Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite
Abstract
:1. Introduction
- The adhesive and mechanical properties of the experimental CBC system are not significantly different from those of other existing luting cements and core build-up materials;
- The addition of 2 wt.% fluorographene to both dentin and ceramic primers has no significant effect on adhesive properties to zirconia and dentin;
- The addition of 2 wt.% fluorographene has no significant effect on the flexural properties of the CBC;
- The addition of 2 wt.% fluorographene to both dentin and ceramic primers has no significant effect on the mSBS of the CBC on zirconia and dentin when compared to the controls.
2. Materials and Methods
2.1. Graphene-Reinforced CBC Preparation
2.1.1. Micronized FG/CBC (CBC 2% FGm)
2.1.2. Exfoliated FG/CBS (CBC 2% FGe) and Dentin and Ceramic Primers (DP 2% FG; CP 2% FG, Respectively)
2.2. Micro Shear Bond Strength (mSBS) Tests of CBC Prototype and Composite Luting Cements
2.3. Three-Point Flexural Test of Core Build-Up Composites
2.4. Optical and SEM Analysis
2.5. Statistical Analysis
- Adhesion (mSBS) analysis: Due to the non-normal distribution of the data, the comparative analysis among the CBC prototypes and the luting cements was performed using a nonparametric ANOVA (Kruskal–Wallis test) and Dunn’s multiple comparisons test (α = 0.05). The effect of 2 wt.% FG added to DP and CP was analyzed using an unpaired t-test with Welch’s correction;
- Mechanical properties analysis: Because of the non-normal distribution recorded in every group, Kruskal–Wallis and Dunn’s multiple comparisons tests were used (α = 0.05) to compare the CBC prototype to the already-existing CBC materials, as well as to the CBC after the addition of 2% FG.
3. Results
3.1. Micro Shear Bond Strength (mSBS) Tests of CBC Prototype and Composite Luting Cements
3.1.1. Zirconia
3.1.2. Dentin
3.2. Flexural Strength Test
3.3. Effect of Fluorographene
3.4. Morphological and Fractographic Analysis
4. Discussion
5. Conclusions
- –
- The experimental CBC tested in this study associated with ceramic primer and dentin primer based on 10-MDP showed adhesive and mechanical properties compatible for use both as a cement and as a core build-up material;
- –
- The addition of micronized fluorographene to the CBC at a percentage of 2 wt.% of the resin fraction increased the elastic modulus by about 10% but had no significant effects on flexural strength;
- –
- The addition of exfoliated fluorographene at a percentage of 2 wt.% to the 10-MDP dentin and ceramic primers reduced the adhesive strength of the CBC and ceramic primer system when applied to zirconia;
- –
- The addition of 2% exfoliated fluorographene to the core build-up composite reduced both the flexural strength and the Young’s modulus values;
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sadek, F.T.; Monticelli, F.; Goracci, C.; Tay, F.R.; Cardoso, P.E.C.; Ferrari, M. Bond Strength Performance of Different Resin Composites Used as Core Materials around Fiber Posts. Dent. Mater. Off. Publ. Acad. Dent. Mater. 2007, 23, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Josic, U.; Mazzitelli, C.; Maravic, T.; Comba, A.; Mayer-Santos, E.; Florenzano, F.; Breschi, L.; Mazzoni, A. Evaluation of Fiber Post Adhesion to Root Dentin Achieved with Different Composite Cements: 1-Year In Vitro Results. J. Adhes. Dent. 2022, 24, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Pashley, D.H. Monoblocks in Root Canals: A Hypothetical or a Tangible Goal. J. Endod. 