Recent Advances in Polymers for Potassium Ion Batteries
Abstract
1. Introduction
2. Polymer Electrode Materials (PEMs) for KIBs
2.1. Polymers as Cathode Materials for KIBs
2.2. Polymers as Anode Materials for KIBs
3. Polymer Electrolytes (PEs) for KIBs
3.1. PEO-Based PEs
3.1.1. Single PEO-Based Pes
3.1.2. Non-Single PEO-Based PEs
3.2. Non-PEO-Based PEs
4. Polymer Binders for KIBs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Palacin, M.R. Recent advances in rechargeable battery materials: A chemist’s perspective. Chem. Soc. Rev. 2009, 38, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Thomas, H.R.; Francis, R.W.; Lum, K.R.; Wang, J.; Liang, B. A review of processes and technologies for the recycling of lithium-ion secondary batteries. J. Power Sources 2008, 177, 512–527. [Google Scholar] [CrossRef]
- Zhao, Y.; Pohl, O.; Bhatt, A.I.; Collis, G.E.; Mahon, P.J.; Rüther, T.; Hollenkamp, A.F. A Review on Battery Market Trends, Second-Life Reuse, and Recycling. Sustain. Chem. 2021, 2, 167–205. [Google Scholar] [CrossRef]
- Braga, M.H.; Grundish, N.S.; Murchison, A.J.; Goodenough, J.B. Alternative strategy for a safe rechargeable battery. Energy Environ. Sci. 2017, 10, 331–336. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. A Progress Report on Metal-Sulfur Batteries. Adv. Funct. Mater. 2020, 30, 2004084. [Google Scholar] [CrossRef]
- Yu, X.; Manthiram, A. Sustainable Battery Materials for Next-Generation Electrical Energy Storage. Adv. Energy Sustain. Res. 2021, 2, 2000102. [Google Scholar] [CrossRef]
- Chen, T.; Jin, Y.; Lv, H.; Yang, A.; Liu, M.; Chen, B.; Xie, Y.; Chen, Q. Applications of Lithium-Ion Batteries in Grid-Scale Energy Storage Systems. Trans. Tianjin Univ. 2020, 26, 208–217. [Google Scholar] [CrossRef]
- Wu, X.; Song, K.; Zhang, X.; Hu, N.; Li, L.; Li, W.; Zhang, L.; Zhang, H. Safety Issues in Lithium Ion Batteries: Materials and Cell Design. Front. Energy Res. 2019, 7, 65. [Google Scholar] [CrossRef]
- Pramudita, J.C.; Sehrawat, D.; Goonetilleke, D.; Sharma, N. An Initial Review of the Status of Electrode Materials for Potassium-Ion Batteries. Adv. Energy Mater. 2017, 7, 1602911. [Google Scholar] [CrossRef]
- Hosaka, T.; Kubota, K.; Hameed, A.S.; Komaba, S. Research Development on K-Ion Batteries. Chem. Rev. 2020, 120, 6358–6466. [Google Scholar] [CrossRef]
- Guo, Y.; Feng, Y.; Li, H.; Wang, Y.; Wen, Z.; Zhou, G. Carbon quantum dots in hard carbon: An approach to achieving PIB anodes with high potassium adsorption. Carbon 2022, 189, 142–151. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Y.; Fan, X.; Ji, G.; Ji, X.; Wang, H.; Hou, S.; Zachariah, M.R.; Wang, C. Extremely stable antimony-carbon composite anodes for potassium-ion batteries. Energy Environ. Sci. 2019, 12, 615–623. [Google Scholar] [CrossRef]
- Jian, Z.; Xing, Z.; Bommier, C.; Li, Z.; Ji, X. Hard Carbon Microspheres: Potassium-Ion Anode Versus Sodium-Ion Anode. Adv. Energy Mater. 2016, 6, 1501874. [Google Scholar] [CrossRef]
- Kubota, K.; Dahbi, M.; Hosaka, T.; Kumakura, S.; Komaba, S. Towards K-ion and Na-ion batteries as “beyond Li-ion”. Chem. Rec. 2018, 18, 459–479. [Google Scholar] [CrossRef]
- Moshkovich, M.; Gofer, Y.; Aurbach, D. Investigation of the Electrochemical Windows of Aprotic Alkali Metal (Li, Na, K) Salt Solutions. J. Electrochem. Soc. 2001, 148, E155. [Google Scholar] [CrossRef]
- Wu, X.; Leonard, D.P.; Ji, X. Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities. Chem. Mater. 2017, 29, 5031–5042. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, M.; Gao, Y.; Wei, Z.; Zhang, M.; Wang, C.; Du, F. Fast Potassium Storage in Hierarchical Ca0.5Ti2(PO4)3@C Microspheres Enabling High-Performance Potassium-Ion Capacitors. Adv. Funct. Mater. 2018, 28, 1802684. [Google Scholar] [CrossRef]
- Lei, K.; Li, F.; Mu, C.; Wang, J.; Zhao, Q.; Chen, C.; Chen, J. High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolyte. Energy Environ. Sci. 2017, 10, 552–557. [Google Scholar] [CrossRef]
- Okoshi, M.; Yamada, Y.; Komaba, S.; Yamada, A.; Nakai, H. Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions. J. Electrochem. Soc. 2017, 164, A54–A60. [Google Scholar] [CrossRef]
- Zhao, J.; Zou, X.; Zhu, Y.; Xu, Y.; Wang, C. Electrochemical Intercalation of Potassium into Graphite. Adv. Funct. Mater. 2016, 26, 8103–8110. [Google Scholar] [CrossRef]
- Rajagopalan, R.; Tang, Y.; Ji, X.; Jia, C.; Wang, H. Advancements and Challenges in Potassium Ion Batteries: A Comprehensive Review. Adv. Funct. Mater. 2020, 30, 1909486. [Google Scholar] [CrossRef]
- Xu, Y.-S.; Duan, S.-Y.; Sun, Y.-G.; Bin, D.-S.; Tao, X.-S.; Zhang, D.; Liu, Y.; Cao, A.-M.; Wan, L.-J. Recent developments in electrode materials for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 4334–4352. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, W.; Zhang, Q. Organic Materials as Electrodes in Potassium-Ion Batteries. Chemistry 2021, 27, 6131–6144. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, C.; Dai, L.; Deng, Q.; Wang, L.; Luo, J.; Liu, S.; Hu, N. The Features and Progress of Electrolyte for Potassium Ion Batteries. Small 2020, 16, e2004096. [Google Scholar] [CrossRef]
