Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health
Abstract
:1. Introduction
2. Methodology
3. Results and Discussions
3.1. Physicochemical Methods for Removal of Micro- and Nanoplastics from Drinking Water Sources
3.1.1. Coagulation–Flocculation–Sedimentation (CFS)
3.1.2. Disinfection Technologies
3.1.3. Adsorption
3.1.4. Membrane Filtration Process
3.1.5. Other Technologies
3.2. Analytical Methods for Monitoring Micro- and Nanoplastics in Drinking Water Sources
3.2.1. Methods Based on Mass Determination
3.2.2. Methods Based on Particle Determination
3.3. Potential Toxicological Effects of Micro- and Nanoplastics from Drinking Water Sources on Human Health
4. Conclusions and Future Perspective
- setting sampling and monitoring standards for MPs/NPs
- reducing the production of non-biodegradable plastic items
- reducing single-use plastic
- implementing the circular economy using biodegradable plastic items
- using the “refuse, reduce, reuse, and recycle” concept
- innovation for plastics that do not need reusable, recyclable, or compostable materials
- total removal of MPs/NPs from DWTPs
- designing innovative packaging technologies to unscrew bottle caps in other ways, such as easy-to-open caps
- the use of bio-inspired technology related to biomimetics involving the design of advanced systems or devices inspired by nature, where principles from interdisciplinary fields such as engineering, chemistry and biology are applied to the development of materials, synthetic systems or instruments with functions that mimic biological processes [181]
- raising people’s awareness of the toxicological effects of MPs/NPs.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
List of Acronyms and Abbreviations
MPs | microplastics |
NPs | nanoplastics |
DWTPs | drinking water treatment plants |
Pyr-GC/MS | pyrolysis–gas chromatography–mass spectrometry |
RAC | Committee for Risk Assessment |
SEAC | Committee for Socio-Economic Analysis |
EPS | extracellular polymers |
PFAS | per- and polyfluoroalkyl substances |
WHO | World Health Organization |
ATSDR | Agency for Toxic Substances and Disease Registry |
PS | polystyrene |
PVC | polyvinyl chloride |
CFS | coagulation–flocculation–sedimentation |
TD-PTR/MS | thermal desorption–proton transfer reaction–mass spectrometry |
µ-FTIR | micro-Fourier-transform infrared spectroscopy |
µ-Raman | micro-Raman |
TD-GC/MS | thermal desorption–gas chromatography–mass spectrometry |
SP-ICP-MS | single particle inductively coupled plasma mass spectroscopy |
SERS | surface-enhanced Raman spectroscopy |
ICP-MS | inductively coupled plasma mass spectroscopy |
MALDI-ToF/MS | matrix-assisted laser desorption/ionization time-of-flight mass spectrometry |
DLS | dynamic light scattering |
SEM-EDX | scanning electron microscopy–energy-dispersive X-ray spectroscopy |
TEM | transmission electron microscopy |
PET | polyethylene terephthalate |
NOM | natural organic matter |
polyDADMAC | diallyldimethylammonium chloride |
PE | polyethylene |
PACl | polyaluminum chloride |
Al2(SO4)3 | aluminum sulfate |
AlCl3 | aluminum chloride |
FeCl3 | iron chloride |
NaHCO3 | sodium bicarbonate |
PC | polyamine-coated |
ER | elongated-rough |
ES | elongated-smooth |
SR | spherical-rough |
SS | spherical-smooth |
GAC | granular activated carbon |
Pd | palladium |
DOM | dissolved organic matter |
IONPs | iron oxide nanoparticles |
LOQ | limit of quantification |
AF4 | asymmetric flow field flow fractionation |
DLS-MADLS | multiangle and dynamic light scattering |
PA | polyamide |
PU | polyurethane |
HDPE | high-density polyethylene |
POU | three point-of-use |
IX | ion exchange |
MF | microfiltration |
PVC | polyvinyl chloride |
LDPE | low-density polyethylene |
DAF | dissolved air flotation |
SAN | styrene acrylonitrile |
PES | polyester |
PPS | polyphenylene sulfite |
FPA | focal plane array |
TFU | tangential flow ultrafiltration |
LOD | limit of detection |
EvOH | ethylene vinyl alcohol |
LDIR | laser direct infrared |
PC | polycarbonate |
AFM-IR | atomic force microscope-infrared spectroscopy |
ATR-FTIR | attenuated total reflectance Fourier-transform infrared spectroscopy |
NWERS | nanowell-enhanced Raman spectroscopy |
ILs | ionic liquids |
PAM | polyacrylamide |
EDTA | ethylenediaminetetraacetic acid tetrasodium salt |
SDS | sodium dodecyl sulfate |
BPA | bisphenol A |
BFR | brominated flame retardants |
4-NP | 4-nonylphenol |
TCS | triclosan |
DNA | deoxyribonucleic acid |
ROS | reactive oxygen species |
BSA | bovine serum albumin |
HMC-1 | human mast cells |
PBMCs | peripheral blood mononuclear cells |
RBCs | red blood cells |
RBL-2H3 | rat basophilic leukemia cells |
HeLa | cervical cancer cells |
HDFs | human dermal fibroblasts |
Caco-2 | human epithelial colorectal adenocarcinoma cells |
ECHA | European Chemicals Agency |
PAN | poly(acrylonitrile) |
PMMA | poly(methyl methacrylate) |
PVA | poly(vinyl alcohol) |
PEVA | ethylene (vinyl acetate) copolymer |
AC | activated carbon |
References
- PLASTICS—THE FACTS 2022. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2022 (accessed on 13 April 2023).
- Popa, C.L.; Dontu, S.I.; Savastru, D.; Carstea, E.M. Role of Citizen Scientists in Environmental Plastic Litter Research-A Systematic Review. Sustainability 2022, 14, 13265. [Google Scholar] [CrossRef]
- Arenas, L.R.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Fate and removal efficiency of polystyrene nanoplastics in a pilot drinking water treatment plant. Sci. Total Environ. 2022, 813, 152623. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, M.; Ahmad, W.; Khan, H.; Yousaf, S.; Khan, K.; Nazir, S. Plastic waste as a significant threat to environment—A systematic literature review. Rev. Environ. Health 2018, 33, 383–406. [Google Scholar] [CrossRef] [PubMed]
- Reddy, A.S.; Nair, A.T. The fate of microplastics in wastewater treatment plants: An overview of source and remediation technologies. Environ. Technol. Innov. 2022, 28, 102815. [Google Scholar] [CrossRef]
- Ali, I.; Cheng, Q.H.; Ding, T.D.; Qian, Y.G.; Zhang, Y.C.; Sun, H.B.; Peng, C.S.; Naz, I.; Li, J.Y.; Liu, J.F. Micro- and nanoplastics in the environment: Occurrence, detection, characterization and toxicity-A critical review. J. Clean. Prod. 2021, 313, 127863. [Google Scholar] [CrossRef]
- Lee, H.; Shim, J.E.; Park, I.H.; Choo, K.S.; Yeo, M.K. Physical and biomimetic treatment methods to reduce microplastic waste accumulation. Mol. Cell Toxicol. 2022, 19, 13–25. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Sanyal, D.; Kumar, P.; Pulicharla, R.; Brar, S.K. Science-society-policy interface for microplastic and nanoplastic: Environmental and biomedical aspects. Environ. Pollut. 2021, 290, 117985. [Google Scholar] [CrossRef] [PubMed]
- Jimenez-Lamana, J.; Marigliano, L.; Allouche, J.; Grassl, B.; Szpunar, J.; Reynaud, S. A Novel Strategy for the Detection and Quantification of Nanoplastics by Single Particle Inductively Coupled Plasma Mass Spectrometry (ICP-MS). Anal. Chem. 2020, 92, 11664–11672. [Google Scholar] [CrossRef]
- Sorensen, R.M.; Kanwar, R.S.; Jovanovi, B. Past, present, and possible future policies on plastic use in the United States, particularly microplastics and nanoplastics: A review. Integr. Environ. Assess. Manag. 2023, 19, 474–488. [Google Scholar] [CrossRef] [PubMed]
- Plastics—Environmental Aspects—State of Knowledge and Methodologies. Available online: https://www.iso.org/obp/ui/#iso:std:iso:tr:21960:ed-1:v1:en (accessed on 12 March 2023).
