Flower-like Thiourea–Formaldehyde Resin Microspheres for the Adsorption of Silver Ions
Abstract
:1. Introduction
2. Experimental
2.1. Preparation of FTFM
2.2. Characterization of the FTFM
2.3. Calculation of Adsorption Capacity
2.4. Adsorption Kinetics
2.5. Adsorption Isotherms
3. Results and Discussions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pan, X.-H.; Fu, L.-X.; Wang, H.; Xue, Y.; Zu, J.-H. Synthesis of novel sulfydryl-functionalized chelating adsorbent and its application for selective adsorption of Ag(I) under high acid. Sep. Purif. Technol. 2021, 271, 118778. [Google Scholar] [CrossRef]
- Nakiboğlu, N.; Toscali, D.; Nişli, G. A novel silver recovery method from waste photographic films with NaOH stripping. Turk. J. Chem. 2003, 27, 127–133. [Google Scholar]
- Manjolinho, F.; Arndt, M.; Gooßen, K.; Gooßen, L.J. Catalytic C–H carboxylation of terminal alkynes with carbon dioxide. ACS Catal. 2012, 2, 2014–2021. [Google Scholar] [CrossRef]
- Liu, G.; Deng, Y.; Song, Y.; Sui, Y.; Cen, J.; Shao, Z.; Li, H.; Tang, T. Transdermal delivery of adipocyte phospholipase A2 siRNA using microneedles to treat thyroid associated ophthalmopathy-related proptosis. Cell Transplant. 2021, 30, 096368972110106. [Google Scholar] [CrossRef]
- Yao, Z.; Shao, P.; Fang, D.; Shao, J.; Li, D.; Liu, L.; Huang, Y.; Yu, Z.; Yang, L.; Yu, K.; et al. Thiol-rich, porous carbon for the efficient capture of silver: Understanding the relationship between the surface groups and transformation pathways of silver. Chem. Eng. J. 2022, 427, 131470. [Google Scholar] [CrossRef]
- Hasany, S.M.; Ahmad, R. Removal of traces of silver ions from aqueous solutions using coconut husk as a sorbent. Sep. Sci. Technol. 2005, 39, 3509–3525. [Google Scholar] [CrossRef]
- Song, Z. Sedimentation of tannery wastewater. Water Res. 2000, 34, 2171–2176. [Google Scholar] [CrossRef]
- Kang, J.; Sun, W.; Hu, Y.; Gao, Z.; Liu, R.; Zhang, Q.; Liu, H.; Meng, X. The utilization of waste by-products for removing silicate from mineral processing wastewater via chemical precipitation. Water Res. 2017, 125, 318–324. [Google Scholar] [CrossRef]
- Mahmoud, A.; Hoadley, A.F.A. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Res. 2012, 46, 3364–3376. [Google Scholar] [CrossRef]
- Taheri, R.; Bahramifar, N.; Zarghami, M.R.; Javadian, H.; Mehraban, Z. Nanospace engineering and functionalization of MCM-48 mesoporous silica with dendrimer amines based on [1,3,5]-triazines for selective and pH-independent sorption of silver ions from aqueous solution and electroplating industry wastewater. Powder Technol. 2017, 321, 44–54. [Google Scholar] [CrossRef]
- Roundhill, D.M.; Koch, H.F. Methods and techniques for the selective extraction and recovery of oxoanions. Chem. Soc. Rev. 2002, 31, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Donia, A.M.; Atia, A.A.; El-Boraey, H.A.; Mabrouk, D.H. Adsorption of Ag(I) on glycidyl methacrylate/N,N′-methylene bis-acrylamide chelating resins with embedded iron oxide. Sep. Purif. Technol. 2006, 48, 281–287. [Google Scholar] [CrossRef]
- Vassileva, P.; Tzvetkova, P.; Lakov, L.; Peshev, O. Thiouracil modified activated carbon as a sorbent for some precious and heavy metal ions. J. Porous Mater. 2008, 15, 593–599. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Chen, Z. A novel nanocomposite as an efficient adsorbent for the rapid adsorption of Ni(II) from aqueous solution. Materials 2017, 10, 1124. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.F.; Yeung, K.L.; McKay, G. A rational approach in the design of selective mesoporous adsorbents. Langmuir 2006, 22, 9632–9641. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.; Chen, X.; Yang, M.; Qi, Y. Selective adsorption of silver ions from aqueous solution using polystyrene-supported trimercaptotriazine resin. J. Environ. Sci. 2012, 24, 2166–2172. [Google Scholar] [CrossRef] [PubMed]