2007, 33, 391–398. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alkatheeri, M.S.; Palasuk, J.; Eckert, G.J.; Platt, J.A.; Bottino, M.C. Halloysite Nanotube Incorporation into Adhesive Systems—Effect on Bond Strength to Human Dentin. Clin. Oral Investig. 2015, 19, 1905–1912. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Shojai, M.; Atai, M.; Nodehi, A.; Khanlar, L.N. Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of Dental Adhesives: Synthesis and Application. Dent. Mater. 2010, 26, 471–482. [Google Scholar] [CrossRef]
- Bottino, M.C.; Batarseh, G.; Palasuk, J.; Alkatheeri, M.S.; Windsor, L.J.; Platt, J.A. Nanotube-Modified Dentin Adhesive—Physicochemical and Dentin Bonding Characterizations. Dent. Mater. 2013, 29, 1158–1165. [Google Scholar] [CrossRef]
- Münchow, E.A.; Bottino, M.C. Recent Advances in Adhesive Bonding-The Role of Biomolecules, Nanocompounds, and Bonding Strategies in Enhancing Resin Bonding to Dental Substrates. Curr. Oral Health Rep. 2017, 4, 215–227. [Google Scholar] [CrossRef]
- Yadav, R.; Kumar, M. Dental Restorative Composite Materials: A Review. J. Oral Biosci. 2019, 61, 78–83. [Google Scholar] [CrossRef]
- Tahriri, M.; Del Monico, M.; Moghanian, A.; Tavakkoli Yaraki, M.; Torres, R.; Yadegari, A.; Tayebi, L. Graphene and Its Derivatives: Opportunities and Challenges in Dentistry. Mater. Sci. Eng. C 2019, 102, 171–185. [Google Scholar] [CrossRef]
- Geim, A.K.; Novoselov, K.S. The Rise of Graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Novoselov, K.S.; Fal’ko, V.I.; Colombo, L.; Gellert, P.R.; Schwab, M.G.; Kim, K. A Roadmap for Graphene. Nature 2012, 490, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef] [PubMed]
- Baradaran, S.; Moghaddam, E.; Basirun, W.J.; Mehrali, M.; Sookhakian, M.; Hamdi, M.; Moghaddam, M.R.N.; Alias, Y. Mechanical Properties and Biomedical Applications of a Nanotube Hydroxyapatite-Reduced Graphene Oxide Composite. Carbon 2014, 69, 32–45. [Google Scholar] [CrossRef]
- Bobylev, S.V.; Sheinerman, A.G. Effect of Crack Bridging on the Toughening of Ceramic/Graphene Composites. Rev. Adv. Mater. Sci. 2018, 57, 54–62. [Google Scholar] [CrossRef]
- Gong, K.; Pan, Z.; Korayem, A.H.; Qiu, L.; Li, D.; Collins, F.; Wang, C.M.; Duan, W.H. Reinforcing Effects of Graphene Oxide on Portland Cement Paste. J. Mater. Civ. Eng. 2015, 27, 1–3. [Google Scholar] [CrossRef]
- Dubey, N.; Rajan, S.S.; Bello, Y.D.; Min, K.-S.; Rosa, V. Graphene Nanosheets to Improve Physico-Mechanical Properties of Bioactive Calcium Silicate Cements. Materials 2017, 10, 606. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi-Moghadam, B.; Sharafimasooleh, M.; Shadlou, S.; Taheri, F. Effect of Functionalization of Graphene Nanoplatelets on the Mechanical Response of Graphene/Epoxy Composites. Mater. Des. 2015, 66, 142–149. [Google Scholar] [CrossRef]
- Nuvoli, D.; Alzari, V.; Sanna, R.; Scognamillo, S.; Alongi, J.; Malucelli, G.; Mariani, A. Synthesis and Characterization of Graphene-Based Nanocomposites with Potential Use for Biomedical Applications. J. Nanopart. Res. 2013, 15, 1512–1519. [Google Scholar] [CrossRef]
