Research on External Insulation Characteristics of Composite Cross-Arm of 10 kV Distribution Network Based on Multi-Factor Aging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Construction and Test Plan of the Artificial Multi-Factor Aging Test System
2.1.1. Sample Selection
2.1.2. Comprehensive Aging System Construction and Test Plan
2.1.3. Overview of Composite Cross-Arm Samples after Multi-Factor Aging
2.2. Artificial Pollution Test of the Composite Cross-Arm after Aging
2.2.1. Sample Selection
2.2.2. Experiment Method
2.3. Observation of Discharge Characteristics of the Composite Cross-Arm after Aging
2.4. Analysis of the Deterioration Mechanism of the Composite Cross-Arm Silicone Rubber Sheath
2.4.1. Hydrophobic Angle Measurement
2.4.2. SEM Analysis
2.4.3. FTIR Analysis
3. Results and Discussion
3.1. Analysis of Artificial Contamination Test Results of Composite Cross-Arms after Aging
3.1.1. Analysis of Leakage Current Test Results
3.1.2. Analysis of Flashover Voltage Test Results
3.2. Ultraviolet Discharge Imaging Characteristics of Composite Cross-Arms after Multi-Factor Aging
3.3. Microscopic Test Analysis of Composite Cross-Arm Silicone Rubber Sheath
3.3.1. Hydrophobic Angle Test Results and Analysis
3.3.2. SEM Analysis
3.3.3. FTIR Spectral Analysis
4. Conclusions
- Compared with before aging, the T-type and square-type composite cross-arms after multi-factor aging have a higher leakage current rising rate and a lower flashover voltage. The external insulation characteristics of the two distribution network composite cross-arms decreased but still retained a certain margin to meet the operating requirements;
- The SEM test showed that there were pits and cracks on the surface of the sheath, accompanied by precipitates; the hydrophobicity test showed that the hydrophobic angle of the outer sheath of the composite cross-arm decreased to 84% of the initial hydrophobic angle on average; the FTIR test found that the silicone rubber molecules were cracked and increased hydrophilic groups; the microscopic test results showed that the insulation properties of the silicone rubber sheath deteriorate after multi-factor aging. This is the main reason for the decline in the external insulation performance of the composite cross-arm.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, H.; Dai, J.; Wu, X.; Zhu, M.; Jia, Y.; Yang, J.; Guo, W. Research on composite cross arm of distribution rectangular tube and its electrical properties. Insul. Mater. 2019, 52, 35–38+42. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, L.; Zheng, C.; Shao, M.; Liu, K. Insulated Tower Top and Cross Arm to Prevent Lightning and Pollution Flashover. High Volt. Eng. 2007, 181, 108–110+161. [Google Scholar] [CrossRef]
- Zhou, S.; Li, Z.; Zhou, J.; Deng, Y.; Ning, X. Review of Technology Research and Application Status of Composite Cross Arm of 10Kv Distribution Line. China Stand. 2020, 7, 328–334. [Google Scholar]
- Zhang, S.; Guo, C.; Cheng, L.; Wang, H.; Liao, R. Testing Method for Composite Insulators Interface Based on Nonlinear Ultrasonic. IEEE Access 2019, 7, 83111–83119. [Google Scholar] [CrossRef]