- Li, X.; Ou, X.; Tang, Y. 6.0 V High-Voltage and Concentrated Electrolyte toward High Energy Density K-Based Dual-Graphite Battery. Adv. Energy Mater. 2020, 10, 2002567. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, M.; Xiong, Y.; Hou, Z.; Ao, H.; Liu, M.; Zhu, Y.; Qian, Y. Aqueous Rechargeable Li+/Na+ Hybrid Ion Battery with High Energy Density and Long Cycle Life. Small 2020, 16, e2003585. [Google Scholar] [CrossRef]
- Pervez, S.A.; Kim, G.; Vinayan, B.P.; Cambaz, M.A.; Kuenzel, M.; Hekmatfar, M.; Fichtner, M.; Passerini, S. Overcoming the Interfacial Limitations Imposed by the Solid-Solid Interface in Solid-State Batteries Using Ionic Liquid-Based Interlayers. Small 2020, 16, e2000279. [Google Scholar] [CrossRef]
- Lin, X.; Huang, J.; Tan, H.; Huang, J.; Zhang, B. K3V2(PO4)2F3 as a robust cathode for potassium-ion batteries. Energy Storage Mater. 2019, 16, 97–101. [Google Scholar] [CrossRef]
- Hwang, J.-Y.; Kim, J.; Yu, T.-Y.; Myung, S.-T.; Sun, Y.-K. Development of P3-K0.69CrO2 as an ultra-high-performance cathode material for K-ion batteries. Energy Environ. Sci. 2018, 11, 2821–2827. [Google Scholar] [CrossRef]
- Naveen, N.; Park, W.B.; Han, S.C.; Singh, S.P.; Jung, Y.H.; Ahn, D.; Sohn, K.-S.; Pyo, M. Reversible K+-Insertion/Deinsertion and Concomitant Na+-Redistribution in P′3-Na0.52CrO2 for High-Performance Potassium-Ion Battery Cathodes. Chem. Mater. 2018, 30, 2049–2057. [Google Scholar] [CrossRef]
- Islas-Vargas, C.; Guevara-García, A.; Oliver-Tolentino, M.; Ramos-Sánchez, G.; González, I.; Galván, M. Experimental and Theoretical Investigation on the Origin of the High Intercalation Voltage of K2Zn3[Fe(CN)6]2 Cathode. J. Electrochem. Soc. 2018, 166, A5139–A5145. [Google Scholar] [CrossRef]
- Tian, B.; Tang, W.; Leng, K.; Chen, Z.; Tan, S.J.R.; Peng, C.; Ning, G.-H.; Fu, W.; Su, C.; Zheng, G.W. Phase Transformations in TiS2 during K Intercalation. ACS Energy Lett. 2017, 2, 1835–1840. [Google Scholar] [CrossRef]
- He, X.-D.; Liu, Z.-H.; Liao, J.-Y.; Ding, X.; Hu, Q.; Xiao, L.-N.; Wang, S.; Chen, C.-H. A three-dimensional macroporous antimony@carbon composite as a high-performance anode material for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9629–9637. [Google Scholar] [CrossRef]
- Liu, C.; Luo, S.; Huang, H.; Zhai, Y.; Wang, Z. Direct Growth of MoO2/Reduced Graphene Oxide Hollow Sphere Composites as Advanced Anode Materials for Potassium-Ion Batteries. ChemSusChem 2019, 12, 873–880. [Google Scholar] [CrossRef] [PubMed]
- Xie, K.; Yuan, K.; Li, X.; Lu, W.; Shen, C.; Liang, C.; Vajtai, R.; Ajayan, P.; Wei, B. Superior Potassium Ion Storage via Vertical MoS2 “Nano-Rose” with Expanded Interlayers on Graphene. Small 2017, 13, 1701471. [Google Scholar] [CrossRef]
- Yin, X.; Sarkar, S.; Shi, S.; Huang, Q.A.; Zhao, H.; Yan, L.; Zhao, Y.; Zhang, J. Recent Progress in Advanced Organic Electrode Materials for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Adv. Funct. Mater. 2020, 30, 1908445. [Google Scholar] [CrossRef]
- Häupler, B.; Wild, A.; Schubert, U.S. Carbonyls: Powerful Organic Materials for Secondary Batteries. Adv. Energy Mater. 2015, 5, 1402034. [Google Scholar] [CrossRef]
- Kapaev, R.R.; Troshin, P.A. Organic-based active electrode materials for potassium batteries: Status and perspectives. J. Mater. Chem. A 2020, 8, 17296–17325. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, C. Designing High Performance Organic Batteries. Acc. Chem. Res. 2020, 53, 2636–2647. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Zhou, M.; Liang, L.; Dong, H.; Wu, M.; Yang, Y.; Lei, Y. Potassium Prussian Blue Nanoparticles: A Low-Cost Cathode Material for Potassium-Ion Batteries. Adv. Funct. Mater. 2017, 27, 1604307. [Google Scholar] [CrossRef]
- Jiang, X.; Zhang, T.; Yang, L.; Li, G.; Lee, J.Y. A Fe/Mn Based Prussian Blue Analogue as a K-rich Cathode Material for Potassium-Ion Batteries. ChemElectroChem 2017, 4, 2237–2242. [Google Scholar] [CrossRef]
- Liu, C.; Luo, S.; Huang, H.; Wang, Z.; Hao, A.; Zhai, Y.; Wang, Z. K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery. Electrochem. Commun. 2017, 82, 150–154. [Google Scholar] [CrossRef]
- Pal, D.; Abdi, S.H.; Shukla, M. Structural and EPR studies of Lithium inserted layered Potassium tetra titanate K2Ti4O9 as material for K ions battery. J. Mater. Sci. Mater. Electron. 2015, 26, 6647–6652. [Google Scholar] [CrossRef]
- Chong, S.; Wu, Y.; Liu, C.; Chen, Y.; Guo, S.; Liu, Y.; Cao, G. Cryptomelane-type MnO2/carbon nanotube hybrids as bifunctional electrode material for high capacity potassium-ion full batteries. Nano Energy 2018, 54, 106–115. [Google Scholar] [CrossRef]
- Nikitina, V.A.; Kuzovchikov, S.M.; Fedotov, S.S.; Khasanova, N.R.; Abakumov, A.M.; Antipov, E.V. Effect of the electrode/electrolyte interface structure on the potassium-ion diffusional and charge transfer rates: Towards a high voltage potassium-ion battery. Electrochim. Acta 2017, 258, 814–824. [Google Scholar] [CrossRef]
