Solid-State Electrolyte for Lithium-Air Batteries: A Review
Abstract
:1. Introduction
- The volatile and leaky problems seriously affect the stability of the battery system.
- Lithium dendrite growth may puncture the electrolyte diaphragm leading to cell short circuit.
- The reaction path may be changed by the byproducts induced from electrolyte decomposition.
- Water, oxygen, and other components in the ambient air inevitably pass through the electrolyte diaphragm and react with the lithium in the anode causing corrosion of the lithium, deteriorate battery performance.
- A solid-state electrolyte has sufficient mechanical strength and superior electrochemical stability to be compatible with the high energy density lithium metal anode and high potential cathode contacts to achieve safety and high energy density.
- Solid and gel electrolytes are simple to prepare and easy to shape and manufacture in large quantities, reducing the difficulty of designing battery management systems.
- Due to the absence of liquid media, the recovery process is less difficult and further reduces costs.
- Solid electrolytes have higher thermal stability and safety than liquid electrolytes. Encapsulated cool systems are not necessary, reducing the cost of accessories.
- SSEs have low ionic conductivity, especially at low temperatures.
- High interface impedance of electrode–electrolyte solid interface.
- Poor electrochemical compatibility with lithium metal cathodes.
- The weak physical stability of the electrode, resulting in large interfacial stress changes.
2. Solid-State Electrolytes
2.1. Inorganic SSEs
2.1.1. Garnet Based SSEs
2.1.2. Perovskite Based SSEs
2.1.3. Zeolite Based SSEs
2.1.4. NASICON SSEs
2.2. Polymeric Solid Electrolytes
- Improving safety due to its non-flammability and stability due to its high temperature resistance.
- Increasing energy density due to its excellent stability to lithium metal anodes.
- Removal of the polymer separator improves design flexibility and reduces manufacturing costs, among other advantages.
2.2.1. Polyethylene Oxide (PEO)
2.2.2. Polymethyl Methacrylate (PMMA)
2.2.3. Polyacrylonitrile (PAN)
2.2.4. Polyvinylidene Fluoride (PVDF)
2.2.5. Polyvinylidene Fluoride-Hexafluoropropylene (PVDF-HFP)
2.3. Organic-Inorganic Composite Solid Electrolytes
3. Prospect
3.1. Sintering Additives Adding
3.2. Cold Sintering Process
3.3. Interface Modification
3.4. Block Copolymer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sheng, O.; Jin, C.; Ding, X.; Liu, T.; Wan, Y.; Liu, Y.; Nai, J.; Wang, Y.; Liu, C.; Tao, X. A decade of progress on solid-state electrolytes for secondary batteries: Advances and contributions. Adv. Funct. Mater. 2021, 31, 2100891. [Google Scholar] [CrossRef]
- Coetzer, J. A new high energy density battery system. J. Power Sources 1986, 18, 377–380. [Google Scholar] [CrossRef]
- Capasso, C.; Veneri, O. Experimental analysis of a zebra battery based propulsion system for urban bus under dynamic conditions. Energy Procedia 2014, 61, 1138–1141. [Google Scholar] [CrossRef]
- Yao, Y.-F.Y.; Kummer, J.T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453–2466. [Google Scholar]
- Arya, A.; Sharma, A.L. Polymer electrolytes for lithium ion batteries: A critical study. Ionics 2017, 23, 497–540. [Google Scholar] [CrossRef]
- LaCoste, J.D.; Zakutayev, A.; Fei, L. A review on lithium phosphorus oxynitride. J. Phys. Chem. 2021, 125, 3651–3667. [Google Scholar] [CrossRef]
- Sun, Y.; Guan, P.; Liu, Y.; Xu, H.; Li, S.; Chu, D. Recent progress in lithium lanthanum titanate electrolyte towards all solid-state lithium ion secondary battery. Crit. Rev. Solid State Mater. Sci. 2018, 44, 265–282. [Google Scholar] [CrossRef]
- Hou, M.; Liang, F.; Chen, K.; Dai, Y.; Xue, D. Challenges and perspectives of nasicon-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 2020, 31, 132003. [Google Scholar] [CrossRef]
