol. 2021, 42, 3132–3143. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Y.; Yang, J.; Zhu, X.; Hu, Q.; Li, X.; Liu, Z. Insight into mechanisms of fluoride removal from contaminated groundwater using lanthanum modified bone waste. RSC Adv. 2017, 7, 54291–54305. [Google Scholar] [CrossRef] [Green Version]
- Alhassan, S.I.; Huang, L.; He, Y.; Yan, L.; Wu, B.; Wang, H. Fluoride removal from water using alumina and aluminum-based composites: A comprehensive review of progress. Crit. Rev. Environ. Sci. Technol. 2020, 51, 2051–2085. [Google Scholar] [CrossRef]
- Mohan, S.; Singh, D.K.; Kumar, V.; Hasan, S.H. Effective removal of fluoride ions by rGO/ZrO2 nanocomposite from aqueous solution: Fixed bed column adsorption modelling and its adsorption mechanism. J. Fluorine Chem. 2017, 194, 40–50. [Google Scholar] [CrossRef]
- Reza, R.A.; Ahmaruzzaman, M. Remediation of fluoride from groundwater using modified pineapple juice extracted residue. Int. J. Environ. Res. 2022, 16, 52. [Google Scholar] [CrossRef]
- Nelms, S.M. ICP Mass Spectrometry Handbook; Blackell: Boca Raton, FL, USA, 2005. [Google Scholar]
- Mohamed, M.A.; Jaafar, J.; Ismail, A.F.; Othman, M.H.D.; Rahman, M.A. Fourier transform infrared (FTIR) spectroscopy. In Membrane Characterization; Elsevier: Amsterdam, The Netherlands, 2017; pp. 3–29. [Google Scholar]
- Blum, M.M.; John, H. Historical perspective and modern applications of attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR). Drug Test. Anal. 2012, 4, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Kumar-Singh, M.; Singh, A. Fourier transform infrared (FTIR) analysis. In Characterization of Polymers and Fibres; Woodhead Publishing: Cambridge, UK, 2022; pp. 295–320. [Google Scholar]
- Saleh, H.M.; Hassan, A.I. Water quality standards. In Applied Water Science, Volume 1: Fundamentals and Applications; Scrivener Publishing: Beverly, MA, USA, 2021. [Google Scholar]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption isotherm models: Classification, physical meaning, application and solving method. Chemosphere 2020, 258, 127279. [Google Scholar] [CrossRef]
- Chen, X.; Hossain, M.F.; Duan, C.; Lu, J.; Tsang, Y.F.; Islam, M.S.; Zhou, Y. Isotherm models for adsorption of heavy metals from water-a review. Chemosphere 2022, 307, 135545. [Google Scholar] [CrossRef]
- Mandal, A.; Bar, N.; Das, S.K. Phenol removal from wastewater using low-cost natural bioadsorbent neem (azadirachta indica) leaves: Adsorption study and mlr modeling. Sustain. Chem. Pharm. 2020, 17, 100308. [Google Scholar] [CrossRef]
- Loganathan, P.; Vigneswaran, S.; Kandasamy, J.; Naidu, R. Defluoridation of drinking water using adsorption processes. J. Hazard. Mater. 2013, 248, 1–19. [Google Scholar] [CrossRef]
- Habuda-Stanic, M.; Ravancic, M.E.; Flanagan, A. A review on adsorption of fluoride from aqueous solution. Materials 2014, 7, 6317–6366. [Google Scholar] [CrossRef]