- Ye, F.; Lu, D.; Gui, X.; Wang, T.; Zhuang, X.; Luo, W.; Huang, Y. Atomic layer deposition of core-shell structured V2O5@CNT sponge as cathode for potassium ion batteries. J. Mater. 2019, 5, 344–349. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, W.; Carter, M.; Zhou, L.; Dai, J.; Fu, K.; Lacey, S.; Li, T.; Wan, J.; Han, X.; et al. Organic electrode for non-aqueous potassium-ion batteries. Nano Energy 2015, 18, 205–211. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Sun, P.; Xu, Y. Sodium sulfonate groups substituted anthraquinone as an organic cathode for potassium batteries. Electrochem. Commun. 2018, 86, 34–37. [Google Scholar] [CrossRef]
- Song, Z.; Zhan, H.; Zhou, Y. Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. Chem. Commun. 2009, 448–450. [Google Scholar] [CrossRef]
- Bitenc, J.; Pirnat, K.; Bancic, T.; Gaberscek, M.; Genorio, B.; Randon-Vitanova, A.; Dominko, R. Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. ChemSusChem 2015, 8, 4128–4132. [Google Scholar] [CrossRef]
- Deng, W.; Liang, X.; Wu, X.; Qian, J.; Cao, Y.; Ai, X.; Feng, J.; Yang, H. A low cost, all-organic Na-ion battery based on polymeric cathode and anode. Sci. Rep. 2013, 3, 2671. [Google Scholar] [CrossRef] [PubMed]
- Jian, Z.; Liang, Y.; Rodríguez-Pérez, I.A.; Yao, Y.; Ji, X. Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries. Electrochem. Commun. 2016, 71, 5–8. [Google Scholar] [CrossRef]
- Xing, Z.; Jian, Z.; Luo, W.; Qi, Y.; Bommier, C.; Chong, E.S.; Li, Z.; Hu, L.; Ji, X. A perylene anhydride crystal as a reversible electrode for K-ion batteries. Energy Storage Mater. 2016, 2, 63–68. [Google Scholar] [CrossRef]
- Tang, M.; Zhu, S.; Liu, Z.; Jiang, C.; Wu, Y.; Li, H.; Wang, B.; Wang, E.; Ma, J.; Wang, C. Tailoring π-Conjugated Systems: From π-π Stacking to High-Rate-Performance Organic Cathodes. Chem 2018, 4, 2600–2614. [Google Scholar] [CrossRef]
- Tang, M.; Wu, Y.; Chen, Y.; Jiang, C.; Zhu, S.; Zhuo, S.; Wang, C. An organic cathode with high capacities for fast-charge potassium-ion batteries. J. Mater. Chem. A 2019, 7, 486–492. [Google Scholar] [CrossRef]
- Zhou, M.; Liu, M.; Wang, J.; Gu, T.; Huang, B.; Wang, W.; Wang, K.; Cheng, S.; Jiang, K. Polydiaminoanthraquinones with tunable redox properties as high performance organic cathodes for K-ion batteries. Chem. Commun. 2019, 55, 6054–6057. [Google Scholar] [CrossRef]
- Tian, B.; Zheng, J.; Zhao, C.; Liu, C.; Su, C.; Tang, W.; Li, X.; Ning, G.-H. Carbonyl-based polyimide and polyquinoneimide for potassium-ion batteries. J. Mater. Chem. A 2019, 7, 9997–10003. [Google Scholar] [CrossRef]
- Hu, Y.; Ding, H.; Bai, Y.; Liu, Z.; Chen, S.; Wu, Y.; Yu, X.; Fan, L.; Lu, B. Rational Design of a Polyimide Cathode for a Stable and High-Rate Potassium-Ion Battery. ACS Appl. Mater. Interfaces 2019, 11, 42078–42085. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; He, K.; Dong, Y.; Zhao, H.; Medenbach, L.; Wu, Y.; Balducci, A.; Hannappel, T.; Lei, Y. Polyimide@Ketjenblack Composite: A Porous Organic Cathode for Fast Rechargeable Potassium-Ion Batteries. Small 2020, 16, e2002953. [Google Scholar] [CrossRef]
- Obrezkov, F.A.; Shestakov, A.F.; Traven, V.F.; Stevenson, K.J.; Troshin, P.A. An ultrafast charging polyphenylamine-based cathode material for high rate lithium, sodium and potassium batteries. J. Mater. Chem. A 2019, 7, 11430–11437. [Google Scholar] [CrossRef]
- Obrezkov, F.A.; Ramezankhani, V.; Zhidkov, I.; Traven, V.F.; Kurmaev, E.Z.; Stevenson, K.J.; Troshin, P.A. High-Energy and High-Power-Density Potassium Ion Batteries Using Dihydrophenazine-Based Polymer as Active Cathode Material. J. Phys. Chem. Lett. 2019, 10, 5440–5445. [Google Scholar] [CrossRef] [PubMed]
- Kapaev, R.R.; Zhidkov, I.S.; Kurmaev, E.Z.; Stevenson, K.J.; Troshin, P.A. Hexaazatriphenylene-based polymer cathode for fast and stable lithium-, sodium- and potassium-ion batteries. J. Mater. Chem. A 2019, 7, 22596–22603. [Google Scholar] [CrossRef]
- Li, H.; Wu, J.; Li, H.; Xu, Y.; Zheng, J.; Shi, Q.; Kang, H.; Zhao, S.; Zhang, L.; Wang, R. Designing π-conjugated polypyrene nanoflowers formed with meso-and microporous nanosheets for high-performance anode of potassium ion batteries. Chem. Eng. J. 2022, 430, 132704. [Google Scholar] [CrossRef]
- Kang, H.; Chen, Q.; Ma, Q.; Zhang, L.; Yang, Q.; Li, H.; Xie, X.; Lan, S.; Zhang, C. Coaxial spiral structural polymer/reduced graphene oxide composite as a high-performance anode for potassium ion batteries. J. Power Sources 2022, 545, 231951. [Google Scholar] [CrossRef]
- Shin, D.W.; Guiver, M.D.; Lee, Y.M. Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chem. Rev. 2017, 117, 4759–4805. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Zhang, Y.; Wang, R.; Feng, M.; Niu, X.; Tan, L.; Zhu, Y. Influence of KPF6 and KFSI on the Performance of Anode Materials for Potassium-Ion Batteries: A Case Study of MoS2. ACS Appl. Mater. Interfaces 2019, 11, 22449–22456. [Google Scholar] [CrossRef]
- Kim, H.-S.; Verma, R.; Kim, J.; Park, C.-J. Effect of Urea as Electrolyte Additive for Stabilization of Lithium Metal Electrodes. ACS Sustain. Chem. Eng. 2020, 8, 11123–11132. [Google Scholar] [CrossRef]