- European Chemicals Agency (ECHA). Opinion on an Annex XV Dossier Proposing Restrictions on Intentionally-Added Microplastics. ECHA/RAC/RES-O-0000006790-71-01/F ECHA/SEAC/. 11 June 2020. Available online: https://echa.europa.eu/documents/10162/23665416/rest_microplastics_opinion_rac_16339_en.pdf/b4d383cd-24fc-82e9-cccf-6d9f66ee9089 (accessed on 13 May 2023).
- Udenby, F.A.O.; Almuhtaram, H.; McKie, M.J.; Andrews, R.C. Adsorption of fluoranthene and phenanthrene by virgin and weathered polyethylene microplastics in freshwaters. Chemosphere 2022, 307, 135585. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.L.; Liu, Z.Z.; Jiang, W. Transport behavior of nanoplastics in activated carbon column. Environ. Sci. Pollut. Res. 2023, 30, 26256–26269. [Google Scholar] [CrossRef] [PubMed]
- Reynaud, S.; Aynard, A.; Grassl, B.; Gigault, J. Nanoplastics: From model materials to colloidal fate. Curr. Opin. Colloid Interface Sci. 2022, 57, 101528. [Google Scholar] [CrossRef]
- Pivokonsky, M.; Cermakova, L.; Novotna, K.; Peer, P.; Cajthaml, T.; Janda, V. Occurrence of microplastics in raw and treated drinking water. Sci. Total Environ. 2018, 643, 1644–1651. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.L.; Diehl, A.; Lewandowski, A.; Gopalakrishnan, K.; Baker, T. Removal efficiency of micro- and nanoplastics (180 nm–125 μm) during drinking water treatment. Sci. Total Environ. 2020, 720, 137383. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.K.; Samaei, S.H.A.; Chen, J.F.; Doucet, A.; Ng, K.T.W. What have we known so far about microplastics in drinking water treatment? A timely review. Front. Environ. Sci. Eng. 2022, 16, 58. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Kim, S.; Kim, Y.S.; Jeong, S.; Lee, J. Tracing microplastics from raw water to drinking water treatment plants in Busan, South Korea. Sci. Total Environ. 2022, 825, 154015. [Google Scholar] [CrossRef] [PubMed]
- Pojar, I.; Tiron Dutu, L.; Pop, C.I.; Dutu, F. Hydrodynamic observations on microplastic abundances and morphologies in the danube delta, romania. Agrolife Sci. J. 2021, 10, 142–149. [Google Scholar] [CrossRef]
- Zhou, X.X.; He, S.; Gao, Y.; Chi, H.Y.; Wang, D.J.; Li, Z.C.; Yan, B. Quantitative Analysis of Polystyrene and Poly(methyl methacrylate) Nanoplastics in Tissues of Aquatic Animals. Environ. Sci. Technol. 2021, 55, 3032–3040. [Google Scholar] [CrossRef] [PubMed]
- Shruti, V.C.; Perez-Guevara, F.; Elizalde-Martinez, I.; Kutralam-Muniasamy, G. Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption. Environ. Pollut. 2021, 268, 115811. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, B.; Sadhu, S.D. Microplastic profusion in food and drinking water: Are microplastics becoming a macroproblem? Environ. Sci.-Process. Impacts 2022, 24, 992–1009. [Google Scholar] [CrossRef]
- Liu, Q.R.; Chen, Z.; Chen, Y.L.; Yang, F.W.; Yao, W.R.; Xie, Y.F. Microplastics and Nanoplastics: Emerging Contaminants in Food. J. Agric. Food Chem. 2021, 69, 10450–10468. [Google Scholar] [CrossRef]
- Wong, S.L.; Nyakuma, B.B.; Wong, K.Y.; Lee, C.T.; Lee, T.H.; Lee, C.H. Microplastics and nanoplastics in global food webs: A bibliometric analysis (2009–2019). Mar. Pollut. Bull. 2020, 158, 111432. [Google Scholar] [CrossRef] [PubMed]
- Myszograj, M. Microplastic in food and drinking water- environmental monitoring data. Civ. Environ. Eng. Rep. 2020, 30, 201–209. [Google Scholar] [CrossRef]
- Okoffo, E.D.; O’Brien, S.; Ribeiro, F.; Burrows, S.D.; Toapanta, T.; Rauert, C.; O’Brien, J.W.; Tscharke, B.J.; Wang, X.Y.; Thomas, K.V. Plastic particles in soil: State of the knowledge on sources, occurrence and distribution, analytical methods and ecological impacts. Environ. Sci.-Process. Impacts 2021, 23, 240–274. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Yang, X.; Chen, L.; Chao, J.; Teng, J.; Wang, Q. Microplastics in soils: A review of possible sources, analytical methods and ecological impacts. J. Chem. Technol. Biotechnol. 2020, 95, 2052–2068. [Google Scholar] [CrossRef]
- Jia, W.; Karapetrova, A.; Zhang, M.; Xu, L.; Li, K.; Huang, M.; Wang, J.; Huang, Y. Automated identification and quantification of invisible microplastics in agricultural soils. Sci. Total Environ. 2022, 844, 156853. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, C.J. Solving the plastic problem: From cradle to grave, to reincarnation. Sci. Prog. 2019, 102, 218–248. [Google Scholar] [CrossRef] [Green Version]
- Ding, J.F.; Sun, C.J.; He, C.F.; Zheng, L.; Dai, D.J.; Li, F.M. Atmospheric microplastics in the Northwestern Pacific Ocean: Distribution, source, and deposition. Sci. Total Environ. 2022, 829, 154337. [Google Scholar] [CrossRef] [PubMed]
- Antohi, V.M.; Ionescu, R.V.; Zlati, M.L.; Iticescu, C.; Georgescu, P.L.; Calmuc, M. Regional Regression Correlation Model of Microplastic Water Pollution Control Using Circular Economy Tools. Int. J. Environ. Res. Public Health 2023, 20, 4014. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, K. A Systematic Review on the Impact of Micro-Nanoplastics Exposure on Human Health and Diseases. Biointerface Res. Appl. Chem. 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Song, F.H.; Li, T.T.; Hur, J.; Wu, F.C.; Meng, X.G. Eco-Colloidal Layer of Micro/Nanoplastics Increases Complexity and Uncertainty of Their Biotoxicity in Aquatic Environments. Environ. Sci. Technol. 2022, 56, 10547–10549. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Armendariz, C.; Alejandro-Vega, S.; Paz-Montelongo, S.; Gutierrez-Fernandez, A.J.; Carrascosa-Iruzubieta, C.J.; de la Torre, A. Microplastics as Emerging Food Contaminants: A Challenge for Food Safety. Int. J. Environ. Res. Public Health 2022, 19, 1174. [Google Scholar] [CrossRef]
- Cerasa, M.; Teodori, S.; Pietrelli, L. Searching Nanoplastics: From Sampling to Sample Processing. Polymers 2021, 13, 3658. [Google Scholar] [CrossRef]
- Ali, I.; Tan, X.; Li, J.Y.; Peng, C.S.; Naz, I.; Duan, Z.P.; Ruan, Y.L. Interaction of microplastics and nanoplastics with natural organic matter (NOM) and the impact of NOM on the sorption behavior of anthropogenic contaminants—A critical review. J. Clean. Prod. 2022, 376, 134314. [Google Scholar] [CrossRef]
- Ding, R.R.; Tong, L.; Zhang, W.C. Microplastics in Freshwater Environments: Sources, Fates and Toxicity. Water Air Soil Pollut. 2021, 232, 181. [Google Scholar] [CrossRef]
- Sun, X.L.; Xiang, H.; Xiong, H.Q.; Fang, Y.C.; Wang, Y. Bioremediation of microplastics in freshwater environments: A systematic review of biofilm culture, degradation mechanisms, and analytical methods. Sci. Total Environ. 2023, 863, 160953. [Google Scholar] [CrossRef] [PubMed]
- Qin, M.; Chen, C.Y.; Song, B.; Shen, M.C.; Cao, W.C.; Yang, H.L.; Zeng, G.M.; Gong, J.L. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments? J. Clean. Prod. 2021, 312, 127816. [Google Scholar] [CrossRef]