- Mohapatra, M.; Anand, S.; Mishra, B.K.; Giles, D.E.; Singh, P. Review of fluoride removal from drinking water. J. Environ. Manag. 2009, 91, 67–77. [Google Scholar] [CrossRef]
- Yadav, K.K.; Gupta, N.; Kumar, V.; Khan, S.A.; Kumar, A. A review of emerging adsorbents and current demand for defluoridation of water: Bright future in water sustainability. Environ. Int. 2018, 111, 80–108. [Google Scholar] [CrossRef] [PubMed]
- Savari, A.; Hashemi, S.; Arfaeinia, H.; Dobaradaran, S.; Foroutan, R.; Mahvi, A.H.; Fouladvand, M.; Sorial, G.A.; Farjadfard, S.; Ramavandi, B. Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed& continuous sonication and stirring. Adv. Powder Technol. 2020, 31, 3521–3532. [Google Scholar] [CrossRef]
- Raghav, S.; Nehra, S.; Kumar, D. Biopolymer scaffold of pectin and alginate for the application of health hazardous fluoride removal studies by equilibrium adsorption, kinetics and thermodynamics. J. Mol. Liq. 2019, 284, 203–214. [Google Scholar] [CrossRef]
- Chigondo, M.; Paumo, H.K.; Bhaumik, M.; Pillay, K.; Maity, A. Rapid high adsorption performance of hydrous cerium-magnesium oxides for removal of fluoride from water. J. Mol. Liq. 2018, 265, 496–509. [Google Scholar] [CrossRef]
- Tran, H.N.; Nguyen, H.C.; Woo, S.H.; Nguyen, T.V.; Vigneswaran, S.; Hosseini-Bandegharaei, A.; Rinklebe, J.; Sarmah, A.K.; Ivanets, A.; Dotto, G.L.; et al. Removal of various contaminants from water by renewable lignocellulose-derived biosorbents: A comprehensive and critical review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 2155–2219. [Google Scholar] [CrossRef]
- Jiménez-Núñez, M.L.; Solache-Ríos, M.; Chávez-Garduño, J.; Olguín-Gutiérrez, M.T. Effect of grain size and interfering anion species on the removal of fluoride by hydrotalcite-like compounds. Chem. Eng. J. 2012, 181, 371–375. [Google Scholar] [CrossRef]
- Danish, M.; Ansari, K.B.; Danish, M.; Khatoon, A.; Rao, R.A.K.; Zaidi, S.; Aftab, R.A. A comprehensive investigation of external mass transfer and intraparticle diffusion for batch and continuous adsorption of heavy metals using pore volume and surface diffusion model. Sep. Purif. Technol. 2022, 292, 120996. [Google Scholar] [CrossRef]
- Lacson, C.F.Z.; Lu, M.-C.; Huang, Y.-H. Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management -an overview. J. Clean. Prod. 2021, 280, 124236. [Google Scholar] [CrossRef]
Technology | Description | Advantage | Disadvantage | Reference |
---|---|---|---|---|
Coagulation-precipitation | ||||
Chemical precipitation Electrocoagulation | When chemicals were added, the suspended charged particles were then neutralized and agglomerated to settle down. | Good efficiency. Easy to use. Continuous or batch operation (for small flows). Simple design. Low cost. | Lack of ability to reduce fluoride below WHO limits. It requires the removal of bulky and wet sludge. Secondary treatment is needed. It is necessary that a high conductivity of the water be treated. Species dissolution and by-product formation. | [4,6,8,32,33] |