- Yoshida, K.; Nakamura, M.; Kazue, Y.; Tachikawa, N.; Tsuzuki, S.; Seki, S.; Dokko, K.; Watanabe, M. Oxidative-stability enhancement and charge transport mechanism in glyme-lithium salt equimolar complexes. J. Am. Chem. Soc. 2011, 133, 13121–13129. [Google Scholar] [CrossRef]
- Verma, R.; Didwal, P.N.; Hwang, J.Y.; Park, C.J. Recent Progress in Electrolyte Development and Design Strategies for Next-Generation Potassium-Ion Batteries. Batter. Supercaps 2021, 4, 1428–1450. [Google Scholar] [CrossRef]
- Fenton, D.E.; Parker, J.M.; Wright, P.V. Complexes of alkali metal ions with poly(ethylene oxide). Polymer 1973, 14, 598. [Google Scholar] [CrossRef]
- Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D.P.; Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 2017, 33, 363–386. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Electrolytes and Electrolyte/Electrode Interfaces in Sodium-Ion Batteries: From Scientific Research to Practical Application. Adv. Mater. 2019, 31, e1808393. [Google Scholar] [CrossRef] [PubMed]
- Chai, J.; Liu, Z.; Ma, J.; Wang, J.; Liu, X.; Liu, H.; Zhang, J.; Cui, G.; Chen, L. In Situ Generation of Poly (Vinylene Carbonate) Based Solid Electrolyte with Interfacial Stability for LiCoO2 Lithium Batteries. Adv. Sci. 2017, 4, 1600377. [Google Scholar] [CrossRef] [PubMed]
- Choudhury, S.; Wei, S.; Ozhabes, Y.; Gunceler, D.; Zachman, M.J.; Tu, Z.; Shin, J.H.; Nath, P.; Agrawal, A.; Kourkoutis, L.F.; et al. Designing solid-liquid interphases for sodium batteries. Nat. Commun. 2017, 8, 898. [Google Scholar] [CrossRef] [PubMed]
- Fei, H.; Liu, Y.; An, Y.; Xu, X.; Zhang, J.; Xi, B.; Xiong, S.; Feng, J. Safe all-solid-state potassium batteries with three dimentional, flexible and binder-free metal sulfide array electrode. J. Power Sources 2019, 433, 226697. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Ren, C.; Luo, F.; Ma, Q.; Hu, Y.-S.; Zhou, Z.; Li, H.; Huang, X.; Chen, L. A ceramic/polymer composite solid electrolyte for sodium batteries. J. Mater. Chem. A 2016, 4, 15823–15828. [Google Scholar] [CrossRef]
- Ni’mah, Y.L.; Cheng, M.-Y.; Cheng, J.H.; Rick, J.; Hwang, B.-J. Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J. Power Sources 2015, 278, 375–381. [Google Scholar] [CrossRef]
- Serra Moreno, J.; Armand, M.; Berman, M.B.; Greenbaum, S.G.; Scrosati, B.; Panero, S. Composite PEOn:NaTFSI polymer electrolyte: Preparation, thermal and electrochemical characterization. J. Power Sources 2014, 248, 695–702. [Google Scholar] [CrossRef]
- Pritam; Arya, A.; Sharma, A.L. Dielectric relaxations and transport properties parameter analysis of novel blended solid polymer electrolyte for sodium-ion rechargeable batteries. J. Mater. Sci. 2019, 54, 7131–7155. [Google Scholar] [CrossRef]
- Youcef, H.B.; Orayech, B.; Del Amo, J.M.L.; Bonilla, F.; Shanmukaraj, D.; Armand, M. Functionalized cellulose as quasi single-ion conductors in polymer electrolyte for all-solid-state Li/Na and Li-S batteries. Solid State Ion. 2020, 345, 115168. [Google Scholar] [CrossRef]
- Ma, Q.; Liu, J.; Qi, X.; Rong, X.; Shao, Y.; Feng, W.; Nie, J.; Hu, Y.-S.; Li, H.; Huang, X. A new Na[(FSO2)(n-C4F9SO2)N]-based polymer electrolyte for solid-state sodium batteries. J. Mater. Chem. A 2017, 5, 7738–7743. [Google Scholar] [CrossRef]
- Whang, W.-T.; Yang, L.-H.; Fan, Y.-W. Effect of poly(vinylidene fluoride) on the ionic conductivity and morphology of PEO-salt polymer electrolytes. J. Appl. Polym. Sci. 1994, 54, 923–933. [Google Scholar] [CrossRef]
- Stevens, J.R.; Mellander, B.-E. Poly(ethylene oxide)-alkali metal-silver halide salt systems with high ionic conductivity at room temperature. Solid State Ion. 1986, 21, 203–206. [Google Scholar] [CrossRef]
- Chandra, A.; Chandra, A.; Thakur, K. Synthesis, characterization and ion transport properties of hot-pressed solid polymer electrolytes (1-x) PEO:xKI. Chin. J. Polym. Sci. 2013, 31, 302–308. [Google Scholar] [CrossRef]
- Pavani, Y.; Ravi, M.; Bhavani, S.; Karthikeya, R.S.; Rao, V.V.R.N. Physical investigations on pure and KBr doped poly(vinyl alcohol) (PVA) polymer electrolyte films for solid state battery applications. J. Mater. Sci. Mater. Electron. 2018, 29, 5518–5524. [Google Scholar] [CrossRef]
- Chandra, A. Hot pressed K+ ion conducting solid polymer electrolytes: Synthesis, ion conduction and polymeric battery fabrication. Indian J. Phys. 2015, 90, 759–765. [Google Scholar] [CrossRef]
- Singh, R.; Baghel, J.; Shukla, S.; Bhattacharya, B.; Rhee, H.-W.; Singh, P.K. Detailed electrical measurements on sago starch biopolymer solid electrolyte. Phase Transit. 2014, 87, 1237–1245. [Google Scholar] [CrossRef]
- Chandra, A.; Dhundhel, R.S.; Chandra, A. Electrical properties of a newly synthesized potassium ion conducting solid polymer electrolytes. Mater. Today Proc. 2022, 57, 1473–1476. [Google Scholar] [CrossRef]
- Kesharwani, P.; Sahu, D.K.; Sahu, M.; Sahu, T.b.; Agrawal, R.C. Study of ion transport and materials properties of K+-ion conducting solid polymer electrolyte (SPE): [(1-x) PEO: xCH3COOK]. Ionics 2016, 23, 2823–2827. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Zhou, Q.; Qu, H.; Dong, T.; Zhang, M.; Tang, B.; Zhang, J.; Cui, G. Safety-Enhanced Polymer Electrolytes for Sodium Batteries: Recent Progress and Perspectives. ACS Appl. Mater. Interfaces 2019, 11, 17109–17127. [Google Scholar] [CrossRef]