- Shruti, V.C.; Kutralam-Muniasamy, G. Bioplastics: Missing link in the era of Microplastics. Sci. Total Environ. 2019, 697, 134139. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Yu, J.F.; Lu, Y.; Hua, D.; Wang, X.; Zou, X.H. Biodegradable microplastics (BMPs): A new cause for concern? Environ. Sci. Pollut. Res. 2021, 28, 66511–66518. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.C.; Song, B.; Zeng, G.M.; Zhang, Y.X.; Huang, W.; Wen, X.F.; Tang, W.W. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ. Pollut. 2020, 263, 114469. [Google Scholar] [CrossRef] [PubMed]
- Miloloza, M.; Cvetnic, M.; Grgic, D.K.; Bulatovic, V.O.; Ukic, S.; Rogosic, M.; Dionysiou, D.D.; Kusic, H.; Bolanca, T. Biotreatment strategies for the removal of microplastics from freshwater systems. A review. Environ. Chem. Lett. 2022, 20, 1377–1402. [Google Scholar] [CrossRef]
- Jeong, Y.; Gong, G.; Lee, H.-J.; Seong, J.; Hong, S.W.; Lee, C. Transformation of microplastics by oxidative water and wastewater treatment processes: A critical review. J. Hazard. Mater. 2023, 443, 130313. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, K.Q.; Ren, L.X.; Peng, A.P.; Zhou, S.D. Biodegradable Microplastics: A Review on the Interaction with Pollutants and Influence to Organisms. Bull. Environ. Contam. Toxicol. 2022, 108, 1006–1012. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.Y.; Zhong, X.C.; Duan, Z.H.; Yi, X.L.; Cheng, F.Q.; Xu, W.P.; Yang, X.J. Micro- and nanoplastics released from biodegradable and conventional plastics during degradation: Formation, aging factors, and toxicity. Sci. Total Environ. 2022, 833, 155275. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.F.; Bohlen, M.; Lindblad, C.; Hedenqvist, M.; Hakonen, A. Microplastics generated from a biodegradable plastic in freshwater and seawater. Water Res. 2021, 198, 117123. [Google Scholar] [CrossRef] [PubMed]
- Do, A.T.N.; Ha, Y.; Kang, H.J.; Kim, J.M.; Kwon, J.H. Equilibrium leaching of selected ultraviolet stabilizers from plastic products. J. Hazard. Mater. 2022, 427, 128144. [Google Scholar] [CrossRef]
- Barhoumi, B.; Sander, S.G.; Tolosa, I. A review on per- and polyfluorinated alkyl substances (PFASs) in microplastic and food-contact materials. Environ. Res. 2022, 206, 112595. [Google Scholar] [CrossRef] [PubMed]
- Jang, M.; Shim, W.J.; Han, G.M.; Rani, M.; Song, Y.K.; Hong, S.H. Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region. Environ. Pollut. 2017, 231, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Microplastics and associated emerging contaminants in the environment: Analysis, sorption mechanisms and effects of co-exposure. Trends Environ. Anal. Chem. 2022, 35, e00170. [Google Scholar] [CrossRef]
- Oliveira, M.; Almeida, M.; Miguel, I. A micro(nano)plastic boomerang tale: A never ending story? Trac-Trends Anal. Chem. 2019, 112, 196–200. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.W.; Xue, W.J.; Hu, C.Z.; Liu, H.J.; Qu, J.H.; Li, L.L. Characteristics of microplastic removal via coagulation and ultrafiltration during drinking water treatment. Chem. Eng. J. 2019, 359, 159–167. [Google Scholar] [CrossRef]
- Kinigopoulou, V.; Pashalidis, I.; Kalderis, D.; Anastopoulos, I. Microplastics as carriers of inorganic and organic contaminants in the environment: A review of recent progress. J. Mol. Liq. 2022, 350, 118580. [Google Scholar] [CrossRef]
- Wilkinson, J.; Hooda, P.S.; Barker, J.; Barton, S.; Swinden, J. Occurrence, fate and transformation of emerging contaminants in water: An overarching review of the field. Environ. Pollut. 2017, 231, 954–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caldas, S.S.; Arias, J.L.O.; Rombaldi, C.; Mello, L.L.; Cerqueira, M.B.R.; Martins, A.F.; Primel, E.G. Occurrence of Pesticides and PPCPs in Surface and Drinking Water in Southern Brazil: Data on 4-Year Monitoring. J. Braz. Chem. Soc. 2019, 30, 71–80. [Google Scholar] [CrossRef]
- Zhou, R.R.; Lu, G.H.; Yan, Z.H.; Jiang, R.R.; Bao, X.H.; Lu, P. A review of the in fluences of microplastics on toxicity and transgenerational effects of pharmaceutical and personal care products in aquatic environment. Sci. Total Environ. 2020, 732, 139222. [Google Scholar] [CrossRef]
- Ben, Y.; Hu, M.; Zhang, X.; Wu, S.; Wong, M.H.; Wang, M.; Andrews, C.B.; Zheng, C. Efficient detection and assessment of human exposure to trace antibiotic residues in drinking water. Water Res. 2020, 175, 115699. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.Q.; Sun, Y.R.; Wang, Y.Y.; Yu, F.; Ma, J. Adsorption behavior of Cu(II) and Cr(VI) on aged microplastics in antibiotics-heavy metals coexisting system. Chemosphere 2022, 291, 132794. [Google Scholar] [CrossRef] [PubMed]
- Yee, M.S.L.; Hii, L.W.; Looi, C.K.; Lim, W.M.; Wong, S.F.; Kok, Y.Y.; Tan, B.K.; Wong, C.Y.; Leong, C.O. Impact of Microplastics and Nanoplastics on Human Health. Nanomaterials 2021, 11, 496. [Google Scholar] [CrossRef] [PubMed]
- Almaiman, L.; Aljomah, A.; Bineid, M.; Aljeldah, F.M.; Aldawsari, F.; Liebmann, B.; Lomako, I.; Sexlinger, K.; Alarfaj, R. The occurrence and dietary intake related to the presence of microplastics in drinking water in Saudi Arabia. Environ. Monit. Assess. 2021, 193, 390. [Google Scholar] [CrossRef] [PubMed]
- Cox, K.D.; Covernton, G.A.; Davies, H.L.; Dower, J.F.; Juanes, F.; Dudas, S.E. Human Consumption of Microplastics. Environ. Sci. Technol. 2019, 53, 7068–7074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, A.F.; Meyer, D.N.; Petriv, A.M.V.; Soto, A.L.; Shields, J.N.; Akemann, C.; Baker, B.B.; Tsou, W.L.; Zhang, Y.L.; Baker, T.R. Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences. Environ. Pollut. 2020, 266, 115090. [Google Scholar] [CrossRef]
- Zuccarello, P.; Ferrante, M.; Cristaldi, A.; Copat, C.; Grasso, A.; Sangregorio, D.; Fiore, M.; Conti, G.O. Exposure to microplastics (<10 μm) associated to plastic bottles mineral water consumption: The first quantitative study. Water Res. 2019, 157, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.F.; Lin, S.Y.; Cao, G.D.; Wu, J.B.; Jin, H.B.; Wang, C.; Wong, M.H.; Yang, Z.; Cai, Z.W. Absorption, distribution, metabolism, excretion and toxicity of microplastics in the human body and health implications. J. Hazard. Mater. 2022, 437, 129361. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.C.; Song, B.; Zhu, Y.; Zeng, G.M.; Zhang, Y.X.; Yang, Y.Y.; Wen, X.F.; Chen, M.; Yi, H. Removal of microplastics via drinking water treatment: Current knowledge and future directions. Chemosphere 2020, 251, 126612. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lin, T.; Chen, W. Occurrence and removal of microplastics in an advanced drinking water treatment plant (ADWTP). Sci. Total Environ. 2020, 700, 134520. [Google Scholar] [CrossRef] [PubMed]