Membrane-based processes | ||||
Reverse osmosis Ultrafiltration Nanofiltration Electrofiltration Dialysis | Water is forced through a semi-permeable membrane to separate contaminants. | Production of high-purity water. High efficiencies. Automatic control. Selectivity. | Relatively expensive to install and operate. Susceptible to membrane fouling and degradation. Operates at high pressures. Significant energy demands. Requires water re-mineralization and pH adjustments. | [4,11,33,34] |
Ion Exchange and adsorption | ||||
Ion Exchange resins Chelating resins
| Process in which the ions in aqueous media are transferred to the adsorbent matrix by several mechanisms. It includes physical adsorption or chemisorption through chelation, complexation, and ion exchange processes. | It allows the adsorbent material regeneration. High removal capacity. Anion selective removal. Low cost. | Highly pH-dependent. Vulnerable to interference. | [4,6,8,9,31,32] |
Biomass | Removal (%) | pH | Removal Capacity (mg/g) | Contact Time (min) | Adsorbent Dosage (g/L) | Isotherm | Kinetic Model | Mechanism | Anion Interference |
---|---|---|---|---|---|---|---|---|---|
Zr-loaded orange residues [38] | -- | 2.4 | 22.8 | 480 | 1.6 | L | -- | Ligand exchange | NO3− > SO4−2 > Cl− > CO3−2 |
Orange waste loaded with La, Sm, Sc, Ho, and Lu [49] | -- | 4.0–6.0 | 14.6–21.8 | 1140 | 1.6 | L | -- | Ligand exchange | -- |
Sawdust and wheat straw [39] | 49.8 and 40.2 | 6.0 | 1.7 and 1.9 | 60 | 4.0 | F | PSO, IPDM | Bond formation, surface adsorption, and intraparticle diffusion. | -- |
Lemon leaves [40] | 70 | 2.0 | - | 145 | 200 | -- | -- | ||
Tea wastes loaded with Al-Fe oxides [43] | 90 | 4.0–8.0 | 3.8–18.5 | 120 | 2.0 | L | PSO | Covalent Bond Formation/Ligand exchange | -- |
Elephant grass and water hyacinth [50] | 85 | 4.0 | 7.0 and 5.0 | 210 | 1.5 and 1.0 | L,F | IPDM | -- | -- |
Jute fibers [44] | 98 | 5.0 | 5 | 120 | 1.5 | L | PSO | OH− replacement by F− | SO4−2 > HCO3− > CO3−2 > NO3− > PO4−3 |
Zr- orange peels [51] | 97 | 7.0 | 5.6 | 50 | 0.7 | L | PSO | Ligand exchange | PO4−3 > HCO3−> NO3− > SO4−2 > Cl− |
Pineapple peels [52] | 90 | 4.0 | - | 60 | 0.6 | F | E | Electrostatic attraction | -- |
Al-modified pine sawdust [14] | 59.5 | 6.0 | 3.6 | 120 | 0.5 | L | E | OH− and F− ions exchange | -- |
Colocasia esculenta stem [53] | 33 | 4.25 | - | 180 | 20 | -- | -- | -- | -- |
Banana peels [41] | 90 | 4.0 | 1.2 | 60 | 1.5 | D-R | B | -- | CO3−2 > PO4−3 > SO4−2 > NO3− > Cl− |
La-modified cellulose extracted from sugar cane bagasse [54] | 98 | 3.0 | 1.1 | 60 | 2.5 | L,F | PSO | Cl exchange with F− | Cl− > NO3− > SO4−2 > HCO3− |
Tea waste with Al [55] | 52.9 | 5.2 | 3.2 | 60 | 2.0 | F | -- | Ion exchange | -- |
Melon peels [56] | 90 | 7.0 | 3.0 | 50 | 5 | L | PSO | -- | SO4−2 > Cl− > Br− > NO3− |
Ziziphus leaves [57] | 95.3 | 7.0 | 0.48 | 25 | 5 | L | PFO | -- | -- |
