Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers
Abstract
:1. Introduction
2. Simulation
2.1. Mathematical Modeling
2.1.1. Thermodynamic Equations
2.1.2. Constitutive Equation
2.1.3. First Order Thermo-Viscosonic Equation
2.1.4. Second Order Thermo-Viscosonic Equation
2.1.5. Total Force of Fluorescent Particles
2.2. Numerical Modeling
2.3. Calculation Scheme
3. Experimentation
3.1. Material Properties
3.2. Methodology
4. Results and Discussions
4.1. Acoustic Streaming Characteristics
4.2. Acoustic Streaming Driven Mixing
4.3. Analysis of the Influence Mechanism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qin, Y.; Brockett, A.; Ma, Y.; Razali, A.; Zhao, J.; Harrison, C.; Pan, W.; Dai, X.; Loziak, D. Micro-manufacturing: Research, technology outcomes and development issues. Int. J. Adv. Manuf. Technol. 2010, 47, 821–837. [Google Scholar] [CrossRef] [Green Version]
- Sacristán, M.; Plantá, X.; Morell, M.; Puiggalí, J. Effects of ultrasonic vibration on the micro-molding processing of polylactide. Ultrason. Sonochem. 2014, 21, 376–386. [Google Scholar] [CrossRef] [PubMed]
- Heredia-Rivera, U.; Ferrer, I.; Vázquez, E. Ultrasonic Molding Technology: Recent Advances and Potential Applications in the Medical Industry. Polymers 2019, 11, 667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Zou, Y.; Wei, G.; Wu, W. Evolution of Interfacial Friction Angle and Contact Area of Polymer Pellets during the Initial Stage of Ultrasonic Plasticization. Polymers 2019, 11, 2103. [Google Scholar] [CrossRef] [Green Version]
- Dorf, T.; Ferrer, I.; Ciurana, J. Characterizing Ultrasonic Micro-Molding Process of Polyetheretherketone (PEEK). Int. Polym. Process. 2018, 33, 442–452. [Google Scholar] [CrossRef]
- Dorf, T.; Perkowska, K.; Janiszewska, M.; Ferrer, I.; Ciurana, J. Effect of the main process parameters on the mechanical strength of polyphenylsulfone (PPSU) in ultrasonic micro-moulding process. Ultrason. Sonochem. 2018, 46, 46–58. [Google Scholar] [CrossRef]
- Grabalosa, J.; Ferrer, I.; Elías-Zúñiga, A.; Ciurana, J. Influence of processing conditions on manufacturing polyamide parts by ultrasonic molding. Mater. Des. 2016, 98, 20–30. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, X.; Hernández-Avila, M.; Elizalde, L.E.; Martínez, O.; Ferrer, I.; Elías-Zuñiga, A. Micro injection molding processing of UHMWPE using ultrasonic vibration energy. Mater. Des. 2017, 132, 1–12. [Google Scholar] [CrossRef]
- Ferrer, I.; Vives-Mestres, M.; Manresa, A.; Garcia-Romeu, M.L. Replicability of Ultrasonic Molding for Processing Thin-Wall Polystyrene Plates with a Microchannel. Mater. Des. 2018, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Peng, H.; Jia, Y.; Jiang, B. Characteristics and mechanisms of polymer interfacial friction heating in ultrasonic plasticization for micro injection molding. Microsyst. Technol. 2017, 23, 1385–1392. [Google Scholar] [CrossRef]
- Peng, T.; Jiang, B.; Zou, Y. Study on the Mechanism of Interfacial Friction Heating in Polymer Ultrasonic Plasticization Injection Molding Process. Polymers 2019, 11, 1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, B.; Peng, H.; Wu, W.; Jia, Y.; Zhang, Y. Numerical Simulation and Experimental Investigation of the Viscoelastic Heating Mechanism in Ultrasonic Plasticizing of Amorphous Polymers for Micro Injection Molding. Polymers 2016, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Planellas, M.; Sacristán, M.; Rey, L.; Olmo, C.; Aymamí, J.; Casas, M.T.; del Valle, L.J.; Franco, L.; Puiggalí, J. Micro-molding with ultrasonic vibration energy: New method to disperse nanoclays in polymer matrices. Ultrason. Sonochem. 2014, 21, 1557–1569. [Google Scholar] [CrossRef] [PubMed]
- Olmo, C.; Amestoy, H.; Casas, M.T.; Martínez, J.C.; Franco, L.; Sarasua, J.-R.; Puiggalí, J. Preparation of Nanocomposites of Poly (ε-caprolactone) and Multi-Walled Carbon Nanotubes by Ultrasound Micro-Molding. Influence of Nanotubes on Melting and Crystallization. Polymers 2017, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz, A.; Franco, L.; Casas, M.T.; Del Valle, L.J.; Aymamí, J.; Olmo, C.; Puiggalí, J. Preparation of micro-molded exfoliated clay nanocomposites by means of ultrasonic technology. J. Polym. Res. 2014, 21, 584. [Google Scholar] [CrossRef]