- Dalmau-Soler, J.; Ballesteros-Cano, R.; Boleda, M.R.; Paraira, M.; Ferrer, N.; Lacorte, S. Microplastics from headwaters to tap water: Occurrence and removal in a drinking water treatment plant in Barcelona Metropolitan area (Catalonia, NE Spain). Environ. Sci. Pollut. Res. 2021, 28, 59462–59472. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.J.; Sarkar, S.D.; Das, B.K.; Praharaj, J.K.; Mahajan, D.K.; Purokait, B.; Mohanty, T.R.; Mohanty, D.; Gogoi, P.; Kumar, V.S.; et al. Microplastics removal efficiency of drinking water treatment plant with pulse clarifier. J. Hazard. Mater. 2021, 413, 125347. [Google Scholar] [CrossRef] [PubMed]
- Velasco, A.N.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Contamination and Removal Efficiency of Microplastics and Synthetic Fibres in a Conventional Drinking Water Treatment Plant. Front. Water 2022, 4, 34. [Google Scholar] [CrossRef]
- Pan, Y.S.; Gao, S.H.; Ge, C.; Gao, Q.; Huang, S.J.; Kang, Y.Y.; Luo, G.Y.; Zhang, Z.Q.; Fan, L.; Zhu, Y.M.; et al. Removing microplastics from aquatic environments: A critical review. Environ. Sci. Ecotechnol. 2022, 13, 100222. [Google Scholar] [CrossRef] [PubMed]
- Gambino, I.; Bagordo, F.; Grassi, T.; Panico, A.; De Donno, A. Occurrence of Microplastics in Tap and Bottled Water: Current Knowledge. Int. J. Environ. Res. Public Health 2022, 19, 5283. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, Z.; Sled, J.G.; Kingdom, J.C.; Baschat, A.A.; Helm, P.A.; Jobst, K.J.; Cahill, L.S. Maternal Exposure to Polystyrene Micro- and Nanoplastics Causes Fetal Growth Restriction in Mice. Environ. Sci. Technol. Lett. 2022, 9, 426–430. [Google Scholar] [CrossRef]
- Jiang, B.R.; Kauffman, A.E.; Li, L.; McFee, W.; Cai, B.; Weinstein, J.; Lead, J.R.; Chatterjee, S.; Scott, G.I.; Xiao, S. Health impacts of environmental contamination of micro- and nanoplastics: A review. Environ. Health Prev. Med. 2020, 25, 29. [Google Scholar] [CrossRef] [PubMed]
- Asmundsdottir, A.M.; Gomiero, A.; Oysaed, K.B. Microplastics and Nanoplastics Occurrence and Composition in Drinking Water from Akureyri Urban Area, Iceland. In Proceedings of the 2nd International Conference on Microplastic Pollution in the Mediterranean Sea, Capri, Italy, 15–18 September 2019; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 106–111. [Google Scholar] [CrossRef]
- Katare, Y.; Singh, P.; Sankhla, M.S.; Singhal, M.; Jadhav, E.B.; Parihar, K.; Nikalje, B.T.; Trpathi, A.; Bhardwaj, L. Microplastics in Aquatic Environments: Sources, Ecotoxicity, Detection & Remediation. Biointerface Res. Appl. Chem. 2022, 12, 3407–3428. [Google Scholar] [CrossRef]
- Pulido-Reyes, G.; Magherini, L.; Bianco, C.; Sethi, R.; von Gunten, U.; Kaegi, R.; Mitrano, D.M. Nanoplastics removal during drinking water treatment: Laboratory- and pilot-scale experiments and modeling. J. Hazard. Mater. 2022, 436, 129011. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Manna, C.; Padha, S.; Verma, A.; Sharma, P.; Dhar, A.; Ghosh, A.; Bhattacharya, P. Micro(nano)plastics pollution and human health: How plastics can induce carcinogenesis to humans? Chemosphere 2022, 298, 134267. [Google Scholar] [CrossRef] [PubMed]
- Jemec Kokalj, A.; Heinlaan, M.; Novak, S.; Drobne, D.; Kühnel, D. Assessing study quality to evaluate nanoplastics hazard: The case of polystyrene nanoplastics and aquatic invertebrate Daphnia sp. Nanomaterials 2022, 12, 16. [Google Scholar]
- Valh, J.V.; Stopar, D.; Berodia, I.S.; Erjavec, A.; Sauperl, O.; Zemljic, L.F. Economical Chemical Recycling of Complex PET Waste in the Form of Active Packaging Material. Polymers 2022, 14, 3244. [Google Scholar] [CrossRef] [PubMed]
- Kangal, M.O. Selective Flotation Technique for Separation of PET and HDPE Used in Drinking Water Bottles. Miner. Process. Extr. Metall. Rev. 2010, 31, 214–223. [Google Scholar] [CrossRef]
- Garcia-Fayos, B.; Arnal, J.M.; Monforte-Monleon, L.; Sancho, M. Alternatives to the use of synthetic organic coagulant aids in drinking water treatment: Improvements seed. Desalination Water Treat. 2015, 55, 3635–3645. [Google Scholar] [CrossRef] [Green Version]
- Hofman-Caris, C.H.M.; Bauerlein, P.S.; Siegers, W.G.; Mintenig, S.M.; Messina, R.; Dekker, S.C.; Bertelkamp, C.; Cornelissen, E.R.; van Wezel, A.P. Removal of nanoparticles (both inorganic nanoparticles and nanoplastics) in drinking water treatment—Coagulation/flocculation/sedimentation, and sand/granular activated carbon filtration. Environ. Sci.-Water Res. Technol. 2022, 8, 1675–1686. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Ding, J.; Song, Z.R.; Yang, B.C.; Zhang, C.M.; Guan, B.H. Degradation of nano-sized polystyrene plastics by ozonation or chlorination in drinking water disinfection processes. Chem. Eng. J. 2022, 427, 131690. [Google Scholar] [CrossRef]
- Li, Y.; Li, W.Y.; Jarvis, P.; Zhou, W.; Zhang, J.P.; Chen, J.P.; Tan, Q.W.; Tian, Y. Occurrence, removal and potential threats associated with microplastics in drinking water sources. J. Environ. Chem. Eng. 2020, 8, 104527. [Google Scholar] [CrossRef]
- Lim, V.H.; Yamashita, Y.; Ogawa, K.; Adachi, Y. Comparison of cationic flocculants with different branching structure for the flocculation of negatively charged particles coexisting with humic substances. J. Environ. Chem. Eng. 2022, 10, 108478. [Google Scholar] [CrossRef]
- Arenas, L.R.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Coagulation of TiO2, CeO2 nanoparticles, and polystyrene nanoplastics in bottled mineral and surface waters. Effect of water properties, coagulant type, and dosage. Water Environ. Res. 2020, 92, 1184–1194. [Google Scholar] [CrossRef]
- Ramirez, L.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Behavior of TiO2 and CeO2 Nanoparticles and Polystyrene Nanoplastics in Bottled Mineral, Drinking and Lake Geneva Waters. Impact of Water Hardness and Natural Organic Matter on Nanoparticle Surface Properties and Aggregation. Water 2019, 11, 721. [Google Scholar] [CrossRef] [Green Version]
- Shahi, N.K.; Maeng, M.; Kim, D.; Dockko, S. Removal behavior of microplastics using alum coagulant and its enhancement using polyamine-coated sand. Process Saf. Environ. Prot. 2020, 141, 9–17. [Google Scholar] [CrossRef]
- Li, L.; Liu, D.; Song, K.; Zhou, Y.W. Performance evaluation of MBR in treating microplastics polyvinylchloride contaminated polluted surface water. Mar. Pollut. Bull. 2020, 150, 110724. [Google Scholar] [CrossRef] [PubMed]
- Matei, E.; Predescu, A.M.; Rapa, M.; Tarcea, C.; Pantilimon, C.M.; Favier, L.; Berbecaru, A.C.; Sohaciu, M.; Predescu, C. Removal of Chromium(VI) from Aqueous Solution Using a Novel Green Magnetic Nanoparticle—Chitosan Adsorbent. Anal. Lett. 2019, 52, 2416–2438. [Google Scholar] [CrossRef]