- Kokalis, C.A.; Kontargyri, V.T.; Gonos, I.F. A Proposal for the Evaluation of HTV Silicone Rubber Composite Insulators. Polymers 2021, 13, 3610. [Google Scholar] [CrossRef] [PubMed]
- Ke, R.; Du, T.; He, C.; Zhu, X.; Dong, Z.; Guo, W. Ageing Characteristics of Composite Insulation Cross-arm for Distribution Network. Insul. Mater. 2019, 52, 36–40. [Google Scholar] [CrossRef]
- Wu, X.; Wen, J.; Liu, X.; Ke, R.; Shen, F.; He, C.; Guo, W. Electrical Performance of Composite Insulation Crossarms with Different Structures in Distribution Networks. Insul. Mater. 2021, 54, 40–46. [Google Scholar] [CrossRef]
- Wang, L.; Fang, Y.; Ma, Y.; Shao, J.; Wang, J.; Wu, X. Multi-factor Aging Performance of Composite Material Tower and Samples. High Volt. Eng. 2016, 42, 3881–3887. [Google Scholar] [CrossRef]
- Moghadam, M.K.; Taheri, M.; Gharazi, S.; Keramati, M.; Bahrami, M.; Riahi, N. A study of composite insulator aging using the tracking wheel test. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 1805–1811. [Google Scholar] [CrossRef]
- Ming, L.; Yangyang, L.; Jianlin, H. Influence of Sheds Damage on the AC Pollution Flashover Performance of Different Voltage Class Composite Insulators. IEEE Access 2020, 8, 84713–84719. [Google Scholar] [CrossRef]
- Hongwei, M.; Xiyuan, G.; Xiangyun, F.; Chenglong, Z.; Liming, W. Influence of tower anticorrosion coating as contaminant on operation characteristics of composite insulator. High Volt. 2018, 3, 193–198. [Google Scholar] [CrossRef]
- Nan, J.; Li, H.; Wan, X.; Huo, F.; Lin, F. Pollution Flashover Characteristics of Composite Crossarm Insulator with a Large Diameter. Energies 2021, 14, 6491. [Google Scholar] [CrossRef]
- Guo, Z.; Ye, Q.; Wang, Y.; Han, M. Study of the Development of Negative DC Corona Discharges on the Basis of Visible Digital Images. IEEE Trans. Plasma Sci. 2020, 48, 2509–2514. [Google Scholar] [CrossRef]
- Peng, W.; Gou, X.; Qin, H.; Zhao, M.; Zhao, X.; Guo, Z. Robust Mg(OH)2/epoxy resin superhydrophobic coating applied to composite insulators. Appl. Surf. Sci. 2019, 466, 126–132. [Google Scholar] [CrossRef]
- Zhang, Z.; Qiao, X.; Zhang, Y.; Tian, L.; Zhang, D.; Jiang, X. AC flashover performance of different shed configurations of composite insulators under fan-shaped non-uniform pollution. High Volt. 2018, 3, 199–206. [Google Scholar] [CrossRef]
- Liang, Y.; Gao, T.; Dong, P.; Gao, L. Corona ageing characteristics of composite insulators based on orthogonal experiment. IET Sci. Meas. Technol. 2019, 13, 303–308. [Google Scholar] [CrossRef]
- Mavrikakis, N.C.; Mikropoulos, P.N.; Siderakis, K. Evaluation of field-ageing effects on insulating materials of composite suspension insulators. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 490–498. [Google Scholar] [CrossRef]
- Zhang, Z.; Liang, T.; Li, C.; Jiang, X.; Wu, J.; Wu, B. Electrical Strength and Physicochemical Performances of HTV Silicone Rubber under Salt-Fog Environment with DC Energized. Polymers 2020, 12, 324. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Bao, W.; Gao, Y. Decay-like fracture mechanism of silicone rubber composite insulator. IEEE Trans. Dielectr. Electr. Insul. 2018, 25, 110–119. [Google Scholar] [CrossRef]