- Das, R.; Giri, S.; King Abia, A.L.; Dhonge, B.; Maity, A. Removal of noble metal ions (Ag+) by mercapto group-containing polypyrrole matrix and reusability of its waste material in environmental applications. ACS Sustain. Chem. Eng. 2017, 5, 2711–2724. [Google Scholar] [CrossRef]
- Hua, R.; Li, Z. Sulfhydryl functionalized hydrogel with magnetism: Synthesis, characterization, and adsorption behavior study for heavy metal removal. Chem. Eng. J. 2014, 249, 189–200. [Google Scholar] [CrossRef]
- Kιrcι, S.; Gülfen, M.; Aydιn, A.O. Separation and recovery of silver(I) ions from base metal ions by thiourea- or urea-formaldehyde chelating resin. Sep. Sci. Technol. 2009, 44, 1869–1883. [Google Scholar] [CrossRef]
- Yirikoglu, H.; Gülfen, M. Separation and recovery of silver(I) ions from base metal ions by melamine-formaldehyde-thiourea (MFT) chelating resin. Sep. Sci. Technol. 2008, 43, 376–388. [Google Scholar] [CrossRef]
- Iglesias, M.; Anticó, E.; Salvadó, V. The Characterisation of silver sorption by chelating resins containing thiol and amine groups. Solvent Extr. Ion Exch. 2001, 19, 315–327. [Google Scholar] [CrossRef]
- Hao, Z.X.; Guo, Y.Q.; Wu, P.F.; Mansur, M.; Zhu, J.F. Adsorption Properties of Silver Ions on Thiourea-Formaldehyde Resin. Adv. Mater. Res. 2014, 868, 459–462. [Google Scholar] [CrossRef]
- Hou, H.; Yu, D.; Hu, G. Preparation and properties of ion-imprinted hollow particles for the selective adsorption of silver ions. Langmuir 2015, 31, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Fang, S.; Gao, Y.; Bi, J. Removal of aqueous pharmaceuticals by magnetically functionalized Zr-MOFs: Adsorption Kinetics, Isotherms, and regeneration. J. Colloid Interface Sci. 2022, 615, 876–886. [Google Scholar] [CrossRef] [PubMed]
- Zhai, S.; Liu, J.; Sheng, J.; Xu, J.; Jiang, H. Novel morphology-controlled three-dimensional flower-like magnetic CoFe2O4/CoFe-LDHs microsphere for high efficient removal of Orange II. Chem. Eng. J. 2021, 421, 130403. [Google Scholar] [CrossRef]
- Wu, J.J.; Lee, H.W.; You, J.H.; Kau, Y.-C.; Liu, S.-J. Adsorption of silver ions on polypyrrole embedded electrospun nanofibrous polyethersulfone membranes. J. Colloid Interface Sci. 2014, 420, 145–151. [Google Scholar] [CrossRef]
- Lei, C.; Pi, M.; Jiang, C.; Cheng, B.; Yu, J. Synthesis of hierarchical porous zinc oxide (ZnO) microspheres with highly efficient adsorption of Congo red. J. Colloid Interface Sci. 2017, 490, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tu, M.; Li, X.; Zhang, J.; Cheng, J. Facile synthesis of marigold-like microspheres from urea formaldehyde with controllable morphology. Mater. Lett. 2015, 145, 27–29. [Google Scholar] [CrossRef]
- Yin, X.; Shao, P.; Ding, L.; Xi, Y.; Zhang, K.; Yang, L.; Shi, H.; Luo, X. Protonation of rhodanine polymers for enhancing the capture and recovery of Ag+ from highly acidic wastewater. Environ. Sci. Nano 2019, 6, 3307–3315. [Google Scholar] [CrossRef]
- Brandani, S. Kinetics of liquid phase batch adsorption experiments. Adsorption 2021, 27, 353–368. [Google Scholar] [CrossRef]
- Pedersen, M.G.; Bersani, A.M. Introducing total substrates simplifies theoretical analysis at non-negligible enzyme concentrations: Pseudo first-order kinetics and the loss of zero-order ultrasensitivity. J. Math. Biol. 2010, 60, 267–283. [Google Scholar] [CrossRef] [PubMed]