- Râpă, M.; Ţurcanu, A.A.; Matei, E.; Predescu, A.M.; Pantilimon, M.C.; Coman, G.; Predescu, C. Adsorption of copper (II) from aqueous solutions with alginate/clay hybrid materials. Materials 2021, 14, 7187. [Google Scholar] [CrossRef]
- Predescu, A.M.; Matei, E.; Rapa, M.; Pantilimon, C.; Coman, G.; Savin, S.; Popa, E.E.; Predescu, C. Adsorption of Lead(II) from Aqueous Solution Using Chitosan and Polyvinyl Alcohol Blends. Anal. Lett. 2019, 52, 2365–2392. [Google Scholar] [CrossRef]
- Arenas, L.R.; Gentile, S.R.; Zimmermann, S.; Stoll, S. Nanoplastics adsorption and removal efficiency by granular activated carbon used in drinking water treatment process. Sci. Total Environ. 2021, 791, 148175. [Google Scholar] [CrossRef]
- Sajid, M.; Ihsanullah, I.; Khan, M.T.; Baig, N. Nanomaterials-based adsorbents for remediation of microplastics and nanoplastics in aqueous media: A review. Sep. Purif. Technol. 2023, 305, 22453. [Google Scholar] [CrossRef]
- Martin, L.M.A.; Sheng, J.; Zimba, P.V.; Zhu, L.; Fadare, O.O.; Haley, C.; Wang, M.C.; Phillips, T.D.; Conkle, J.; Xu, W. Testing an Iron Oxide Nanoparticle-Based Method for Magnetic Separation of Nanoplastics and Microplastics from Water. Nanomaterials 2022, 12, 2348. [Google Scholar] [CrossRef]
- Matei, E.; Covaliu-Mierla, C.I.; Țurcanu, A.A.; Râpa, M.; Predescu, A.M.; Predescu, C. Multifunctional Membranes—A Versatile Approach for Emerging Pollutants Removal. Membranes 2022, 12, 67. [Google Scholar] [CrossRef]
- Benavides, P.T.; Dunn, J.B.; Han, J.; Biddy, M.; Markharn, J. Exploring Comparative Energy and Environmental Benefits of Virgin, Recycled, and Bio-Derived PET Bottles. ACS Sustain. Chem. Eng. 2018, 6, 9725. [Google Scholar] [CrossRef]
- Lambre, C.; Baviera, J.M.B.; Bolognesi, C.; Chesson, A.; Cocconcelli, P.S.; Crebelli, R.; Gott, D.M.; Grob, K.; Mengelers, M.; Mortensen, A.; et al. Safety assessment of the process Starlinger recoSTAR HDPE FC 1-PET2PET used to recycle post-consumer HDPE closures into food contact closures. Efsa J. 2022, 20, e07001. [Google Scholar] [CrossRef]
- Winkler, A.; Santo, N.; Ortenzi, M.A.; Bolzoni, E.; Bacchetta, R.; Tremolada, P. Does mechanical stress cause microplastic release from plastic water bottles? Water Res. 2019, 166, 115082. [Google Scholar] [CrossRef]
- Cherian, A.G.; Liu, Z.; McKie, M.J.; Almuhtaram, H.; Andrews, R.C. Microplastic Removal from Drinking Water Using Point-of-Use Devices. Polymers 2023, 15, 1331. [Google Scholar] [CrossRef]
- Mukherjee, A.G.; Wanjari, U.R.; Bradu, P.; Patil, M.; Biswas, A.; Murali, R.; Renu, K.; Dey, A.; Vellingiri, B.; Raja, G.; et al. Elimination of microplastics from the aquatic milieu: A dream to achieve. Chemosphere 2022, 303, 135232. [Google Scholar] [CrossRef] [PubMed]
- Barbier, J.-S.; Dris, R.; Lecarpentier, C.; Raymond, V.; Delabre, K.; Thibert, S.; Tassin, B.; Gasperi, J. Microplastic occurrence after conventional and nanofiltration processes at drinking water treatment plants: Preliminary results. Front. Water 2022, 4, 1–14. [Google Scholar] [CrossRef]
- Ding, H.J.; Zhang, J.; He, H.; Zhu, Y.; Dionysiou, D.D.; Liu, Z.; Zhao, C. Do membrane filtration systems in drinking water treatment plants release nano/microplastics? Sci. Total Environ. 2021, 755, 142658. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.X.; Zheng, B.; Li, Z.X.; Cai, C.; Peng, Z.; Zhao, P.; Tian, Y.M. Occurrence and distribution of microplastics in water supply systems: In water and pipe scales. Sci. Total Environ. 2022, 803, 150004. [Google Scholar] [CrossRef]
- Devi, M.K.; Karmegam, N.; Manikandan, S.; Subbaiya, R.; Song, H.; Kwon, E.E.; Sarkar, B.; Bolan, N.; Kim, W.; Rinklebe, J.; et al. Removal of nanoplastics in water treatment processes: A review. Sci. Total Environ. 2022, 845, 157168. [Google Scholar] [CrossRef]
- Uheida, A.; Mejia, H.G.; Abdel-Rehim, M.; Hamd, W.; Dutta, J. Visible light photocatalytic degradation of polypropylene microplastics in a continuous water flow system. J. Hazard. Mater. 2021, 406, 124299. [Google Scholar] [CrossRef] [PubMed]
- Abomohra, A.; Hanelt, D. Recent Advances in Micro-/Nanoplastic (MNPs) Removal by Microalgae and Possible Integrated Routes of Energy Recovery. Microorganisms 2022, 10, 2400. [Google Scholar] [CrossRef]
- Cella, C.; La Spina, R.; Mehn, D.; Fumagalli, F.; Ceccone, G.; Valsesia, A.; Gilliland, D. Detecting Micro- and Nanoplastics Released from Food Packaging: Challenges and Analytical Strategies. Polymers 2022, 14, 1238. [Google Scholar] [CrossRef] [PubMed]
- Ivleva, N.P. Chemical Analysis of Microplastics and Nanoplastics: Challenges, Advanced Methods, and Perspectives. Chem. Rev. 2021, 121, 11886–11936. [Google Scholar] [CrossRef]
- Liu, Q.R.; Chen, Y.L.; Chen, Z.; Yang, F.W.; Xie, Y.F.; Yao, W.R. Current status of microplastics and nanoplastics removal methods: Summary, comparison and prospect. Sci. Total Environ. 2022, 851, 157991. [Google Scholar] [CrossRef]
- Lee, J.; Chae, K.J. A systematic protocol of microplastics analysis from their identification to quantification in water environment: A comprehensive review. J. Hazard. Mater. 2021, 403, 124049. [Google Scholar] [CrossRef] [PubMed]
- Koelmans, A.A.; Nor, N.H.M.; Hermsen, E.; Kooi, M.; Mintenig, S.M.; De France, J. Microplastics in freshwaters and drinking water: Critical review and assessment of data quality. Water Res. 2019, 155, 410–422. [Google Scholar] [CrossRef] [PubMed]
- Mintenig, S.M.; Loder, M.G.J.; Primpke, S.; Gerdts, G. Low numbers of microplastics detected in drinking water from ground water sources. Sci. Total Environ. 2019, 648, 631–635. [Google Scholar] [CrossRef]
- Siegel, H.; Fischer, F.; Lenz, R.; Fischer, D.; Jekel, M.; Labrenz, M. Identification and quantification of microplastic particles in drinking water treatment sludge as an integrative approach to determine microplastic abundance in a freshwater river. Environ. Pollut. 2021, 286, 117524. [Google Scholar] [CrossRef] [PubMed]
- Tong, H.Y.; Jiang, Q.Y.; Hu, X.S.; Zhong, X.C. Occurrence and identification of microplastics in tap water from China. Chemosphere 2020, 252, 126493. [Google Scholar] [CrossRef] [PubMed]
- Bauerlein, P.S.; Hofman-Caris, R.; Pieke, E.N.; Laak, T.L.T. Fate of microplastics in the drinking water production. Water Res. 2022, 221, 118790. [Google Scholar] [CrossRef]
- Taghipour, H.; Ghayebzadeh, M.; Ganji, F.; Mousavi, S.; Azizi, N. Tracking microplastics contamination in drinking water in Zahedan, Iran: From source to consumption taps. Sci. Total Environ. 2023, 872, 162121. [Google Scholar] [CrossRef]
- Kosuth, M.; Mason, S.A.; Wattenberg, E.V. Anthropogenic contamination of tap water, beer, and sea salt. PLoS ONE 2018, 13, e0194970. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, Z.Q.; Guan, B.H. Separation and identification of nanoplastics in tap water. Environ. Res. 2022, 204, 112134. [Google Scholar] [CrossRef]
