Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of 4Met-BAC
2.3. Absorption Spectroscopy
2.4. Fluorescence Spectroscopy
2.5. Flash Photolysis
2.6. Laser Flash Photolysis
2.7. DLW Photolithography
2.8. Morphology
2.9. Confocal Laser Scanning Microscopy (CLSM)
2.10. Raman Spectroscopy
3. Results
3.1. Spectroscopic Studies
3.1.1. Absorption and Fluorescence Spectroscopy
3.1.2. Excited State Dipole Moment
3.1.3. HOMO-LUMO
3.1.4. Triplet State Investigation
3.1.5. Singlet Oxygen Quantum Yield
3.1.6. Radical Formation
3.2. 3D Structure Fabrication
3.2.1. Influence of DLW Photolithography Parameters on Voxel Size in the TPP Process
3.2.2. Determination of the Degree of Conversion and Reduced Young’s Modulus as Functions of Laser Power
3.2.3. Percolation Formation of Lines
3.2.4. X-ray Lens Fabrication and Morphology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bagheri, A.; Jin, J. Photopolymerization in 3D Printing. ACS Appl. Polym. Mater. 2019, 1, 593–611. [Google Scholar] [CrossRef] [Green Version]
- Faraji, Z.R.; Prewett, P.D.; Davies, G.J. High-resolution two-photon polymerization: The most versatile technique for the fabrication of microneedle arrays. Microsyst Nanoeng. 2021, 7, 71. [Google Scholar] [CrossRef] [PubMed]
- Aeby, S.; Aubry, G.J.; Muller, N.; Scheffold, F. Scattering from Controlled Defects in Woodpile Photonic Crystals. Adv. Opt. Mater. 2021, 9, 2001699. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Ho, J.; Ng, R.C.; Ng, R.J.H.; Hall-Chen, V.H.; Koay, E.H.H.; Dong, Z.; Liu, H.; Qiu, C.W.; et al. Structural Color Three-Dimensional Printing by Shrinking Photonic Crystals. Nat. Commun. 2019, 10, 4340. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Moughames, J.; Chen, X.; Fang, G.; Huaroto, J.J.; Laude, V.; Martínez, J.A.I.; Ulliac, G.; Clévy, C.; Lutz, P.; et al. 4D Thermomechanical Metamaterials for Soft Microrobotics. Commun. Mater. 2021, 2, 93. [Google Scholar] [CrossRef]
- Lio, G.E.; Ferraro, A.; Ritacco, T.; Aceti, D.M.; De Luca, A.; Giocondo, M.; Caputo, R. Leveraging on ENZ Metamaterials to Achieve 2D and 3D Hyper-Resolution in Two-Photon Direct Laser Writing. Adv. Mat. 2021, 33, 2008644. [Google Scholar] [CrossRef]
- Bückmann, T.; Schittny, R.; Thiel, M.; Kadic, M.; Milton, G.W.; Wegener, M. On Three-Dimensional Dilational Elastic Metamaterials. New J. Phys. 2014, 16, 033032. [Google Scholar] [CrossRef] [Green Version]
- Maciulaitis, J.; Rekštytė, S.; Bratchikov, M.; Gudas, R.; Malinauskas, M.; Pockevicius, A.; Usas, A.; Rimkunas, A.; Jankauskaite, V.; Grigaliunas, V.; et al. Customization of direct laser lithography-based 3D scaffolds for optimized in vivo outcome. Appl. Surf. Sci. 2019, 487, 692–702. [Google Scholar] [CrossRef]
- Vanderpoorten, O.; Peter, Q.; Challa, P.K.; Keyser, U.F.; Baumberg, J.; Kaminski, C.F.; Knowles, T.P.J. Scalable integration of nano-, and microfluidics with hybrid two-photon lithography. Microsyst Nanoeng. 2019, 5, 40. [Google Scholar] [CrossRef] [Green Version]
- Amato, L.; Gu, Y.; Bellini, N.; Eaton, S.M.; Cerullo, G.; Osellame, R. Integrated Three-Dimensional Filter Separates Nanoscale from Microscale Elements in a Microfluidic Chip. Lab Chip. 2012, 12, 1135–1142. [Google Scholar] [CrossRef]