- Alrahlah, A.; Khan, R.; Al-Odayni, A.-B.; Saeed, W.S.; Bautista, L.S.; Vohra, F. Evaluation of Synergic Potential of RGO/SiO2 as Hybrid Filler for BisGMA/TEGDMA Dental Composites. Polymers 2020, 12, 3025. [Google Scholar] [CrossRef]
- Sun, L.; Yan, Z.; Duan, Y.; Zhang, J.; Liu, B. Improvement of the Mechanical, Tribological and Antibacterial Properties of Glass Ionomer Cements by Fluorinated Graphene. Dent. Mater. 2018, 34, e115–e127. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.A.; Al-Khureif, A.A.; Saadaldin, S.A.; Mohamed, B.A.; Musaibah, A.S.O.; Divakar, D.D.; Eldwakhly, E. Graphene Oxide-Based Experimental Silane Primers Enhance Shear Bond Strength between Resin Composite and Zirconia. Eur. J. Oral Sci. 2019, 127, 570–576. [Google Scholar] [CrossRef] [PubMed]
- AlFawaz, Y.F.; Almutairi, B.; Kattan, H.F.; Zafar, M.S.; Farooq, I.; Naseem, M.; Vohra, F.; Abduljabbar, T. Dentin Bond Integrity of Hydroxyapatite Containing Resin Adhesive Enhanced with Graphene Oxide Nano-Particles—An SEM, EDX, Micro-Raman, and Microtensile Bond Strength Study. Polymers 2020, 12, 2978. [Google Scholar] [CrossRef] [PubMed]
- Bin-Shuwaish, M.S.; Maawadh, A.M.; Al-Hamdan, R.S.; Alresayes, S.; Ali, T.; Almutairi, B.; Vohra, F.; Abduljabbar, T. Influence of Graphene Oxide Filler Content on the Dentin Bond Integrity, Degree of Conversion and Bond Strength of Experimental Adhesive. A SEM, Micro-Raman, FTIR and Microtensile Study. Mater. Res. Express 2020, 7, 115403. [Google Scholar] [CrossRef]
- Alshahrani, A.; Bin-Shuwaish, M.S.; Al-Hamdan, R.S.; Almohareb, T.; Maawadh, A.M.; Al Deeb, M.; Alhenaki, A.M.; Abduljabbar, T.; Vohra, F. Graphene Oxide Nano-Filler Based Experimental Dentine Adhesive. A SEM / EDX, Micro-Raman and Microtensile Bond Strength Analysis. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020966936. [Google Scholar] [CrossRef]
- Soliman, M.; Saadaldin, S.; Aldegheishem, A.; Abdull, A.; Al-Shma, S.; Eldwakhly, E. Synthesis and Characterization of Graphene-Modified Experimental Adhesive System for Bonding Two-Piece Zirconia Abutments: Electron Microscopy and Raman Spectroscopic Analysis. Int. J. Adhes. Adhes. 2021, 109, 102897. [Google Scholar] [CrossRef]
- Bregnocchi, A.; Zanni, E.; Uccelletti, D.; Marra, F.; Cavallini, D.; De Angelis, F.; De Bellis, G.; Bossù, M.; Ierardo, G.; Polimeni, A.; et al. Graphene-Based Dental Adhesive with Anti-Biofilm Activity. J. Nanobiotechnology 2017, 15, 89. [Google Scholar] [CrossRef]
- Chen, W.; Jin, H.; Zhang, H.; Wu, L.; Chen, G.; Shao, H.; Wang, S.; He, X.; Zheng, S.; Cao, C.Y.; et al. Synergistic Effects of Graphene Quantum Dots and Carbodiimide in Promoting Resin–Dentin Bond Durability. Dent. Mater. 2021, 37, 1498–1510. [Google Scholar] [CrossRef]
- Mazánek, V.; Jankovský, O.; Luxa, J.; Sedmidubský, D.; Janoušek, Z.; Šembera, F.; Mikulics, M.; Sofer, Z. Tuning of Fluorine Content in Graphene: Towards Large-Scale Production of Stoichiometric Fluorographene. Nanoscale 2015, 7, 13646–13655. [Google Scholar] [CrossRef] [Green Version]
- Nair, R.R.; Ren, W.; Jalil, R.; Riaz, I.; Kravets, V.G.; Britnell, L.; Blake, P.; Schedin, F.; Mayorov, A.S.; Yuan, S.; et al. Fluorographene: A Two-Dimensional Counterpart of Teflon. Small 2010, 6, 2877–2884. [Google Scholar] [CrossRef]