- Huang, Y.H.; Wong, K.K.; Li, W.; Zhao, H.R.; Wang, T.M.; Stanescu, S.; Boult, S.; van Dongen, B.; Mativenga, P.; Li, L. Characteristics of nano-plastics in bottled drinking water. J. Hazard. Mater. 2022, 424, 127404. [Google Scholar] [CrossRef] [PubMed]
- Winkler, A.; Fumagalli, F.; Cella, C.; Gilliland, D.; Tremolada, P.; Valsesia, A. Detection and formation mechanisms of secondary nanoplastic released from drinking water bottles. Water Res. 2022, 222, 118848. [Google Scholar] [CrossRef] [PubMed]
- Weisser, J.; Beer, I.; Hufnagl, B.; Hofmann, T.; Lohninger, H.; Ivleva, N.P.; Glas, K. From the Well to the Bottle: Identifying Sources of Microplastics in Mineral Water. Water 2021, 13, 841. [Google Scholar] [CrossRef]
- Ossmann, B.E.; Sarau, G.; Holtmannspotter, H.; Pischetsrieder, M.; Christiansen, S.H.; Dicke, W. Small-sized microplastics and pigmented particles in bottled mineral water. Water Res. 2018, 141, 307–316. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Ding, R.R.; Sun, C.Y.; Yao, L.G.; Zhang, W.C. Microparticles and microplastics released from daily use of plastic feeding and water bottles and plastic injectors: Potential risks to infants and children in China. Environ. Sci. Pollut. Res. 2021, 28, 59813–59820. [Google Scholar] [CrossRef] [PubMed]
- Perez-Guevara, F.; Roy, P.D.; Elizalde-Martinez, I.; Kutralam-Muniasamy, G.; Shruti, V.C. Human exposure to microplastics from urban decentralized pay-to-fetch drinking-water refill kiosks. Sci. Total Environ. 2022, 848, 157722. [Google Scholar] [CrossRef] [PubMed]
- Funck, M.; Yildirim, A.; Nickel, C.; Schram, J.; Schmidt, T.C.; Tuerk, J. Identification of microplastics in wastewater after cascade filtration using Pyrolysis-GC-MS. Methodsx 2020, 7, 100778. [Google Scholar] [CrossRef] [PubMed]
- Anuar, S.T.; Altarawnah, R.S.; Ali, A.A.M.; Lee, B.Q.; Khalik, W.; Yusof, K.; Ibrahim, Y.S. Utilizing Pyrolysis-Gas Chromatography/Mass Spectrometry for Monitoring and Analytical Characterization of Microplastics in Polychaete Worms. Polymers 2022, 14, 3054. [Google Scholar] [CrossRef] [PubMed]
- Lin, P.Y.; Wu, I.H.; Tsai, C.Y.; Kirankumar, R.; Hsieh, S.C. Detecting the release of plastic particles in packaged drinking water under simulated light irradiation using surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2022, 1198, 339516. [Google Scholar] [CrossRef]
- Gao, Q.; Wang, Y.Q.; Ji, Y.X.; Zhao, X.Z.; Zhang, P.P.; Chen, L.X. Tracking of realistic nanoplastics in complicated matrices by iridium element labeling and inductively coupled plasma mass spectroscopy. J. Hazard. Mater. 2022, 424, 127628. [Google Scholar] [CrossRef] [PubMed]
- Kundu, A.; Shetti, N.P.; Basu, S.; Reddy, K.R.; Nadagouda, M.N.; Aminabhavi, T.M. Identification and removal of micro- and nano-plastics: Efficient and cost-effective methods. Chem. Eng. J. 2021, 421, 129816. [Google Scholar] [CrossRef]
- Materic, D.; Holzinger, R.; Niemann, H. Nanoplastics and ultrafine microplastic in the Dutch Wadden Sea—The hidden plastics debris? Sci. Total Environ. 2022, 846, 157371. [Google Scholar] [CrossRef]
- Corti, A.; Vinciguerra, V.; Iannilli, V.; Pietrelli, L.; Manariti, A.; Bianchi, S.; Petri, A.; Cifelli, M.; Domenici, V.; Castelvetro, V. Thorough Multianalytical Characterization and Quantification of Micro- and Nanoplastics from Bracciano Lake’s Sediments. Sustainability 2020, 12, 878. [Google Scholar] [CrossRef] [Green Version]
- Chialanza, M.R.; Samarra, S.F.; Parada, A.P. Modeling microplastic with polyethylene (PE) spherical particles: A differential scanning calorimetry approach for quantification. Environ. Sci. Pollut. Res. 2022, 29, 2311–2324. [Google Scholar] [CrossRef]
- Jakubowicz, I.; Enebro, J.; Yarahmadi, N. Challenges in the search for nanoplastics in the environment-A critical review from the polymer science perspective. Polym. Test. 2021, 93, 106953. [Google Scholar] [CrossRef]
- Yuan, Z.H.; Nag, R.; Cummins, E. Human health concerns regarding microplastics in the aquatic environment- From marine to food systems. Sci. Total Environ. 2022, 823, 153730. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Jiang, S.; Luo, J.; Zhang, J.F.; Liu, X.H.; Lee, C.Y.; Zhang, W. Nanowell-enhanced Raman spectroscopy enables the visualization and quantification of nanoplastics in the environment. Environ. Sci.-Nano 2022, 9, 542–553. [Google Scholar] [CrossRef]
- Villacorta, A.; Rubio, L.; Alaraby, M.; Lopez-Mesas, M.; Fuentes-Cebrian, V.; Moriones, O.H.; Marcos, R.; Hernandez, A. A new source of representative secondary PET nanoplastics. Obtention, characterization, and hazard evaluation. J. Hazard. Mater. 2022, 439, 129593. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, Z.; Lei, Y.J.; Tang, Y.H.; Wu, L.W.; Zhang, X.; Naidu, R.; Megharaj, M.; Fang, C. Microplastics generated when opening plastic packaging. Sci. Rep. 2020, 10, 4841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fadare, O.O.; Wan, B.; Guo, L.H.; Zhao, L.X. Microplastics from consumer plastic food containers: Are we consuming it? Chemosphere 2020, 253, 126787. [Google Scholar] [CrossRef]
- Asamoah, B.O.; Roussey, M.; Peiponen, K.E. On optical sensing of surface roughness of flat and curved microplastics in water. Chemosphere 2020, 254, 126789. [Google Scholar] [CrossRef]
- Yang, X.; Man, Y.B.; Wong, M.H.; Owen, R.B.; Chow, K.L. Environmental health impacts of microplastics exposure on structural organization levels in the human body. Sci. Total Environ. 2022, 825, 154025. [Google Scholar] [CrossRef]
- Rahman, A.; Sarkar, A.; Yadav, O.P.; Achari, G.; Slobodnik, J. Potential human health risks due to environmental exposure to nano-and microplastics and knowledge gaps: A scoping review. Sci. Total Environ. 2021, 757, 143872. [Google Scholar] [CrossRef] [PubMed]
- Fiore, M.; Conti, G.O.; Caltabiano, R.; Buffone, A.; Zuccarello, P.; Cormaci, L.; Cannizzaro, M.A.; Ferrante, M. Role of Emerging Environmental Risk Factors in Thyroid Cancer: A Brief Review. Int. J. Environ. Res. Public Health 2019, 16, 1185. [Google Scholar] [CrossRef] [Green Version]
- Tisler, S.; Christensen, J.H. Non-target screening for the identification of migrating compounds from reusable plastic bottles into drinking water. J. Hazard. Mater. 2022, 429, 128331. [Google Scholar] [CrossRef]
- Karbalaei, S.; Hanachi, P.; Walker, T.R.; Cole, M. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 2018, 25, 36046–36063. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ying, G.G.; Su, H.C.; Yang, X.B.; Wang, L. Simultaneous determination and assessment of 4-nonylphenol, bisphenol A and triclosan in tap water, bottled water and baby bottles. Environ. Int. 2010, 36, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.; Shim, W.J.; Han, G.M.; Jang, M.; Al-Odaini, N.A.; Song, Y.K.; Hong, S.H. Qualitative Analysis of Additives in Plastic Marine Debris and Its New Products. Arch. Environ. Contam. Toxicol. 2015, 69, 352–366. [Google Scholar] [CrossRef]