- Li, J.; Fejes, L.; Lorenser, D.; Quirk, B.C.; Noble, P.B.; Kirk, R.W.; Orth, A.; Wood, F.M.; Gibson, B.C.; Sampson, D.D.; et al. Two-photon polymerisation 3D printed freeform micro-optics for optical coherence tomography fibre probes. Sci. Rep. 2018, 8, 14789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez-Hernandez, D.; Varapnickas, S.; Merkininkaitė, G.; Čiburys, A.; Gailevičius, D.; Šakirzanovas, S.; Juodkazis, S.; Malinauskas, M. Laser 3D Printing of Inorganic Free-Form Micro-Optics. Photonics 2021, 8, 577. [Google Scholar] [CrossRef]
- Schell, A.W.; Neumer, T.; Shi, Q.; Kaschke, J.; Fischer, J.; Wegener, M.; Benson, O. Laser-Written Parabolic Micro-Antennas for Efficient Photon Collection. Appl. Phys. Lett. 2014, 105, 231117. [Google Scholar] [CrossRef]
- Wang, H.; Wang, H.; Zhang, W.; Yang, J.K.W. Toward Near-Perfect Diffractive Optical Elements via Nanoscale 3D Printing. ACS Nano. 2020, 14, 10452–10461. [Google Scholar] [CrossRef]
- Asadollahbaik, A.; Thiele, S.; Weber, K.; Kumar, A.; Drozella, J.; Sterl, F.; Herkommer, A.M.; Giessen, H.; Fick, J. Highly Efficient Dual-Fiber Optical Trapping with 3D Printed Diffractive Fresnel Lenses. ACS Photonics 2020, 7, 88–97. [Google Scholar] [CrossRef]
- Pawar, A.A.; Halivni, S.; Waiskopf, N.; Ben-Shahar, Y.; Soreni-Harari, M.; Bergbreiter, S.; Banin, U.; Magdassi, S. Rapid Three-Dimensional Printing in Water Using Semiconductor-Metal Hybrid Nanoparticles as Photoinitiators. Nano Lett. 2017, 17, 4497–4501. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Liu, Y.; Miller, K.A.; Zhu, H.; Egap, E. Lead Halide Perovskite Nanocrystals as Photocatalysts for PET-RAFT Polymerization under Visible and Near-Infrared Irradiation. ACS Macro Lett. 2020, 9, 725–730. [Google Scholar] [CrossRef] [PubMed]
- Lyubomirskiy, M.; Koch, F.; Abrashitova, K.A.; Bessonov, V.O.; Kokareva, N.; Petrov, A.; Seiboth, F.; Wittwer, F.; Kahnt, M.; Seyrich, M.; et al. Ptychographic Characterisation of Polymer Compound Refractive Lenses Manufactured by Additive Technology. Opt. Express 2019, 27, 8639–8650. [Google Scholar] [CrossRef]
- Sharipova, M.I.; Baluyan, T.G.; Abrashitova, K.A.; Kulagin, G.E.; Petrov, A.K.; Chizhov, A.S.; Shatalova, T.B.; Chubich, D.; Kolymagin, D.A.; Vitukhnovsky, A.G.; et al. Effect of Pyrolysis on Microstructures Made of Various Photoresists by Two-Photon Polymerization: Comparative Study. Opt. Mater. Express 2021, 11, 371–384. [Google Scholar] [CrossRef]
- Dumur, F. Recent Advances on Benzylidene Ketones as Photoinitiators of Polymerization. Eur. Polym. J. 2022, 178, 111500. [Google Scholar] [CrossRef]
- Fu, H.; Qiu, Y.; You, J.; Hao, T.; Fan, B.; Nie, J.; Wang, T. Photopolymerization of Acrylate Resin and Ceramic Suspensions with Benzylidene Ketones under Blue/Green LED. Polymer 2019, 184, 121841. [Google Scholar] [CrossRef]
- Armarego, W.L.F. Purification of Laboratory Chemicals. In Butterworth-Heinemann, 8th ed.; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar]
- Vatsadze, S.Z.; Gavrilova, G.V.; Zyuz’kevich, F.S.; Nuriev, V.N.; Krut’ko, D.P.; Moiseeva, A.A.; Shumyantsev, A.V.; Vedernikov, A.I.; Churakov, A.V.; Kuz’mina, L.G.; et al. Synthesis, structure, electrochemistry, and photophysics of 2,5-dibenzylidenecyclopentanones containing in benzene rings substituents different in polarity. Russ. Chem. Bull. 2016, 65, 1761–1772. [Google Scholar] [CrossRef]
- Zhiganshina, E.R.; Arsenyev, M.V.; Chubich, D.A.; Kolymagin, D.A.; Pisarenko, A.V.; Burkatovsky, D.S.; Baranov, E.V.; Vitukhnovsky, A.G.; Lobanov, A.N.; Matital, R.P.; et al. Tetramethacrylic Benzylidene Cyclopentanone Dye for One- and Two-Photon Photopolymerization. Eur. Polym. J. 2022, 162, 110917. [Google Scholar] [CrossRef]