- Michaeli, W.; Kamps, T.; Hopmann, C. Manufacturing of polymer micro parts by ultrasonic plasticization and direct injection. Microsyst. Technol. 2011, 17, 243–249. [Google Scholar] [CrossRef]
- Destgeer, G.; Lee, K.H.; Jung, J.H.; Alazzam, A.; Sung, H.J. Continuous separation of particles in a PDMS microfluidic channel via travelling surface acoustic waves (TSAW). Lab Chip 2013, 13, 4210–4216. [Google Scholar] [CrossRef]
- Shi, J.; Huang, H.; Stratton, Z.; Huang, Y.; Huang, T.J. Continuous particle separation in a microfluidic channel via standing surface acoustic waves (SSAW). Lab Chip 2009, 9, 3354–3359. [Google Scholar] [CrossRef]
- Boronat, T.; Segui, V.; Peydro, M.; Reig, M.J. Influence of temperature and shear rate on the rheology and processability of reprocessed ABS in injection molding process. J. Mater. Process. Technol. 2009, 209, 2735–2745. [Google Scholar] [CrossRef]
- Wyman, C.E. Theoretical model for intermeshing twin screw extruders: Axial velocity profile for shallow channels. Polym. Eng. Sci. 1975, 15, 606–611. [Google Scholar] [CrossRef]
- Michaeli, W.; Opfermann, D. Ultrasonic plasticising for micro injection moulding. In Proceedings of the 4M 2006—Second International Conference on Multi-Material Micro Manufacture; Elsevier: Amsterdam, The Netherlands, 2006; pp. 345–348. [Google Scholar]
- Wilczyński, K.; Nastaj, A.; Lewandowski, A.; Wilczyński, K.J.; Buziak, K. Fundamentals of Global Modeling for Polymer Extrusion. Polymers 2019, 11, 2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.W.; Lee, C.H.; Jung, P.G.; Shin, B.S.; Kim, J.-H.; Kwang, K.-Y.; Ko, J.S. Polymer microreplication using ultrasonic vibration energy. J. Micro/Nanolithogr. MEMS MOEMS 2009, 8, 021113. [Google Scholar] [CrossRef]
- Zou, Y.; Wu, W.; Zhou, X.; Wei, G.; Jiang, B. A novel method for the quantitative characterization of the simultaneous plasticizing and filling performance in ultrasonic plasticization micro injection molding. Mater. Des. 2021, 204, 109680. [Google Scholar] [CrossRef]
- Muller, P.B.; Barnkob, R.; Jensen, M.J.H.; Bruus, H. A numerical study of microparticle acoustophoresis driven by acoustic radiation forces and streaming-induced drag forces. Lab Chip 2012, 12, 4617–4627. [Google Scholar] [CrossRef] [Green Version]
- Karlsen, J.T.; Bruus, H. Forces acting on a small particle in an acoustical field in a thermoviscous fluid. Phys. Rev. E 2015, 92, 043010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martienssen, W.; Warlimont, H. Springer Handbook of Condensed matter And Materials Data; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Chun, K.S.; Husseinsyah, S.; Yeng, C.M. Torque rheological properties of polypropylene/cocoa pod husk composites. J. Thermoplast. Compos. Mater. 2015, 30, 1217–1227. [Google Scholar] [CrossRef]
- Jiang, B.; Zou, Y.; Liu, T.; Wu, W. Characterization of the Fluidity of the Ultrasonic Plasticized Polymer Melt by Spiral Flow Testing under Micro-Scale. Polymers 2019, 11, 357. [Google Scholar] [CrossRef] [Green Version]
Density | Acoustic Velocity | Melt Point | * μ0 | ** μinf | Power Index | Particle Size |
---|---|---|---|---|---|---|
0.9 g/cm3 | 1623 m/s | 170 °C | 2000 pa s [27] | 10 pa s [28] | 0.38 | 200 mesh |
Formula | Density | Particle Size | Excitation Peaks | Emission Peak |
---|---|---|---|---|
BaMg2Al16O27:Eu2+ | 5.1 g/cm3 | 200 mesh | 395 nm | 450 nm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Zou, Y.; Wei, G.; Jiang, B. Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers. Polymers 2022, 14, 1073. https://doi.org/10.3390/polym14061073
Wu W, Zou Y, Wei G, Jiang B. Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers. Polymers. 2022; 14(6):1073. https://doi.org/10.3390/polym14061073
Chicago/Turabian StyleWu, Wangqing, Yang Zou, Guomeng Wei, and Bingyan Jiang. 2022. "Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers" Polymers 14, no. 6: 1073. https://doi.org/10.3390/polym14061073
APA StyleWu, W., Zou, Y., Wei, G., & Jiang, B. (2022). Numerical Simulation on the Acoustic Streaming Driven Mixing in Ultrasonic Plasticizing of Thermoplastic Polymers. Polymers, 14(6), 1073. https://doi.org/10.3390/polym14061073