- Cooper, J.E.; Kendig, E.L.; Belcher, S.M. Assessment of bisphenol A released from reusable plastic, aluminium and stainless steel water bottles. Chemosphere 2011, 85, 943–947. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ginter-Kramarczyk, D.; Zembrzuska, J.; Kruszelnicka, I.; Zajac-Woznialis, A.; Cislak, M. Influence of Temperature on the Quantity of Bisphenol A in Bottled Drinking Water. Int. J. Environ. Res. Public Health 2022, 19, 5710. [Google Scholar] [CrossRef]
- Galloway, T.S. Micro-and Nano-plastics and Human Health. Mar. Anthropog. Litter 2015, 13, 343–366. [Google Scholar] [CrossRef] [Green Version]
- Guart, A.; Wagner, M.; Mezquida, A.; Lacorte, S.; Oehlmann, J.; Borrell, A. Migration of plasticisers from Tritan (TM) and polycarbonate bottles and toxicological evaluation. Food Chem. 2013, 141, 373–380. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.K.; Godara, S. Use of polycarbonate plastic products and human health. Int. J. Basic Clin. Pharm. 2017, 2, 12–17. [Google Scholar] [CrossRef] [Green Version]
- Le, H.H.; Carlson, E.M.; Chua, J.P.; Belcher, S.M. Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol. Lett. 2008, 176, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriyama, K.; Tagami, T.; Akamizu, T.; Usui, T.; Saijo, M.; Kanamoto, N.; Hataya, Y.; Shimatsu, A.; Kuzuya, H.; Nakao, K. Thyroid hormone action is disrupted by bisphenol A as an antagonist. J. Clin. Endocrinol. Metab. 2002, 87, 5185–5190. [Google Scholar] [CrossRef]
- Cipelli, R.; Harries, L.; Okuda, K.; Yoshihara, S.; Melzer, D.; Galloway, T. Bisphenol A modulates the metabolic regulator oestrogen-related receptor-alpha in T-cells. Reproduction 2014, 147, 419–426. [Google Scholar] [CrossRef] [Green Version]
- Melzer, D.; Osborne, N.J.; Henley, W.E.; Cipelli, R.; Young, A.; Money, C.; McCormack, P.; Luben, R.; Khaw, K.T.; Wareham, N.J.; et al. Urinary Bisphenol A Concentration and Risk of Future Coronary Artery Disease in Apparently Healthy Men and Women. Circulation 2012, 125, 1482–1490. [Google Scholar] [CrossRef] [Green Version]
- Budhiraja, V.; Urh, A.; Horvat, P.; Krzan, A. Synergistic Adsorption of Organic Pollutants on Weathered Polyethylene Microplastics. Polymers 2022, 14, 2674. [Google Scholar] [CrossRef]
- Chailurkit, L.O.; Srijaruskul, K.; Ongphiphadhanakul, B. Bisphenol A in Canned Carbonated Drinks and Plastic-Bottled Water from Supermarkets. Expo. Health 2017, 9, 243–248. [Google Scholar] [CrossRef]
- Gomez, C.; Gallart-Ayala, H. Metabolomics: A tool to characterize the effect of phthalates and bisphenol A. Environ. Rev. 2018, 26, 351–357. [Google Scholar] [CrossRef]
- Li, H.; Li, C.M.; An, L.H.; Deng, C.; Su, H.; Wang, L.F.; Jiang, Z.J.; Zhou, J.; Wang, J.; Zhang, C.H.; et al. Phthalate esters in bottled drinking water and their human exposure in Beijing, China. Food Addit. Contam. Part B-Surveill. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Cheng, Z.; Nie, X.P.; Wang, H.S.; Wong, M.H. Risk assessments of human exposure to bioaccessible phthalate esters through market fish consumption. Environ. Int. 2013, 57–58, 75–80. [Google Scholar] [CrossRef]
- Mihucz, V.G.; Zaray, G. Occurrence of antimony and phthalate esters in polyethylene terephthalate bottled drinking water. Appl. Spectrosc. Rev. 2016, 51, 163–189. [Google Scholar] [CrossRef]
- Brennecke, D.; Ferreira, E.C.; Costa, T.M.M.; Appel, D.; da Gama, B.A.P.; Lenz, M. Ingested microplastics (>100 μm) are translocated to organs of the tropical fiddler crab Uca rapax. Mar. Pollut. Bull. 2015, 96, 491–495. [Google Scholar] [CrossRef]
- Tavelli, R.; Callens, M.; Grootaert, C.; Abdallah, M.F.; Rajkovic, A. Foodborne pathogens in the plastisphere: Can microplastics in the food chain threaten microbial food safety? Trends Food Sci. Technol. 2022, 129, 1–10. [Google Scholar] [CrossRef]
- Mortensen, N.P.; Johnson, L.M.; Grieger, K.D.; Ambroso, J.L.; Fennell, T.R. Biological interactions between nanomaterials and placental development and function following oral exposure. Reprod. Toxicol. 2019, 90, 150–165. [Google Scholar] [CrossRef]
- Canesi, L.; Ciacci, C.; Bergami, E.; Monopoli, M.P.; Dawson, K.A.; Papa, S.; Canonico, B.; Corsi, I. Evidence for immunomodulation and apoptotic processes induced by cationic polystyrene nanoparticles in the hemocytes of the marine bivalve Mytilus. Mar. Environ. Res. 2015, 111, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Wright, S.L.; Kelly, F.J. Plastic and Human Health: A Micro Issue? Environ. Sci. Technol. 2017, 51, 6634–6647. [Google Scholar] [CrossRef]
- Campanale, C.; Massarelli, C.; Savino, I.; Locaputo, V.; Uricchio, V.F. A Detailed Review Study on Potential Effects of Microplastics and Additives of Concern on Human Health. Int. J. Environ. Res. Public Health 2020, 17, 1212. [Google Scholar] [CrossRef] [Green Version]
- Prata, J.C.; da Costa, J.P.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Environmental exposure to microplastics: An overview on possible human health effects. Sci. Total Environ. 2020, 702, 134455. [Google Scholar] [CrossRef]
- Ji, Y.; Wang, C.; Wang, Y.; Fu, L.; Man, M.; Chen, L. Realistic polyethylene terephthalate nanoplastics and the size- and surface coating-dependent toxicological impacts on zebrafish embryos. Environ. Sci.-Nano 2020, 7, 2313–2324. [Google Scholar] [CrossRef]
- Monnery, B.D.; Wright, M.; Cavill, R.; Hoogenboom, R.; Shaunak, S.; Steinke, J.H.G.; Thanou, M. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int. J. Pharm. 2017, 521, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, T.; Kovochich, M.; Liong, M.; Zink, J.I.; Nel, A.E. Cationic polystyrene nanosphere toxicity depends on cell-specific endocytic and mitochondrial injury pathways. ACS Nano 2008, 2, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.; Hwang, J.; Bang, J.; Han, S.; Kim, T.; Oh, Y.; Hwang, Y.; Choi, J.; Hong, J. In vitro toxicity from a physical perspective of polyethylene microplastics based on statistical curvature change analysis. Sci. Total Environ. 2021, 752, 142242. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.; Veronesi, M.; Sanchez-Moreno, P.; Tolardo, V.; Bandiera, T.; Pompa, P.P.; Athanassiou, A.; Fragouli, D. PET nanoplastics interactions with water contaminants and their impact on human cells. Environ. Pollut. 2021, 271, 116262. [Google Scholar] [CrossRef]