Al-modified guava seeds [45] | 80 | 6.0 | 0.3 | 150 | 70 | L,F | PSO | -- | -- |
Coffee beans [58] | 89 | 4.0 | 9.0 | 105 | 2 | L | PSO | -- | -- |
Fe-impregnated sisal fiber [46] | 53.4 | 2.0 | 0.2 | 60 | 15 | L | -- | Electrostatic interactions, and exchange of ligands | -- |
Zr-modified grape bagasse [42] | 90 | 3.0 | 7.54 | 60 | 6 | L | -- | Ligand exchange | HPO4−2 > CO3− 2 > NO3− > Cl− > SO4−2 |
Prosopis cineraria and Syzygium cumini leaves [59] | -- | 11.5 and 7.4 | 120 y 90 | 1 | L | PSO | Film diffusion | -- | |
Sugar cane bagasse and fruit husks [60] | 84 and 78 | 6.0 and 4.0 | -- | 100 | 12 and 10 | -- | -- | -- | -- |
Tamarind seed husk [48] | 94 | 6.0 | 1.79 | 60 | 0.3 | L | PSO | -- | -- |
Flower petals [61] | 80 | 6.0 | 1.29 | 90 | 2.5 | L | PSO | -- | -- |
CeO2 -modified wood waste [37] | -- | 3.0 | 48 | 120 | -- | F | PSO | OH− replacement by F− | -- |
Zr-loaded garlic husks [47] | 92 | -- | -- | -- | -- | -- | -- | -- | -- |
Biomass | Drying Temperature (°C) | Grind | Particle Size (μm) | Acidification | Alkalinization | Middle Treatment | Cation Charge |
---|---|---|---|---|---|---|---|
Zr-loaded orange residues [38] | Oven, 70 | Mortar | 100–150 | -- | Ca (OH)2 @ 30 °C, 24 h, pH 12 with NaOH | -- | 0.1 M de ZrOCl2·8H2O at 30 °C, 24 h, pH 2.2 |
Orange waste loaded with La, Sm, Sc, Ho, and Lu [49] | Oven, 70 | -- | 100–150 | -- | Ca (OH)2 @ 30 °C, 24 h, pH 12 with NaOH | -- | 0.1 M of Sc+3, La+3, Sm+3, Ho+3, and Lu+3, at 30 °C, 24 h, pH 2.2 |
Sawdust and wheat straw [39] | Solar/oven, 80 | -- | 300–850 | Formaldehyde treatment l 1% at 50 °C, 24 h | |||
Lemon leaves [40] | Solar | Mortar | 1500 | HNO3 1 M, heating @ 20 min | NaOH 0.5 M, heating @ 20 min | -- | -- |
Tea wastes are loaded with Al-Fe oxides [43] | Oven, 70 | -- | 250 | H2SO4 0.02 M @ 70 °C, 5 h | -- | -- | 0.1 M of FeCl3, 0.4 M Al (NO3)3 at 60 °C, pH 5.0 with NaOH (2 M) @ 30 min |
Elephant grass and water hyacinth [50] | 70 | Mechanical | 150 | -- | 0.5% p/v NaOH @ 30 °C, 24 h. Steamed at 103 kPa | -- | -- |
Jute fibers [44] | 85 | Grinder | 300 | 0.5% w/v NaOH @ 30 °C, 30 min. Steamed at 103 kPa, 121 °C @ 30 min. | Alkaline aqueous emulsion of neem oil and phenolic resins at 105 °C @ 1 h. | ||
Zr-orange peels [51] | Oven, 50 | -- | 100–150 | -- | NaOH 0.1 M @ 24 h | 0.1 M ClCH2CO2H, pH 8–10 with NaOH 0.1 M @ 24 h | 0.1 M ZrOCl2·8H2O, 48 h |
Colocasia esculenta stem [53] | Oven, 110 | 250 | -- | -- | -- | -- | |
Al-modified pine sawdust [14] | Oven, 50 | -- | 500 | -- | -- | -- | AlCl3 0.05 M at pH 3.5 @ 3 h. |
Banana peels [41] | Oven, 50 | Grinder | 200 | -- | -- | -- | -- |
La-modified cellulose extracted from sugar cane bagasse [54] | Solar | -- | -- | CH3COOH/HNO3 | -- | -- | Dispersion in methanol and sonication with LaCl3 for 20 min. |
Tea waste with Al [55] | Aire, 70 | -- | 300 | -- | -- | -- | AlCl3 0.3 M, HCl 0.01 M, NaOH 2 M at 60 °C, pH 5.5 |
Melon peles [56] | Oven, 70 | -- | 75 | -- | -- | -- | -- |