- Ofomaja, A.E.; Naidoo, E.B.; Modise, S.J. Kinetic and pseudo-second-order modeling of lead biosorption onto pine cone powder. Ind. Eng. Chem. Res. 2010, 49, 2562–2572. [Google Scholar] [CrossRef]
- Efome, J.E.; Rana, D.; Matsuura, T.; Lan, C.Q. Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution. ACS Appl. Mater. Interfaces 2018, 10, 18619–18629. [Google Scholar] [CrossRef]
- Wang, L.; Xing, R.; Liu, S.; Yu, H.; Qin, Y.; Li, K.; Feng, J.; Li, R.; Li, P. Recovery of Silver (I) Using a Thiourea-Modified Chitosan Resin. J. Hazard. Mater. 2010, 180, 577–582. [Google Scholar] [CrossRef] [PubMed]
- Wajima, T. Synthesis of Zeolitic Material from Green Tuff Stone Cake and Its Adsorption Properties of Silver (I) from Aqueous Solution. Microporous Mesoporous Mater. 2016, 233, 154–162. [Google Scholar] [CrossRef]
- Kiani, G. High Removal Capacity of Silver Ions from Aqueous Solution onto Halloysite Nanotubes. Appl. Clay Sci. 2014, 90, 159–164. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, G.; Wang, S.; Peng, J.; Cui, W. Sulfoethyl Functionalized Silica Nanoparticle as an Adsorbent to Selectively Adsorb Silver Ions from Aqueous Solutions. J. Taiwan Inst. Chem. Eng. 2017, 71, 330–337. [Google Scholar] [CrossRef]
Sequence Number | Abbreviation | Formaldehyde (mol) | Thiourea (mol) | Ammonium Chloride (mol) * |
---|---|---|---|---|
1 | FT1F0.5M | 0.5 | 1 | 0 |
2 | FT1F1M | 1 | 1 | 0 |
3 | FT1F2M | 2 | 1 | 0 |
4 | FT1F4M | 4 | 1 | 0 |
5 | S1T1F4M | 4 | 1 | 0.0187 |
6 | S2T1F4M | 4 | 1 | 0.0374 |
Sample Name | Pseudo-First Order Fitting (Equation (1)) | Pseudo-Second Order Fitting (Equation (2)) | R(1-2)2 ** (%) | ||||
---|---|---|---|---|---|---|---|
Qe1 (mmol/g) | R12 | AARD1 * (%) | Qe2 (mmol/g) | R22 | AARD2 (%) | ||
S2T1F4M | 0.53 ± 1.223 | 0.913 | 118.86 | 1.09 ± 0.012 | 0.991 | 1.15 | 0.96 |
FT1F0.5M | 3.00 ± 1.318 | 0.936 | 308.94 | 8.44 ± 0.009 | 0.995 | 3.91 | >0.99 |
FT1F1M | 2.80 ± 2.271 | 0.845 | 290.62 | 10.08 ± 0.014 | 0.993 | 3.78 | >0.99 |
FT1F2M | 3.56 ± 1.895 | 0.949 | 352.27 | 11.20 ± 0.011 | 0.998 | 1.32 | >0.99 |
FT1F4M | 3.55 ± 2.061 | 0.936 | 421.76 | 12.61 ± 0.016 | 0.994 | 3.59 | >0.99 |
Sample Name | Qmax * (mmol/g) | b ** (ml/mmol) | R2 |
---|---|---|---|
S2T1F4M | 1.32 ± 0.16 | 29.1 ± 4.7 | 0.959 |
FT1F0.5M | 10.92 ± 0.46 | 38.0 ± 1.9 | 0.994 |
FT1F1M | 13.48 ± 0.33 | 34.1 ± 1.8 | 0.998 |
FT1F2M | 15.52 ± 0.63 | 29.5 ± 2.9 | 0.995 |
FT1F4M | 18.17 ± 1.28 | 25.7 ± 3.4 | 0.985 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, X.; Xia, J.; Zhou, G.; Wang, X.; Wang, D.; Zhang, J.; Cheng, J.; Gao, F. Flower-like Thiourea–Formaldehyde Resin Microspheres for the Adsorption of Silver Ions. Polymers 2023, 15, 2423. https://doi.org/10.3390/polym15112423
Li Y, Wang X, Xia J, Zhou G, Wang X, Wang D, Zhang J, Cheng J, Gao F. Flower-like Thiourea–Formaldehyde Resin Microspheres for the Adsorption of Silver Ions. Polymers. 2023; 15(11):2423. https://doi.org/10.3390/polym15112423
Chicago/Turabian StyleLi, Yuhan, Xiaoli Wang, Jing Xia, Guangwei Zhou, Xiaomu Wang, Dingxuan Wang, Junying Zhang, Jue Cheng, and Feng Gao. 2023. "Flower-like Thiourea–Formaldehyde Resin Microspheres for the Adsorption of Silver Ions" Polymers 15, no. 11: 2423. https://doi.org/10.3390/polym15112423
APA StyleLi, Y., Wang, X., Xia, J., Zhou, G., Wang, X., Wang, D., Zhang, J., Cheng, J., & Gao, F. (2023). Flower-like Thiourea–Formaldehyde Resin Microspheres for the Adsorption of Silver Ions. Polymers, 15(11), 2423. https://doi.org/10.3390/polym15112423