- Elmanzalawy, M.; Sanchez-Ahijón, E.; Kisacik, O.; Carretero-González, J.; Castillo-Martínez, E. High Conductivity in a Fluorine-Free K-Ion Polymer Electrolyte. ACS Appl. Energy Mater. 2022, 5, 9009–9019. [Google Scholar] [CrossRef]
- Pal, P.; Ghosh, A. Influence of TiO2 nano-particles on charge carrier transport and cell performance of PMMA-LiClO4 based nano-composite electrolytes. Electrochim. Acta 2018, 260, 157–167. [Google Scholar] [CrossRef]
- Croce, F.; Appetecchi, G.B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithiumbatteries. Nature 1998, 394, 456–458. [Google Scholar] [CrossRef]
- Nugent, J.L.; Moganty, S.S.; Archer, L.A. Nanoscale organic hybrid electrolytes. Adv. Mater. 2010, 22, 3677–3680. [Google Scholar]
- Li, S.; Zhang, S.Q.; Shen, L.; Liu, Q.; Ma, J.B.; Lv, W.; He, Y.B.; Yang, Q.H. Progress and Perspective of Ceramic/Polymer Composite Solid Electrolytes for Lithium Batteries. Adv. Sci. 2020, 7, 1903088. [Google Scholar] [CrossRef]
- Dey, A.; Karan, S.; Dey, A.; De, S.K. Structure, morphology and ionic conductivity of solid polymer electrolyte. Mater. Res. Bull. 2011, 46, 2009–2015. [Google Scholar] [CrossRef]
- Lakshmi, N.; Chandra, S. Rechargeable solid-state battery using a proton-conducting composite as electrolyte. J. Power Sources 2002, 108, 256–260. [Google Scholar] [CrossRef]
- Agrawal, R.C.; Pandey, G.P. Solid polymer electrolytes: Materials designing and all-solid-state battery applications: An overview. J. Phys. D 2008, 41, 223001. [Google Scholar] [CrossRef]
- Dey, A.; Karan, S.; De, S.K. Effect of nanofillers on thermal and transport properties of potassium iodide–polyethylene oxide solid polymer electrolyte. Solid State Commun. 2009, 149, 1282–1287. [Google Scholar] [CrossRef]
- Bandara, T.M.W.J.; Mellander, B.E.; Albinsson, I.; Dissanayake, M.A.K.L. Effect of thermal history and characterization of plasticized, composite polymer electrolyte based on PEO and tetrapropylammonium iodide salt (Pr4N+I−). Solid State Ion. 2009, 180, 362–367. [Google Scholar] [CrossRef]
- Chandra, A. Ion conducting nano-composite polymer electrolytes: Synthesis and ion transport characterization. Polym. Bull. 2017, 74, 4815–4826. [Google Scholar] [CrossRef]
- Chandra, A. Temperature dependent ionic conductivity and cell performance studies of hot-pressed nanocomposite polymer electrolytes. Compos. Commun. 2017, 4, 33–36. [Google Scholar] [CrossRef]
- Agrawal, R.C.; Mahipal, Y.K. Study of Electrical and Electrochemical Behaviour on Hot-press Synthesized Nano-Composite Polymer Electrolyte (NCPE) Membranes [(70PEO 30 KNO3) + xSiO2]. Int. J. Electrochem. Sci. 2011, 6, 867–881. [Google Scholar]
- Kesharwani, P.; Sahu, D.K.; Mahipal, Y.K.; Agrawal, R.C. Conductivity enhancement in K+-ion conducting dry Solid Polymer Electrolyte (SPE): [PEO: KNO3]: A consequence of KI dispersal and nano-ionic effect. Mater. Chem. Phys. 2017, 193, 524–531. [Google Scholar] [CrossRef]
- Aili, D.; Jankova, K.; Han, J.; Bjerrum, N.J.; Jensen, J.O.; Li, Q. Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes. Polymer 2016, 84, 304–310. [Google Scholar] [CrossRef]
- Sarada, B.A.; Bhargav, P.B.; Sharma, A.K.; Rao, V.V.R.N. Studies on (PEO+PVA+KIO3) polymer blend electrolyte films for electrochemical cell applications. Mater. Res. Innov. 2013, 15, 394–400. [Google Scholar] [CrossRef]
- Nadimicherla, R.; Sharma, A.K.; Rao, V.V.R.N.; Chen, W. Electrical and solid-state battery performance of a new PVC/PEO + KBr blend-based polymer electrolyte system. Ionics 2014, 21, 1587–1594. [Google Scholar] [CrossRef]
- Reddeppa, N.; Sharma, A.K.; Narasimha Rao, V.V.R.; Chen, W. AC conduction mechanism and battery discharge characteristics of (PVC/PEO) polyblend films complexed with potassium chloride. Measurement 2014, 47, 33–41. [Google Scholar] [CrossRef]
- Bhargav, P.B.; Mohan, V.M.; Sharma, A.K.; Rao, V.V.R.N. Investigations on electrical properties of (PVA:NaF) polymer electrolytes for electrochemical cell applications. Curr. Appl. Phys. 2009, 9, 165–171. [Google Scholar] [CrossRef]
- Pavani, Y.; Ravi, M.; Bhavani, S.; Sharma, A.K.; Narasimha Rao, V.V.R. Characterization of poly(vinyl alcohol)/potassium chloride polymer electrolytes for electrochemical cell applications. Polym. Eng. Sci. 2012, 52, 1685–1692. [Google Scholar] [CrossRef]
- Yang, C.-C.; Lin, S.-J.; Wu, G.-M. Study of ionic transport properties of alkaline poly(vinyl) alcohol-based polymer electrolytes. Mater. Chem. Phys. 2005, 92, 251–255. [Google Scholar] [CrossRef]
- Siva Kumar, J.; Jaipal Reddy, M.; Subba Rao, U.V. Ion transport and battery studies of a new (PVP + KIO3) polymer electrolyte system. J. Mater. Sci. 2006, 41, 6171–6173. [Google Scholar] [CrossRef]
- Subba Reddy, C.V.; Sharma, A.K.; Narasimha Rao, V.V.R. Conductivity and discharge characteristics of polyblend (PVP + PVA + KIO3) electrolyte. J. Power Sources 2003, 114, 338–345. [Google Scholar] [CrossRef]