- Jia, M.; Zhao, N.; Huo, H.; Guo, X. Comprehensive investigation into garnet electrolytes toward application-oriented solid lithium batteries. Electrochem. Energy Rev. 2020, 3, 656–689. [Google Scholar] [CrossRef]
- Chen, S.; Xie, D.; Liu, G.; Mwizerwa, J.P.; Zhang, Q.; Zhao, Y.; Xu, X.; Yao, X. Sulfide solid electrolytes for all-solid-state lithium batteries: Structure, conductivity, stability and application. Energy Storage Mater. 2018, 14, 58–74. [Google Scholar] [CrossRef]
- Yang, C.-S.; Gao, K.-N.; Zhang, X.-P.; Sun, Z.; Zhang, T. Rechargeable solid-state li-air batteries: A status report. Rare Met. 2018, 37, 459–472. [Google Scholar] [CrossRef]
- Wang, H.; Cao, X.; Liu, W.; Sun, X. Research progress of the solid state lithium-sulfur batteries. Front. Energy Res. 2019, 7, 00112. [Google Scholar] [CrossRef]
- Takemoto, K.; Yamada, H. Development of rechargeable lithium–bromine batteries with lithium ion conducting solid electrolyte. J. Power Sources 2015, 281, 334–3401. [Google Scholar] [CrossRef]
- Li, X.; Wang, H.; Chen, Z.; Xu, H.S.; Yu, W.; Liu, C.; Wang, X.; Zhang, K.; Xie, K.; Loh, K.P. Covalent-organic-framework-based Li–CO2 batteries. Adv. Mater. 2019, 31, e1905879. [Google Scholar] [CrossRef]
- Qiu, G.; Shi, Y.; Huang, B. A highly ionic conductive succinonitrile-based composite solid electrolyte for lithium metal batteries. Nano Res. 2022, 15, 5153–5160. [Google Scholar] [CrossRef]
- Lu, L.; Sun, C.; Hao, J.; Wang, Z.; Mayer, S.F.; Fernández-Díaz, M.T.; Alonso, J.A.; Zou, B. A high-performance solid-state Na–CO2 battery with poly(vinylidene fluoride-co-hexafluoropropylene)−Na3.2Zr1.9Mg0.1Si2PO12 electrolyte. Energy Environ. Mater. 2022, 1–9. [Google Scholar] [CrossRef]
- Qi, G.; Zhang, J.; Chen, L.; Wang, B.; Cheng, J. Binder-free MoN nanofibers catalysts for flexible 2-electron oxalate-based Li-CO2 batteries with high energy efficiency. Adv. Funct. Mater. 2022, 32, 2112501. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, H.; Song, L.; Kong, Y.; Jiang, C.; Xue, H.; Li, P.; Huang, X.; He, J.; Wang, T. A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li-CO2 batteries. Mater. Today Energy 2022, 25, 100967. [Google Scholar] [CrossRef]
- Zhao, F.; Alahakoon, S.H.; Adair, K.; Zhang, S.; Xia, W.; Li, W.; Yu, C.; Feng, R.; Hu, Y.; Liang, J.; et al. An air-stable and Li-metal-compatible glass-ceramic electrolyte enabling high-performance all-solid-state Li metal batteries. Adv. Mater. 2021, 33, e2006577. [Google Scholar] [CrossRef]
- Guo, Z.; Li, C.; Liu, J.; Wang, Y.; Xia, Y. A long-life lithium-air battery in ambient air with a polymer electrolyte containing a redox mediator. Angew. Chem. Int. Ed. Engl. 2017, 56, 7505–7509. [Google Scholar] [CrossRef]
- Lei, X.; Liu, X.; Ma, W.; Cao, Z.; Wang, Y.; Ding, Y. Flexible lithium–air battery in ambient air with an in situ formed gel electrolyte. Angew. Chem. Int. Ed. Engl. 2018, 57, 16131–16135. [Google Scholar] [CrossRef]
- Mushtaq, M.; Guo, X.-W.; Bi, J.-P.; Wang, Z.-X.; Yu, H.-J. Polymer electrolyte with composite cathode for solid-state Li-CO2 battery. Rare Met. 2018, 37, 520–526. [Google Scholar] [CrossRef]
- Hu, X.; Li, Z.; Chen, J. Flexible Li-CO2 batteries with liquid-free electrolyte. Angew. Chem. Int. Ed. Engl. 2017, 56, 5785–5789. [Google Scholar] [CrossRef] [PubMed]
- Ahmadiparidari, A.; Warburton, R.E.; Majidi, L.; Asadi, M.; Chamaani, A.; Jokisaari, J.R.; Rastegar, S.; Hemmat, Z.; Sayahpour, B.; Assary, R.S.; et al. A long-cycle-life lithium–CO2 battery with carbon neutrality. Adv. Mater. 2019, 31, e1902518. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Yang, L.; Liu, Y.; Xing, Y.; Zhang, S.; Xu, H. A flexible Li–air battery workable under harsh conditions based on an integrated structure: A composite lithium anode encased in a gel electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 18627–18637. [Google Scholar] [CrossRef]