- Li, Z.; Pucher, N.; Cicha, K.; Torgersen, J.; Ligon, S.C.; Ajami, A.; Husinsky, W.; Rosspeintner, A.; Vauthey, E.; Naumov, S.; et al. A Straightforward Synthesis and Structure-Activity Relationship of Highly Efficient Initiators for Two-Photon Polymerization. Macromolecules 2013, 46, 352–361. [Google Scholar] [CrossRef]
- Pivovarenko, V.G.; Klueva, A.V.; Doroshenko, A.O.; Demchenko, A.P. Bands separation in fluorescence spectra of ketocyanine dyes: Evidence for their complex formation with monohydric alcohols. Chem. Phys. Lett. 2000, 325, 389–398. [Google Scholar] [CrossRef]
- Parkanyi, C.; Rao Oruganti, S.; Szentpaly, V.; Ngom, B.; Aaron, J. Dipole moments of indoles in their ground and the first excited singlet states. J. Mol. Str. Theochem. 1986, 135, 105–116. [Google Scholar] [CrossRef]
- Belay, A.; Libnedengel, E.; Kim, H.K.; Hwang, Y.H. Effects of Solvent Polarity on the Absorption and Fluorescence Spectra of Chlorogenic Acid and Caffeic Acid Compounds: Determination of the Dipole Moments. Luminescence 2016, 31, 118–126. [Google Scholar] [CrossRef]
- Aaron, J.J.; Buna, M.; Parkanyi, C.; Shafik Antonious, M.; Tine, A.; Cisse, L. Quantitative Treatment of the Effect of Solvent on the Electronic Absorption and Fluorescence Spectra of Substituted Coumarins: Evaluation of the First Excited Singlet-State Dipole Moments. J. Fluoresc. 1995, 5, 337–347. [Google Scholar] [CrossRef]
- Marcotte, N.; Fery-Forgues, S. Influence of a Second Donor and of Rotational Isomers on the Solvatochromic Properties of Ketocyanine Fluorophores. J. Chem. Soc. Perkin Trans. 2000, 2, 1711–1716. [Google Scholar] [CrossRef]
- Bamabas, M.V.; Liu, A.; Trifunac, A.D.; Krongauz, V.V.; Chang, C.T. Solvent Effects on the Photochemistry of a Ketocyanine Dye and Its Functional Analogue, Michler’s Ketone. J. Phys. Chem. 1992, 96, 212–217. [Google Scholar]
- El-Sayed, M.A. Spin-Orbit Coupling and the Radiationless Processes in Nitrogen Heterocycles. J. Chem. Phys. 1963, 38, 2834–2838. [Google Scholar] [CrossRef]
- Brown, R.G.; Porter, G. Photochemistry of Michler’s Ketone in Cyclohexane and Alcohol Solvents. J. Chem. Soc. Faraday Trans. 1977, 1, 1569–1573. [Google Scholar] [CrossRef]
- Reynolds, E.W.; Demas, J.N.; Degraff, B.A. Viscosity and Temperature Effects on the Rate of Oxygen Quenching of Tris-(2,2′-Bipyridine)Ruthenium(II). J. Fluoresc. 2013, 23, 237–241. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Hamada, Y.; Sumikawa, M.; Araki, S.; Yamamoto, H. Solubility of Oxygen in Organic Solvents and Calculation of the Hansen Solubility Parameters of Oxygen. Ind. Eng. Chem. Res. 2014, 53, 19331–19337. [Google Scholar] [CrossRef]
- Franco, C.; Iii, J.O. Photochemical determination of the solubility of oxygen in various media. Talanta 1990, 37, 905–909. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Shi, M.; Zhang, Y.; Zhao, Y. Study on a Polymerizable Visible Light Initiator for Fabrication of Biosafety Materials. Polym. Chem. 2019, 10, 2273–2281. [Google Scholar] [CrossRef]
- Christmann, J.; Allonas, X.; Ley, C.; Croutxé-Barghorn, C. The Role of Ketyl Radicals in Free Radical Photopolymerization: New Experimental and Theoretical Insights. Polym. Chem. 2019, 10, 1099–1109. [Google Scholar] [CrossRef]
- Jiang, L.J.; Zhou, Y.S.; Xiong, W.; Gao, Y.; Huang, X.; Jiang, L.; Baldacchini, T.; Silvain, J.-F.; Lu, Y.F. Two-Photon Polymerization: Investigation of Chemical and Mechanical Properties of Resins Using Raman Microspectroscopy. Opt. Lett. 2014, 39, 3034–3037. [Google Scholar] [CrossRef]