- Lee, K.J.; Park, J.T.; Koh, J.H.; Min, B.R.; Kim, J.H. Graft polymerization of poly(epichlorohydrin-g-poly((oxyethylene) methacrylate)) using ATRP and its polymer electrolyte with KI. Ionics 2008, 15, 163–167. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, H.; Li, J.; Chai, J.; Dong, S.; Cui, G. The interfacial evolution between polycarbonate-based polymer electrolyte and Li-metal anode. J. Power Sources 2018, 397, 157–161. [Google Scholar] [CrossRef]
- Zhang, J.; Zang, X.; Wen, H.; Dong, T.; Chai, J.; Li, Y.; Chen, B.; Zhao, J.; Dong, S.; Ma, J. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 2017, 5, 4940–4948. [Google Scholar] [CrossRef]
- Fei, H.; Liu, Y.; An, Y.; Xu, X.; Zeng, G.; Tian, Y.; Ci, L.; Xi, B.; Xiong, S.; Feng, J. Stable all-solid-state potassium battery operating at room temperature with a composite polymer electrolyte and a sustainable organic cathode. J. Power Sources 2018, 399, 294–298. [Google Scholar] [CrossRef]
- Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y.-S.; Chen, L. Solid-State Sodium Batteries. Adv. Energy Mater. 2018, 8, 1703012. [Google Scholar] [CrossRef]
- Su’ait, M.S.; Ahmad, A.; Badri, K.H.; Mohamed, N.S.; Rahman, M.Y.A.; Ricardo, C.L.A.; Scardi, P. The potential of polyurethane bio-based solid polymer electrolyte for photoelectrochemical cell application. Int. J. Hydrog. Energy. 2014, 39, 3005–3017. [Google Scholar] [CrossRef]
- Wang, S.; Min, K. Solid polymer electrolytes of blends of polyurethane and polyether modified polysiloxane and their ionic conductivity. Polymer 2010, 51, 2621–2628. [Google Scholar] [CrossRef]
- Rayung, M.; Aung, M.M.; Ahmad, A.; Su’ait, M.S.; Abdullah, L.C.; Ain Md Jamil, S.N. Characteristics of ionically conducting jatropha oil-based polyurethane acrylate gel electrolyte doped with potassium iodide. Mater. Chem. Phys. 2019, 222, 110–117. [Google Scholar] [CrossRef]
- Jyothi, N.K.; Venkataratnam, K.K.; Murty, P.N.; Kumar, K.V. Preparation and characterization of PAN–KI complexed gel polymer electrolytes for solid-state battery applications. Bull. Mater. Sci. 2016, 39, 1047–1055. [Google Scholar] [CrossRef]
- Gao, H.; Xue, L.; Xin, S.; Goodenough, J.B. A High-Energy-Density Potassium Battery with a Polymer-Gel Electrolyte and a Polyaniline Cathode. Angew. Chem. Int. Ed. 2018, 57, 5449–5453. [Google Scholar] [CrossRef]
- Chen, H.; Ling, M.; Hencz, L.; Ling, H.Y.; Li, G.; Lin, Z.; Liu, G.; Zhang, S. Exploring Chemical, Mechanical, and Electrical Functionalities of Binders for Advanced Energy-Storage Devices. Chem. Rev. 2018, 118, 8936–8982. [Google Scholar] [CrossRef] [PubMed]
- Fu, X.; Wang, Y.; Tuba, J.; Scudiero, L.; Zhong, W.H. Small Molecules Make a Big Difference: A Solvent-Controlled Strategy for Building Robust Conductive Network Structures in High-Capacity Electrode Composites. Small Methods 2018, 2, 1800066. [Google Scholar] [CrossRef]
- Chou, S.L.; Pan, Y.; Wang, J.Z.; Liu, H.K.; Dou, S.X. Small things make a big difference: Binder effects on the performance of Li and Na batteries. Phys. Chem. Chem. Phys. 2014, 16, 20347–20359. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; NuLi, Y.; Su, S.; Yang, J.; Wang, J. Effects of binders on the electrochemical performance of rechargeable magnesium batteries. J. Power Sources 2017, 341, 219–229. [Google Scholar] [CrossRef]
- Komaba, S.; Shimomura, K.; Yabuuchi, N.; Ozeki, T.; Yui, H.; Konno, K. Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries. J. Phys. Chem. C 2011, 115, 13487–13495. [Google Scholar] [CrossRef]
- Chong, J.; Xun, S.; Zheng, H.; Song, X.; Liu, G.; Ridgway, P.; Wang, J.Q.; Battaglia, V.S. A comparative study of polyacrylic acid and poly(vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells. J. Power Sources 2011, 196, 7707–7714. [Google Scholar] [CrossRef]
- Bae, J.; Cha, S.-H.; Park, J. A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery. Macromol. Res. 2013, 21, 826–831. [Google Scholar] [CrossRef]
- Nasybulin, E.; Xu, W.; Engelhard, M.H.; Nie, Z.; Li, X.S.; Zhang, J.-G. Stability of polymer binders in Li–O2 batteries. J. Power Sources 2013, 243, 899–907. [Google Scholar] [CrossRef]
- Feng, X.; Chen, N.; Zhou, J.; Li, Y.; Huang, Z.; Zhang, L.; Ma, Y.; Wang, L.; Yan, X. Facile synthesis of shape-controlled graphene–polyaniline composites for high performance supercapacitor electrode materials. New J. Chem. 2015, 39, 2261–2268. [Google Scholar] [CrossRef]
- Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, A.X. Graphene Oxide-MnO2 Nanocomposites for Supercapacitors. ACS Nano 2010, 4, 2822–2830. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Han, S.; Xu, C.; Luo, Y.; Peng, N.; Qin, C.; Zhou, M.; Wang, W.; Chen, L.; Okada, S. In situ crosslinked PVA-PEI polymer binder for long-cycle silicon anodes in Li-ion batteries. RSC Adv. 2016, 6, 68371–68378. [Google Scholar] [CrossRef]
- Liao, J.; Chen, C.; Hu, Q.; Du, Y.; He, Y.; Xu, Y.; Zhang, Z.; Zhou, X. A Low-Strain Phosphate Cathode for High-Rate and Ultralong Cycle-Life Potassium-Ion Batteries. Angew. Chem. Int. Ed. 2021, 60, 25575–25582. [Google Scholar] [CrossRef]