- Liu, R.; Wang, E.; Guo, Y.; Zhou, Q.; Zheng, Y.; Zhai, J.; Zhang, K.; Zhang, B. Enhanced Antibacterial Properties and Promoted Cell Proliferation in Glass Ionomer Cement by Modified with Fluorinated Graphene-Doped. J. Appl. Biomater. Funct. Mater. 2021, 19, 22808000211037490. [Google Scholar] [CrossRef] [PubMed]
- Maryoosh, R.M.; Al-Shamma, A.M.W. Shear Bond Strength of Fluorinated Grapheme Nanoparticles Modified Dental Adhesives. Ann. Trop. Med. Public Health 2020, 23, 1–5. [Google Scholar] [CrossRef]
- Zhu, M.; Xie, X.; Guo, Y.; Chen, P.; Ou, X.; Yu, G.; Liu, M. Fluorographene Nanosheets with Broad Solvent Dispersibility and Their Applications as a Modified Layer in Organic Field-Effect Transistors. Phys. Chem. Chem. Phys. 2013, 15, 20992–21000. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.; Maravic, T.; Josic, U.; Mancuso, E.; Generali, L.; Checchi, V.; Breschi, L.; Mazzoni, A. Effect of Adhesive Strategy on Resin Cement Bonding to Dentin. J. Esthet. Restor. Dent. 2022, 25, 1–7, online ahead of print. [Google Scholar] [CrossRef]
- Khan, A.S.; Azam, M.T.; Khan, M.; Mian, S.A.; Rehman, I.U. An Update on Glass Fiber Dental Restorative Composites: A Systematic Review. Mater. Sci. Eng. C 2015, 47, 26–39. [Google Scholar] [CrossRef]
- Sung, H.-G.; Ko, K.-H.; Park, C.-J.; Cho, L.-R.; Huh, Y.-H. Composite Cement Components Stabilize the Bond between a Lithium-Disilicate Glass-Ceramic and the Titanium Abutment. J. Adhes. Dent. 2021, 23, 469–475. [Google Scholar] [CrossRef]
- Yoshida, Y.; Yoshihara, K.; Hayakawa, S.; Nagaoka, N.; Okihara, T.; Matsumoto, T.; Minagi, S.; Osaka, A.; Van Landuyt, K.; Van Meerbeek, B. HEMA Inhibits Interfacial Nano-Layering of the Functional Monomer MDP. J. Dent. Res. 2012, 91, 1060–1065. [Google Scholar] [CrossRef]
- Yoshihara, K.; Yoshida, Y.; Nagaoka, N.; Fukegawa, D.; Hayakawa, S.; Mine, A.; Nakamura, M.; Minagi, S.; Osaka, A.; Suzuki, K.; et al. Nano-Controlled Molecular Interaction at Adhesive Interfaces for Hard Tissue Reconstruction. Acta Biomater. 2010, 6, 3573–3582. [Google Scholar] [CrossRef] [Green Version]
- Van Meerbeek, B.; Yoshihara, K.; Yoshida, Y.; Mine, A.; De Munck, J.; Van Landuyt, K.L. State of the Art of Self-Etch Adhesives. Dent. Mater. 2011, 27, 17–28. [Google Scholar] [CrossRef]
- Mazzitelli, C.; Maravic, T.; Mancuso, E.; Josic, U.; Generali, L.; Comba, A.; Mazzoni, A.; Breschi, L. Influence of the Activation Mode on Long-Term Bond Strength and Endogenous Enzymatic Activity of Dual-Cure Resin Cements. Clin. Oral Investig. 2022, 26, 1683–1694. [Google Scholar] [CrossRef]
- Nagaoka, N.; Yoshihara, K.; Feitosa, V.P.; Tamada, Y.; Irie, M.; Yoshida, Y.; Van Meerbeek, B.; Hayakawa, S. Chemical Interaction Mechanism of 10-MDP with Zirconia. Sci. Rep. 2017, 7, srep45563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sofer, Z.; Jankovský, O.; Šimek, P.; Klímová, K.; Macková, A.; Pumera, M. Uranium- and Thorium-Doped Graphene for Efficient Oxygen and Hydrogen Peroxide Reduction. ACS Nano 2014, 8, 7106–7114. [Google Scholar] [CrossRef] [PubMed]
- Pumera, M. Graphene-Based Nanomaterials and Their Electrochemistry. Chem. Soc. Rev. 2010, 39, 4146–4157. [Google Scholar] [CrossRef] [PubMed]