- Bauer, J.; Guell Izard, A.; Zhang, Y.; Baldacchini, T.; Valdevit, L. Programmable Mechanical Properties of Two-Photon Polymerized Materials: From Nanowires to Bulk. Adv. Mater. Technol. 2019, 4, 1900146. [Google Scholar] [CrossRef]
- Matital, R.P.; Kolymagin, D.A.; Chubich, D.A.; Merkushev, D.D.; Vitukhnovsky, A.G. Luminescence Confocal Microscopy of 3D Components of Photonic Integrated Circuits Fabricated by Two-Photon Photopolymerization. J. Sci. Adv. Mat. Dev. 2022, 7, 100413. [Google Scholar] [CrossRef]
- Flory, P.J. Molecular Size Distribution in Three Dimensional Polymers. I. Gelation. J. Am. Chem. Soc. 1941, 63, 3083–3090. [Google Scholar] [CrossRef]
- Flory, P.J. Molecular Size Distribution in Three Dimensional Polymers. II. Trifunctional Branching Units. J. Am. Chem. Soc. 1941, 63, 3091–3096. [Google Scholar] [CrossRef]
- Stockmayer, W.H. Theory of Molecular Size Distribution and Gel Formation in Branched-Chain Polymers. J. Chem. Phys. 1943, 11, 45–55. [Google Scholar] [CrossRef]
- Wang, S.; Yu, Y.; Liu, H.; Lim, K.T.P.; Srinivasan, B.M.; Zhang, Y.W.; Yang, J.K.W. Sub-10-Nm Suspended Nano-Web Formation by Direct Laser Writing. Nano Futures 2018, 2, 025006. [Google Scholar] [CrossRef]
Solvent | λabs/nm | λflu/nm | Δυ/cm−1 | F |
---|---|---|---|---|
Toluene | 448 | 472 | 1135 | 0.029 |
DMSO | 474 | 558 | 3176 | 0.841 |
Propanol-1 | 473 | 584 | 4063 | 0.779 |
Acetonitrile | 459 | 544 | 3404 | 0.860 |
Dichloromethane | 456 | 528 | 2990 | 0.592 |
Ethyl acetate | 448 | 514 | 2866 | 0.489 |
Acetone | 454 | 539 | 3473 | 0.790 |
Solvent | Compound | ΦΔ | Φflu | τflu/ns |
---|---|---|---|---|
Acetonitrile | MBAC | 0.14 | 0.10 | 0.67 |
4Met-BAC | 0.17 | 0.11 | 0.71 | |
Toluene | MBAC | 0.16 | 0.08 | 0.30 |
4Met-BAC | 0.11 | 0.05 | 0.24 | |
Propanol-1 | MBAC | 0.05 | 0.15 | 0.46 |
4Met-BAC | 0.08 | 0.35 | 1.16 | |
DMSO | MBAC | - | 0.17 | 0.78 |
4Met-BAC | - | 0.20 | 0.84 |
Solvent | kT/s−1 Ar Purging | kO2/s−1 O2 Purging | kdiff/ M−1 s−1 | 1/9 kdiff/M−1 s−1 | kq/M−1 s−1 |
---|---|---|---|---|---|
Acetonitrile | 8.0 × 106 | 4.5 × 107 | 1.9 × 1010 | 2.1 × 109 | 3.1 × 109 |
Propanol | 5.2 × 105 | 2.0 × 107 | 3.4 × 109 | 3.7 × 108 | 4.5 × 108 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Egorov, A.E.; Kostyukov, A.A.; Shcherbakov, D.A.; Kolymagin, D.A.; Chubich, D.A.; Matital, R.P.; Arsenyev, M.V.; Burtsev, I.D.; Mestergazi, M.G.; Zhiganshina, E.R.; et al. Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application. Polymers 2023, 15, 71. https://doi.org/10.3390/polym15010071
Egorov AE, Kostyukov AA, Shcherbakov DA, Kolymagin DA, Chubich DA, Matital RP, Arsenyev MV, Burtsev ID, Mestergazi MG, Zhiganshina ER, et al. Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application. Polymers. 2023; 15(1):71. https://doi.org/10.3390/polym15010071
Chicago/Turabian StyleEgorov, Anton E., Alexey A. Kostyukov, Denis A. Shcherbakov, Danila A. Kolymagin, Dmytro A. Chubich, Rilond P. Matital, Maxim V. Arsenyev, Ivan D. Burtsev, Mikhail G. Mestergazi, Elnara R. Zhiganshina, and et al. 2023. "Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application" Polymers 15, no. 1: 71. https://doi.org/10.3390/polym15010071
APA StyleEgorov, A. E., Kostyukov, A. A., Shcherbakov, D. A., Kolymagin, D. A., Chubich, D. A., Matital, R. P., Arsenyev, M. V., Burtsev, I. D., Mestergazi, M. G., Zhiganshina, E. R., Chesnokov, S. A., Vitukhnovsky, A. G., & Kuzmin, V. A. (2023). Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application. Polymers, 15(1), 71. https://doi.org/10.3390/polym15010071