- Deng, L.; Qu, J.; Niu, X.; Liu, J.; Zhang, J.; Hong, Y.; Feng, M.; Wang, J.; Hu, M.; Zeng, L. Defect-free potassium manganese hexacyanoferrate cathode material for high-performance potassium-ion batteries. Nat. Commun. 2021, 12, 2167. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Lu, B. Plum pudding model inspired KVPO4F@3DC as high-voltage and hyperstable cathode for potassium ion batteries. Sci. Bull. 2020, 65, 1242–1251. [Google Scholar] [CrossRef]
- Duan, L.; Xu, Y.; Zhang, Z.; Xu, J.; Liao, J.; Xu, J.; Sun, Y.; He, Y.; Zhou, X. A high-performance cathode for potassium-ion batteries based on uniform P3-type K0.5Mn0.8Co0.1Ni0.1O2 porous microcuboids. J. Mater. Chem. A 2021, 9, 22820–22826. [Google Scholar] [CrossRef]
- Ji, B.; Yao, W.; Zheng, Y.; Kidkhunthod, P.; Zhou, X.; Tunmee, S.; Sattayaporn, S.; Cheng, H.M.; He, H.; Tang, Y. A fluoroxalate cathode material for potassium-ion batteries with ultra-long cyclability. Nat. Commun. 2020, 11, 1225. [Google Scholar] [CrossRef]
- Yu, D.; Wang, H.; Zhang, W.; Dong, H.; Zhu, Q.; Yang, J.; Huang, S. Unraveling the role of ion-solvent chemistry in stabilizing small-molecule organic cathode for potassium-ion batteries. Energy Storage Mater. 2021, 43, 172–181. [Google Scholar] [CrossRef]
- Deng, L.; Wang, T.; Hong, Y.; Feng, M.; Wang, R.; Zhang, J.; Zhang, Q.; Wang, J.; Zeng, L.; Zhu, Y. A Nonflammable Electrolyte Enabled High Performance K0.5MnO2 Cathode for Low-Cost Potassium-Ion Batteries. ACS Energy Lett. 2020, 5, 1916–1922. [Google Scholar] [CrossRef]
- Liu, C.; Li, Y.; Feng, Y.; Zhang, S.; Lu, D.; Huang, B.; Peng, T.; Sun, W. Engineering of yolk-shelled FeSe2@nitrogen-doped carbon as advanced cathode for potassium-ion batteries. Chinese Chem. Lett. 2021, 32, 3601–3606. [Google Scholar] [CrossRef]
- Shen, D.; Liu, Z.; Fan, L.; Lu, B. Organic phosphomolybdate: A high capacity cathode for potassium ion batteries. Chem. Commun. 2020, 56, 12753–12756. [Google Scholar] [CrossRef] [PubMed]
- Li, R.R.; Yang, Z.; He, X.X.; Liu, X.H.; Zhang, H.; Gao, Y.; Qiao, Y.; Li, L.; Chou, S.L. Binders for sodium-ion batteries: Progress, challenges and strategies. Chem. Commun. 2021, 57, 12406–12416. [Google Scholar] [CrossRef] [PubMed]
- Chong, S.; Sun, L.; Shu, C.; Guo, S.; Liu, Y.; Wang, W.; Liu, H.K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, H.; Zhou, H.; Feng, J.; Zheng, X.; Zhong, C.; Paek, E.; Hu, W.; Mitlin, D. Sulfur-Grafted Hollow Carbon Spheres for Potassium-Ion Battery Anodes. Adv. Mater. 2019, 31, e1900429. [Google Scholar] [CrossRef]
- Mahmood, A.; Li, S.; Ali, Z.; Tabassum, H.; Zhu, B.; Liang, Z.; Meng, W.; Aftab, W.; Guo, W.; Zhang, H. Ultrafast Sodium/Potassium-Ion Intercalation into Hierarchically Porous Thin Carbon Shells. Adv. Mater. 2019, 31, e1805430. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, Q.; Liu, S.; Long, J.; Wu, Z.; Zhang, W.; Pang, W.K.; Sencadas, V.; Song, R.; Song, W. Synergy of binders and electrolytes in enabling microsized alloy anodes for high performance potassium-ion batteries. Nano Energy 2020, 77, 105118. [Google Scholar] [CrossRef]
- Wu, X.; Xing, Z.; Hu, Y.; Zhang, Y.; Sun, Y.; Ju, Z.; Liu, J.; Zhuang, Q. Effects of functional binders on electrochemical performance of graphite anode in potassium-ion batteries. Ionics 2018, 25, 2563–2574. [Google Scholar] [CrossRef]
- Feng, Y.; Xu, M.; He, T.; Chen, B.; Gu, F.; Zu, L.; Meng, R.; Yang, J. CoPSe: A New Ternary Anode Material for Stable and High-Rate Sodium/Potassium-Ion Batteries. Adv. Mater. 2021, 33, e2007262. [Google Scholar] [CrossRef]
- Xia, G.; Wang, C.; Jiang, P.; Lu, J.; Diao, J.; Chen, Q. Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J. Mater. Chem. A 2019, 7, 12317–12324. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, Y.X.; Xu, Y.S.; Meng, Q.S.; Gao, J.C.; Sun, Y.G.; Hu, Y.S.; Chang, B.B.; Liu, C.T.; Cao, A.M. Pitch-Derived Soft Carbon as Stable Anode Material for Potassium Ion Batteries. Adv. Mater. 2020, 32, e2000505. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yuan, F.; Yu, Q.; Li, W.; Sun, H.; Zhang, L.; Zhang, D.; Wang, Q.; Lai, F.; Wang, W. Amorphous carbon/graphite coupled polyhedral microframe with fast electronic channel and enhanced ion storage for potassium ion batteries. Energy Storage Mater. 2021, 38, 329–337. [Google Scholar] [CrossRef]
- Bin, D.-S.; Duan, S.-Y.; Lin, X.-J.; Liu, L.; Liu, Y.; Xu, Y.-S.; Sun, Y.-G.; Tao, X.-S.; Cao, A.-M.; Wan, L.-J. Structural engineering of SnS2/Graphene nanocomposite for high-performance K-ion battery anode. Nano Energy 2019, 60, 912–918. [Google Scholar] [CrossRef]
- Li, J.; Zhuang, N.; Xie, J.; Zhu, Y.; Lai, H.; Qin, W.; Javed, M.S.; Xie, W.; Mai, W. Carboxymethyl Cellulose Binder Greatly Stabilizes Porous Hollow Carbon Submicrospheres in Capacitive K-Ion Storage. ACS Appl. Mater. Interfaces 2019, 11, 15581–15590. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Kwon, T.-w.; Coskun, A.; Choi, J.W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283. [Google Scholar] [CrossRef]