- Yam, K.M.; Guo, N.; Jiang, Z.; Li, S.; Zhang, C. Graphene-Based Heterogeneous Catalysis: Role of Graphene. Catalysts 2020, 10, 53. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, P.C.K.; Almeida, C.C.M.S.; Souza, R.O.A.; Tango, R.N. The Effect of a 10-MDP-Based Dentin Adhesive as Alternative for Bonding to Implant Abutment Materials. Materials 2022, 15, 5449. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, B.; Xie, H.; Chen, Y.; Chen, Y.; Chen, C. Durability of Resin Bonding to Zirconia Using Products Containing 10-Methacryloyloxydecyl Dihydrogen Phosphate. J. Adhes. Dent. 2018, 20, 279–287. [Google Scholar] [CrossRef]
- Özcan, M.; Bernasconi, M. Adhesion to Zirconia Used for Dental Restorations: A Systematic Review and Meta-Analysis. J. Adhes. Dent. 2015, 17, 7–26. [Google Scholar] [CrossRef]
- Baldissara, P.; Monaco, C.; Onofri, E.; Fonseca, R.G.; Ciocca, L. Fatigue resistance of monolithic lithium disilicate occlusal veneers: A pilot study. Odontology 2019, 107, 482–490. [Google Scholar] [CrossRef]
- Romero-Aburto, R.; Narayanan, T.N.; Nagaoka, Y.; Hasumura, T.; Mitcham, T.M.; Fukuda, T.; Cox, P.J.; Bouchard, R.R.; Maekawa, T.; Kumar, D.S.; et al. Fluorinated Graphene Oxide; a New Multimodal Material for Biological Applications. Adv. Mater. Deerfield Beach Fla 2013, 25, 5632–5637. [Google Scholar] [CrossRef] [Green Version]
- Teo, W.Z.; Sofer, Z.; Šembera, F.; Janoušek, Z.; Pumera, M. Cytotoxicity of Fluorographene. RSC Adv. 2015, 5, 107158–107165. [Google Scholar] [CrossRef]
- Teo, W.Z.; Chua, C.K.; Sofer, Z.; Pumera, M. Fluorinated Nanocarbons Cytotoxicity. Chem.–Eur. J. 2015, 21, 13020–13026. [Google Scholar] [CrossRef] [PubMed]
- Gavranović-Glamoč, A.; Ajanović, M.; Kazazić, L.; Strujić-Porović, S.; Zukić, S.; Jakupović, S.; Kamber-Ćesir, A.; Berhamović, L. Evaluation of Solubility of Luting Cements in Different Solutions. Acta Medica Acad. 2020, 49, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Lai, W.; Wang, C.; Chen, Y.; He, T.; Fan, K.; Liu, X.; Wang, X. In Situ Radical Polymerization and Grafting Reaction Simultaneously Initiated by Fluorinated Graphene. Langmuir 2019, 35, 6610–6619. [Google Scholar] [CrossRef] [PubMed]
Material | Batch No. | Composition |
---|---|---|
CBC | 170321B | UDMA, TEGDMA, Bis-GMA, HEMA, 10-MDP, BPO, BHT, CQ, YbF3, glass fillers |
Dentin Primer | DP260321 | 10-MDP, H2O, C3H6O, HEMA |
Ceramic Primer | CP260321 | 10-MDP, ethanol, silane (3-trimethoxysilylpropyl methacrylate) |
Material (n = 20) | Batch Number | Manufacturer | Dentin Surface Treatment | Zirconia Surface Treatment |
---|---|---|---|---|
OverCEM SA (Self-adhesive cement) | TRS1119 | Overfibers s.r.l., Imola, Italy | 400-grit SiC paper + clotramid (30 s) − water − air | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) |
Panavia SA (Self-adhesive cement) | 4A0010 | Kuraray Europe GmbH, Hattersheim am Main, Germany | 400-grit SiC paper + clotramid (30 s) − water − air | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) |
Panavia V5 + Tooth Primer (Adhesive cement) | 950057 | Kuraray Europe GmbH, Hattersheim am Main, Germany | 400-grit SiC paper + clotramid (30 s) − water − air + tooth primer (20 s) − wait (20 s) − air (20 s) | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) + ceramic primer (15 s) − wait (15 s) − air (15 s) |
Relyx Unicem 2 (Self-adhesive cement) | 6026795 | 3M ESPE Dental Products, Saint Paul, MN, USA | 400-grit SiCpaper + clotramid (30 s) − water − air | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) |