Ziziphus leaves [57] | Oven, 105 | -- | 710 | -- | -- | -- | -- |
Al-modified guava seeds [45] | Oven, 60 | -- | 1000 | 0.5 M HCl at 70 °C @ 20 min. | -- | -- | AlCl3 0.05 M @ 3 h. |
Coffee beans [58] | Oven, 110 | -- | 75 | HCL hot water bath @ 2 h. | -- | -- | NaOH at pH 12 @ 1 min. |
Zr-modified grape bagasse [42] | Oven, 60 | Grinder | 425 | -- | -- | -- | 0.1 M ZrOCl2·8H2O, pH 1.35 @ 24 h |
Zr-loaded garlic husks [47] | Oven, 60 | -- | 425 | -- | -- | -- | 0.1 M ZrOCl2·8H2O, pH 1.2 @ 24 h |
Prosopis cineraria and Syzygium cumini leaves [59] | Oven, 105 | Mill | 710 | -- | -- | -- | -- |
Sugar cane bagasse and fruit husks [60] | Solar | Grinder | -- | -- | -- | -- | -- |
Tamarind seed husk [48] | Oven, 150 | Mortar | 100 | -- | -- | -- | -- |
Flower petals [61] | Solar/oven, 70 | -- | -- | -- | -- | -- | -- |
CeO2 –modified wood waste [37] | Oven, 80 | -- | -- | -- | NaOH 5% at 80 °C @ 4 h, NaClO2 5% at pH 4.0 and 80 °C @ 5 h. | NaOH + CH4N2O at −12.8 °C, ultrasound with PVA @ 4 h. | -- |
Main Ions | |
---|---|
Cation | Anion |
K+ | HCO3−1 |
Na+ | Cl−1 |
Ca+2 | NO3−1 |
Mg+2 | CO3−2 |
SO4−2 |
Parameter | Bioadsorbents | Inorganic-Based Adsorbents |
---|---|---|
Cost | Low-cost, discarded materials are used. Household waste, agricultural waste, and even some agro-industrial waste are included. | Usually, they are more expensive. |
pH | Operating ranges have been reported from 2 to 7, with no difference with inorganic adsorbents. | Broad range of operation, generally working from 2–7 as well as bioadsorbents. |
Reuse | Up to 10 desorption cycles have been reported; some suggest direct material disposal. | They are more frequently reported, and certain materials have the potential to regenerate more than 5 cycles, with no significant decrease in their removal capacity. |
Removal capacity | Low capacity often has to be modified. | High capacities, working alone or in conjunction with other cations. |
[9,11,20,24,31,35,36,78] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Robledo-Peralta, A.; Torres-Castañón, L.A.; Rodríguez-Beltrán, R.I.; Reynoso-Cuevas, L. Lignocellulosic Biomass as Sorbent for Fluoride Removal in Drinking Water. Polymers 2022, 14, 5219. https://doi.org/10.3390/polym14235219
Robledo-Peralta A, Torres-Castañón LA, Rodríguez-Beltrán RI, Reynoso-Cuevas L. Lignocellulosic Biomass as Sorbent for Fluoride Removal in Drinking Water. Polymers. 2022; 14(23):5219. https://doi.org/10.3390/polym14235219
Chicago/Turabian StyleRobledo-Peralta, Adriana, Luis A. Torres-Castañón, René I. Rodríguez-Beltrán, and Liliana Reynoso-Cuevas. 2022. "Lignocellulosic Biomass as Sorbent for Fluoride Removal in Drinking Water" Polymers 14, no. 23: 5219. https://doi.org/10.3390/polym14235219
APA StyleRobledo-Peralta, A., Torres-Castañón, L. A., Rodríguez-Beltrán, R. I., & Reynoso-Cuevas, L. (2022). Lignocellulosic Biomass as Sorbent for Fluoride Removal in Drinking Water. Polymers, 14(23), 5219. https://doi.org/10.3390/polym14235219