- Dahbi, M.; Nakano, T.; Yabuuchi, N.; Ishikawa, T.; Kubota, K.; Fukunishi, M.; Shibahara, S.; Son, J.-Y.; Cui, Y.-T.; Oji, H. Sodium carboxymethyl cellulose as a potential binder for hard-carbon negative electrodes in sodium-ion batteries. Electrochem. Commun. 2014, 44, 66–69. [Google Scholar] [CrossRef]
- Wang, C.; Su, L.; Wang, N.; Lv, D.; Wang, D.; Yang, J.; Qian, Y. Unravelling binder chemistry in sodium/potassium ion batteries for superior electrochemical performances. J. Mater. Chem. A 2022, 10, 4060–4067. [Google Scholar] [CrossRef]
- Sultana, I.; Rahman, M.M.; Liu, J.; Sharma, N.; Ellis, A.V.; Chen, Y.; Glushenkov, A.M. Antimony-carbon nanocomposites for potassium-ion batteries: Insight into the failure mechanism in electrodes and possible avenues to improve cyclic stability. J. Power Sources 2019, 413, 476–484. [Google Scholar] [CrossRef]
- Gribble, D.A.; Li, Z.; Ozdogru, B.; McCulfor, E.; Çapraz, Ö.Ö.; Pol, V.G. Mechanistic Elucidation of Electronically Conductive PEDOT:PSS Tailored Binder for a Potassium-Ion Battery Graphite Anode: Electrochemical, Mechanical, and Thermal Safety Aspects. Adv. Energy Mater. 2022, 12, 2103439. [Google Scholar] [CrossRef]
Active Cathode Materials | Potential Window (V) | Reversible Capacity (mAh/g) | Current Density (mA/g) | Reference |
---|---|---|---|---|
PAQS | 1.5–3.4 | ~190 (50 cycles) | 20 | [52] |
PPTS | 0.8–3.2 | ~190 (3000 cycles) | 5000 | [55] |
PQs | 1.2–3.2 | ~105 (200 cycles) | 250 | [56] |
PI-CMP | 1.5–3.5 | ~80 (1000 cycles) | 1000 | [57] |
PI@G | 1.4–3.5 | ~118 (500 cycles) | 100 | [58] |
PIM@KB | 1.5–3.4 | ~105 (1000 cycles) | 2000 | [59] |
PDPPD | 2.5–4.5 | ~54 (500 cycles) | 1C | [60] |
P-DPPZ | 2.5–4.5 | ~79 (2000 cycles) | 2000 | [61] |
PHAT | 2–4.7 | ~175 (4600 cycles) | 10,000 | [62] |
Electrolyte Composition | Ionic Conductivity (S/cm) | References |
---|---|---|
PEO/KBr | 5.0 × 10−7 | [86] |
PEO/KCl | 5.6 × 10−7 | [88] |
PEO/CH3COOK | 2.74 × 10−7 | [89] |
PEO/KFSI | 2.74 × 10−4 at 60 °C | [75] |
PEO/KBPh4 | 1.8 × 10−3 at 80 °C 1.1 × 10−4 at 55 °C | [91] |
PEO/KI/CeO2 | 2.15 × 10−3 | [96] |
PEO/KBr/SiO2 | 2.5 × 10−5 | [101,102] |
PEO/KNO3/KI | 6.15 × 10−6 | [104] |
PEO/KNO3/SiO2 | 1.07 × 10−6 | [103] |
PEO/PVA/KIO3 | 4.77 × 10−6 | [109] |
PEO/PVC/KBr | 2.56 × 10−5 | [108] |
PEO/PVC/KCl | 8.29 × 10−6 | [107] |
Electrolyte Composition | Ionic Conductivity (S/cm) | Reference |
---|---|---|
PVA/KCl | 9.68 × 10−7 | [110] |
PVA/KBr | 1.23 × 10−5 | [85] |
PVP/KIO3 | 1 × 10−9 | [112] |
PVP/PVA/KIO3 | 1.22 × 10−5 | [113] |
PAN/KI/EC | 2.089 × 10−5 | [122] |
PPCB-KFSI | 1.36 × 10−5 | [117] |
PUA/KI | 1.59 × 10−4 | [121] |
PECH-g-POEM/KI | 3.7 × 10−5 | [114] |
PMMA/KPF6/EC:DEC:FEC | 4.3 × 10−3 | [123] |
Active Materials | Binders | Reversible Capacity (mAh/g) | Current Density (A/g) | Reference |
---|---|---|---|---|
KVP (cathode) | PVDF | ~70 (2500 cycles) | 0.5 | [135] |
KMF (cathode) | PVDF | ~136 (320 cycles) ~110 (2150 cycles) ~76.3 (6000 cycles) | 0.03 0.1 0.5 | [136] |
KVPO4F@3DC (cathode) | PVDF | ~90 (105 cycles) ~51.26 (550 cycles) | 0.05 0.5 | [137] |
c-KMCNO (cathode) | PVDF | ~42.6 (300 cycles) | 0.1 | [138] |
KPBNPs (cathode) | PVDF | ~73.2 (50 cycles) | 0.05 | [40] |
KFeC2O4F (cathode) | PVDF | ~105.3 (2000 cycles) | 0.2 | [139] |
TBAPM (cathode) | CMC | ~232 (16 cycles) ~110 (50 cycles) | 0.02 0.1 | [140] |
MB (cathode) | PVDF | ~139.5 (500 cycles) ~75 (4500 cycles) | 0.1 2 | [141] |
K0.5MnO2 (cathode) | PVDF | ~102 (50 cycles) | 0.02 | [142] |
FeS2@CNBs (cathode) | PVDF | ~221 (700 cycles) | 0.1 | [143] |
MoS2@rGO (anode) | PVDF | ~424.6 (1000 cycles) | 0.5 | [145] |
SHCS (anode) | PVDF | ~150 (1000 cycles) | 3 | [146] |
S/N@C (anode) | CMC | ~65 (900 cycles) | 2 | [147] |
SnSb/C (anode) | CMC+PAA | ~419 (600 cycles) ~340 (800 cycles) | 0.05 1 | [148] |
Graphite (anode) | PAANa CMCNa PVDF | ~231.1 (50 cycles) ~174.2 (50 cycles) ~168.6 (50 cycles) | 0.05 | [149] |
CoPSe/NC (anode) | CMCNa | ~317 (100 cycles) ~203 (2000 cycles) | 0.1 5 | [150] |
MCOs (anode) | PVDF | ~240 (100 cycles) ~100 (1300 cycles) | 0.1 1 | [151] |
SC (anode) | CMCNa+SBR | ~296 (50 cycles) ~200 (1000 cycles) | 0.1C 1C | [152] |
NCM (anode) | PVDF | ~358.4 (100 cycles) ~189.5 (1800 cycles) | 0.5 2 | [153] |
SnS2/graphene composite | PVDF CMC/SBR CMC | ~150 (50 cycles) ~559 (50 cycles) ~458 (50 cycles) | 0.1 | [154] |
HCS-600 | CMC PVDF | ~111 (3000 cycles) ~18 (3000 cycles) | 1 | [155] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Ali, R.N.; Song, M.; Tang, Y.; Fan, Z. Recent Advances in Polymers for Potassium Ion Batteries. Polymers 2022, 14, 5538. https://doi.org/10.3390/polym14245538
Zhu X, Ali RN, Song M, Tang Y, Fan Z. Recent Advances in Polymers for Potassium Ion Batteries. Polymers. 2022; 14(24):5538. https://doi.org/10.3390/polym14245538
Chicago/Turabian StyleZhu, Xingqun, Rai Nauman Ali, Ming Song, Yingtao Tang, and Zhengwei Fan. 2022. "Recent Advances in Polymers for Potassium Ion Batteries" Polymers 14, no. 24: 5538. https://doi.org/10.3390/polym14245538
APA StyleZhu, X., Ali, R. N., Song, M., Tang, Y., & Fan, Z. (2022). Recent Advances in Polymers for Potassium Ion Batteries. Polymers, 14(24), 5538. https://doi.org/10.3390/polym14245538