- Magri, D.; Sanchez-Moreno, P.; Caputo, G.; Gatto, F.; Veronesi, M.; Bardi, G.; Catelani, T.; Guarnieri, D.; Athanassiou, A.; Pompa, P.P.; et al. Laser Ablation as a Versatile Tool to Mimic Polyethylene Terephthalate Nanoplastic Pollutants: Characterization and Toxicology Assessment. ACS Nano 2018, 12, 7690–7700. [Google Scholar] [CrossRef]
- Banerjee, A.; Billey, L.O.; McGarvey, A.M.; Shelver, W.L. Effects of polystyrene micro/nanoplastics on liver cells based on particle size, surface functionalization, concentration and exposure period. Sci. Total Environ. 2022, 836, 155621. [Google Scholar] [CrossRef]
- Park, I.; Yang, W.S.; Lim, D.K. Current Status of Organic Matters in Bottled Drinking Water in Korea. ACS EST Water 2022, 2, 738–748. [Google Scholar] [CrossRef]
- Smith, M.; Love, D.C.; Rochman, C.M.; Neff, R.A. Microplastics in Seafood and the Implications for Human Health. Curr. Environ. Health Rep. 2018, 5, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Pentelovitch, N.; Nagel, J.K. Understanding the Use of Bio-Inspired Design Tools by Industry Professionals. Biomimetics 2022, 7, 63. [Google Scholar] [CrossRef] [PubMed]
- Schmaltz, E.; Melvin, E.C.; Diana, Z.; Gunady, E.F.; Rittschof, D.; Somarelli, J.A.; Virdin, J.; Dunphy-Daly, M.M. Plastic pollution solutions: Emerging technologies to prevent and collect marine plastic pollution. Environ. Int. 2020, 144, 106067. [Google Scholar] [CrossRef] [PubMed]
- Kiran, B.R.; Kopperi, H.; Mohan, S.V. Micro/nano-plastics occurrence, identification, risk analysis and mitigation: Challenges and perspectives. Rev. Environ. Sci. Bio-Technol. 2022, 21, 169–203. [Google Scholar] [CrossRef]
Source | Method | Characteristics of MPs/NPs | Polymer Type | Ref. |
---|---|---|---|---|
Three DWTPs | FTIR and Raman | Concentrations of 443 ± 10, 338 ± 76 and 628 ± 28 particles/L | PET, PP, PE | [16] |
1200 L to 2500 L water from DWTPs (sampled in 2014 in Germany) | µ-FTIR microscopy coupled to a FPA detector | Four blank samples contained 45 ± 22 fibers, 18% were black and 78% were transparent; DWTPs show 0.7 fibers/m3, with sizes ranging from 50 to 150 μm | Control: PP, SAN DWTPs: PE, PA, PES, PVC or epoxy resin | [115] |
DWTP, Germany | µ-Raman | MPs size varying from 50 to 5000 μm; Shape of MPs: 83.3 % fragments and 16.7% fibers | 37.8% PE, 31% PP and 24.4% PS were the most commonly found plastic in the analyzed samples | [116] |
38 samples were collected from different tap waters from China | µ-Raman | Concentration of MPs was varying from 0 to 1 247 particles/L Distribution of MPs according to different size classes was: 31.25 to 100% for 1–50 µm; 1.47 to 31.25% for 50–100 µm; 1.72 to 31.25% for 100–300 µm; 1.18 to 7.69% for 300–500 µm; 1.72 to 11.76% for 500–5000 µm | 26.8% PE, 24.4% PP, 22% compounds of PE and PP, 7.3% polyphenylene sulfite (PPS), 6.5% PS, 3.3% PET, and 9.8% other | [117] |
DWTPs | LDIR, optical microscopy | MPs decreased after pre-treatment (80–99%); Size of MPs ranging from 20 to 500 µm; concentration of 2 MPs/L | PA, PET, PE, rubbers, chlorinated PE | [118] |
Two DWTPs and ten tap water samples (from Iran) | Density separation techniques, digestion, observation, µ-Raman and FTIR, and SEM |
An average of 22–51.8 MPs/m3 for DWTPs; A high concentration of particles in tap water (85–390 MPs/m3) compared to those found in DWTPs | PS | [119] |
Two tap water samples (collected from Saudi Arabia) | µ-FTIR | First sample: 1.8 MPs/L Second sample: <LOQ | PE | [62] |
159 samples of tap water collected between January and April of 2017, from 14 countries | FTIR | Concentration ranging from 0 to 61 MPs/L, with an overall mean of 5.45 MPs/L; 98.3% MPs were identified as fibers, and the remaining particles were identified as fragments or films | Not mentioned | [120] |
Tap water sample (from China) | FTIR, AFM-IR and Pyr-GC/MS | The most frequently occurring particles had a size ranging from 58 to 255 nm, and a concentration between 1.67–2.08 µg/L | PE, PP, PS, PVC, PA | [121] |
Two brands of bottled water in PET bottles | TD-GC/MS combined with TFU; super-resolution optical nanoscopy with microsphere lens; DLS | Size ranging between 66–605 nm | Degradation products of PET: phthalate derivatives and ethyl p-ethoxybenzoate | [122] |
Mineral water bottles (0.5 L) consisted of transparent PET, with cap made of white HDPE | SPES and µ-Raman | Size distribution: fewer than 10% of particles have a dimension of 0.38 ± 0.03 µm, and fewer than 9% of particles have a dimension of 1.04 ± 0.14 µm | HDPE, PET | [123] |
Four mineral water bottles | FTIR | Concentrations ranging from <1 MP/L to 317 ± 257 MPs/L, with particle sizes ≥ 11 µm | PE, PP, PS, polyester, PVC, EvOH, and PA | [124] |
32 samples were collected from 21 different brands of mineral waters (from Bavarian location) | µ-Raman | Single use PET bottles: 2649 ± 2857 MPs/L Reusable PET bottles: 4889 ± 5432 MPs/L Glass bottles: 6292 ± 10,521 MPs/L Single and reusable PET: 95% of the plastic particles < 5 µm and 50% < 1.5 µm Glass bottle: ~15% of plastic particles were between 5 µm and 10 µm, and ~7% > 10 µm | PET for PET water bottle; PE (46%), PP (23%) and a styrene-butadiene-copolymer (14%) for glass water bottle | [125] |
Ten mineral waters, either still or sparkling, in PET plastic bottles (from Catania, Italy) | SEM, density, statistical analysis | MPs with a mean diameter of 2.44 µm ± 0.66 µm were detected on PET surface | Not mentioned | [65] |
Drinking water stored in PC and PP bottles (from China) | LDIR chemical imaging system, TEM | 53 to 393 particles/mL during 100 opening/closing cycles | PC, PP | [126] |
63 drinking water samples collected from decentralized refill kiosks in the Mexico City | ATR-FTIR | 11 to 860 MPs/L from which: 65% were fibers, 28% fragments, and 7% films | PET, PA, vinyl polymers, polyacetals, cellophane | [127] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Râpă, M.; Darie-Niță, R.N.; Matei, E.; Predescu, A.-M.; Berbecaru, A.-C.; Predescu, C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers 2023, 15, 2425. https://doi.org/10.3390/polym15112425
Râpă M, Darie-Niță RN, Matei E, Predescu A-M, Berbecaru A-C, Predescu C. Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers. 2023; 15(11):2425. https://doi.org/10.3390/polym15112425
Chicago/Turabian StyleRâpă, Maria, Raluca Nicoleta Darie-Niță, Ecaterina Matei, Andra-Mihaela Predescu, Andrei-Constantin Berbecaru, and Cristian Predescu. 2023. "Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health" Polymers 15, no. 11: 2425. https://doi.org/10.3390/polym15112425
APA StyleRâpă, M., Darie-Niță, R. N., Matei, E., Predescu, A. -M., Berbecaru, A. -C., & Predescu, C. (2023). Insights into Anthropogenic Micro- and Nanoplastic Accumulation in Drinking Water Sources and Their Potential Effects on Human Health. Polymers, 15(11), 2425. https://doi.org/10.3390/polym15112425