- Zhijin, Z.; Tian, L.; Xingliang, J.; Chen, L.; Shenghuan, Y.; Yi, Z. Characterization of Silicone Rubber Degradation Under Salt-Fog Environment with AC Test Voltage. IEEE Access 2019, 7, 66714–66724. [Google Scholar] [CrossRef]
Parameter | Square Composite Cross Arm | T-Shaped Composite Cross Arm |
---|---|---|
Structure length/mm | 1750 | 1860 |
Section size/mm | h1 = 32, h2 = 42 | h1 = 35, h2 = 73 |
Umbrella skirt height/mm | h3 = 4 | h3 = 4 |
Number of umbrella skirts | 5 | 7 |
Umbrella skirt spacing/mm | 115 | 95 |
Creepage distance/mm | 1200 | 1386 |
Composite cross arm surface area/cm2 | 2660 | 4181 |
Period | 0–2 | 2–4 | 4–6 | 6–8 | 8–10 | 10–12 | 12–14 | 14–16 | 16–18 | 18–20 | 20–22 | 22–24 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Humidification | √ | √ | ||||||||||
High temperature | √ | √ | √ | √ | √ | |||||||
Rain wet | √ | |||||||||||
Salt spray | √ | √ | √ | √ | ||||||||
UV | √ | √ | √ | √ | √ | √ | ||||||
Mechanics | √ | √ | √ | |||||||||
Voltage | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ |
Aging Factor | Parametric Design |
---|---|
Humidity | 98% RH |
Temperature | 50 °C ± 0.5 °C |
Rain wet | 24 h rainfall 50~100 mm |
Salt spray | Particle size: 5~10 μm; NaCl content: 7 kg/m3; flow rate: 0.5 kg/m3 h |
UV | Xenon lamp power: 6 kW; UV wavelength: 290~800 nm; Irradiance: 550 W/m2 |
Mechanics | Horizontal load: 177.89 N; Vertical load: 319.69 N; Mechanical force frequency: 0.6 Hz |
Voltage | 10 kV |
Cross-arm Number | Aging Factor | ||||||
---|---|---|---|---|---|---|---|
T | S | Mechanics | UV | Salt Spray | Rain Wet | Hygrothermal | Voltage |
T-unaged | S-unaged | × | × | × | × | × | × |
T-1 | S-1 | √ | × | √ | √ | √ | √ |
T-2 | S-2 | √ | √ | √ | √ | √ | √ |
Characteristic Functional Group | Wave Number/cm−1 |
---|---|
O-H | 3700–3200 |
(C-H) in CH3 | 2960 |
(C-H) in Si-CH3 | 1270–1255 |
(C-H) in Si-O-CH3 | 1100–1000 |
Si-(CH3)2 | 840–790 |
Cross-Arm Number | Test Voltage/kV | |||
---|---|---|---|---|
U0 | 1.8 U0 | 2.6 U0 | 3.5 U0 | |
T-unaged | 1.156 | 2.058 | 2.9 | 4.04 |
T-1 | 1.834 | 3.231 | 4.323 | 6.474 |
T-2 | 2.260 | 4.091 | 6.152 | 8.092 |
S-unaged | 0.781 | 1.282 | 1.793 | 2.424 |
S-1 | 0.897 | 2.591 | 3.877 | 5.736 |
S-2 | 1.081 | 2.926 | 4.576 | 7.332 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Qi, J.; Liu, H.; Wang, W.; Zhang, M.; Wu, X. Research on External Insulation Characteristics of Composite Cross-Arm of 10 kV Distribution Network Based on Multi-Factor Aging. Polymers 2022, 14, 1403. https://doi.org/10.3390/polym14071403
Zhang Z, Qi J, Liu H, Wang W, Zhang M, Wu X. Research on External Insulation Characteristics of Composite Cross-Arm of 10 kV Distribution Network Based on Multi-Factor Aging. Polymers. 2022; 14(7):1403. https://doi.org/10.3390/polym14071403
Chicago/Turabian StyleZhang, Zhongyuan, Junwei Qi, Hechen Liu, Wanxian Wang, Mingjia Zhang, and Xuan Wu. 2022. "Research on External Insulation Characteristics of Composite Cross-Arm of 10 kV Distribution Network Based on Multi-Factor Aging" Polymers 14, no. 7: 1403. https://doi.org/10.3390/polym14071403
APA StyleZhang, Z., Qi, J., Liu, H., Wang, W., Zhang, M., & Wu, X. (2022). Research on External Insulation Characteristics of Composite Cross-Arm of 10 kV Distribution Network Based on Multi-Factor Aging. Polymers, 14(7), 1403. https://doi.org/10.3390/polym14071403