Speedcem (Self-adhesive cement) | Y10129 | Ivoclar Vivadent AG, Schaan, Liechtenstein | 400-grit SiC paper + clotramid (30 s) − water − air | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) |
Theracem (Self-adhesive) | 1900007482 | Bisco, Inc., Schaumburg, IL, USA | 400-grit SiCpaper + clotramid (30 s) − water − air | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) |
CBC + primers (Control) | 170321B + CP260321 + DP260321 | - | 400-grit SiCpaper + clotramid (30 s) − water − air + DP (15 s) − wait (15 s) − air (15 s) | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) + CP (15 s) − wait (15 s) − air (15 s) |
CBC 2% FG + primer | 071021 + CP260321 + DP260321 | - | Not carried out due to early polymerization of the material | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) + CP (15 s) − wait (15 s) − air (15 s) |
CBC + primers 2% FG | 170321B + CP210921 + DP210921 | - | 400-grit SiC paper + clotramid (30 s) − water − air + DP 2% FGe (15 s) − wait (15 s) − air (15 s) | Al2O3 sandblasting (50 μm, 3.5 bar pressure, 10 mm distance) + CP 2% FGe (15 s) − wait (15 s) − air (15 s) |
Materials | Batch No. | Manufacturer | Sample Size |
---|---|---|---|
Bisfil 2B | 4A0010 | Bisco, Inc., Schaumburg, IL, USA | 5 |
Build It | 950057 | Kerr Corporation, Orange, CA, USA | 5 |
Core X Flow | Y10129 | Ivoclar Vivadent AG, Principality of Schaan, Liechtenstein | 5 |
ProPILLAR | 1900007482 | P.L. Superior Dental Materials Gmbh, Hamburg, Germany | 5 |
CBC | 170321B | 5 | |
CBC 2% FGm | 060521 | 6 | |
CBC 2% FGe | 071021 | 4 |
Adhesive Properties | Mechanical Properties | ||||
---|---|---|---|---|---|
Material | mSBS on Zirconia (MPa) | mSBS on Dentin (MPa) | Material | Flexural Strength (MPa) | Young’s Modulus (MPa) |
OverCEM SA | 36.84 ± 1.7 | 11.48 ± 2.0 | Bisfil 2B | 108.9 ± 12.57 | 8081 ± 189.9 |
Panavia SA | 21.38 ± 2.7 | 8.25 ± 1.3 | Build It | 107.4 ± 8.2 | 6307 ± 419.4 |
Panavia V5 | 23.13 ± 3.1 | 28.12 ± 5.0 | Core X Flow | 117.1 ± 7.0 | 6730 ± 218.9 |
Relyx Unicem 2 | 27.22 ± 3.7 | 15.12 ± 2.9 | ProPILLAR | 118.0 ± 9.1 | 5855 ± 227.1 |
Speedcem | 28.66 ± 2.0 | 8.55 ± 2.0 | CBC | 111.1 ± 7.8 | 6155 ± 481.5 |
Theracem | 26.95 ± 2.3 | 6.20 ± 1.9 | CBC 2% FGm | 104.8 ± 3.7 | 6876 ± 261.1 |
CBC + primers | 49.73 ± 4.7 | 32.89 ± 2.4 | e-CBC 2% FGe | 104.8 ± 3.7 | 3814 ± 202.5 |
CBC 2% FGe + primers | 46.53 ± 4.0 | - | |||
CBC + primers 2% FGe | 37.90 ± 4.0 | 16.74 ± 1.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldissara, P.; Silvestri, D.; Pieri, G.M.; Mazzitelli, C.; Arena, A.; Maravic, T.; Monaco, C. Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers 2022, 14, 5301. https://doi.org/10.3390/polym14235301
Baldissara P, Silvestri D, Pieri GM, Mazzitelli C, Arena A, Maravic T, Monaco C. Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers. 2022; 14(23):5301. https://doi.org/10.3390/polym14235301
Chicago/Turabian StyleBaldissara, Paolo, Davide Silvestri, Giovanni Maria Pieri, Claudia Mazzitelli, Antonio Arena, Tatjana Maravic, and Carlo Monaco. 2022. "Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite" Polymers 14, no. 23: 5301. https://doi.org/10.3390/polym14235301
APA StyleBaldissara, P., Silvestri, D., Pieri, G. M., Mazzitelli, C., Arena, A., Maravic, T., & Monaco, C. (2022). Effect of Fluorographene Addition on Mechanical and Adhesive Properties of a New Core Build-Up Composite. Polymers, 14(23), 5301. https://doi.org/10.3390/polym14235301