- Ahn, S.M.; Suk, J.; Kim, D.Y.; Kang, Y.; Kim, H.K.; Kim, D.W. High-performance lithium-oxygen battery electrolyte derived from optimum combination of solvent and lithium salt. Adv. Sci. 2017, 4, 1700235. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, N.; Li, Y.; Guo, X.; Feng, X.; Liu, X.; Liu, Z.; Cui, G.; Zheng, H.; Gu, L.; et al. A rechargeable Li-air fuel cell battery based on garnet solid electrolytes. Sci. Rep. 2017, 7, 41217. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Sun, J.; Jin, C.; Wang, Z.; Xiao, R.; Peng, L.; Shen, L.; Li, C.; Yang, R. A flexible composite electrolyte membrane with ultrahigh LLZTO garnet content for quasi solid state Li-air batteries. Solid State Ion. 2020, 351, 115340. [Google Scholar] [CrossRef]
- Jang, G.-J.; Rajagopal, R.; Hwang, G.-E.; Jung, Y.-J.; Ryu, K.-S. Synthesis of glass–ceramic Li7-2xZnxP2S8–xOxI oxysulfide solid electrolyte with high chemical stability for all-solid-state lithium batteries. J. Ind. Eng. Chem. 2023, 121, 434–444. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Choudhury, S.; Stalin, S.; Deng, Y.; Archer, L.A. Soft colloidal glasses as solid-state electrolytes. Chem. Mater. 2018, 30, 5996–6004. [Google Scholar] [CrossRef]
- Wu, Y.; Li, Y.; Wang, Y.; Liu, Q.; Chen, Q.; Chen, M. Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 2022, 64, 62–84. [Google Scholar] [CrossRef]
- Wang, H.-F.; Wang, X.-X.; Li, F.; Xu, J.-J. Fundamental understanding and construction of solid-state Li-air batteries. Small Sci. 2022, 2, 2200005. [Google Scholar] [CrossRef]
- Vadhva, P.; Gill, T.E.; Cruddos, J.H.; Said, S.; Siniscalchi, M.; Narayanan, S.; Pasta, M.; Miller, T.S.; Rettie, A.J.E. Engineering solution-processed non-crystalline solid electrolytes for Li metal batteries. Chem. Mater. 2023, 35, 1168–1176. [Google Scholar] [CrossRef] [PubMed]
- Raj, H.; Fabre, T.; Lachal, M.; Neveu, A.; Jean, J.; Steil, M.C.; Bouchet, R.; Pralong, V. Stabilizing the NASICON solid electrolyte in an inert atmosphere as a function of physical properties and sintering conditions for solid state battery fabrication. ACS Appl. Energy Mater. 2023, 6, 1197–1207. [Google Scholar] [CrossRef]
- Na, D.; Jeong, H.; Baek, J.; Yu, H.; Lee, S.-M.; Lee, C.-R.; Seo, H.-K.; Kim, J.-K.; Seo, I. Highly safe and stable Li–CO2 batteries using conducting ceramic solid electrolyte and MWCNT composite cathode. Electrochim. Acta 2022, 419, 140408. [Google Scholar] [CrossRef]
- Brugge, R.H.; Chater, R.J.; Kilner, J.A.; Aguadero, A. Experimental determination of Li diffusivity in LLZO using isotopic exchange and FIB-SIMS. J. Phys. Energy 2021, 3, 034001. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, X.; Li, X.; Zhao, J.; Liu, G.; Yu, W.; Dong, X.; Wang, J. Review on composite solid electrolytes for solid-state lithium-ion batteries. Mater. Today Sustain. 2023, 21, 100316. [Google Scholar] [CrossRef]
- Zhao, R.; Wu, Y.; Liang, Z.; Gao, L.; Xia, W.; Zhao, Y.; Zou, R. Metal-organic frameworks for solid-state electrolytes. Energy Environ. Sci. 2020, 13, 2386–2403. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Gao, C.; Gong, S.; Chen, J.; Chen, H.; Zhang, H. Li2ZrO3 based Li-ion conductors doped with halide ions & sintered in oxygen-deficient atmosphere. Ceram. Int. 2021, 47, 31907–31914. [Google Scholar]
- Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K.R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; et al. Li10Ge(P1−xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability. Chem. Mater. 2020, 32, 2664–2672. [Google Scholar] [CrossRef]
- Ye, L.; Gil-González, E.; Li, X. Li9.54Si1.74(P1−xSbx)1.44S11.7Cl0.3: A functionally stable sulfide solid electrolyte in air for solid-state batteries. Electrochem. Commun. 2021, 128, 107058. [Google Scholar] [CrossRef]
- Wu, J.; Liu, S.; Han, F.; Yao, X.; Wang, C. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, e2000751. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, Z.; Cheng, J.; Chen, H.; Huang, X.; Tian, B. Halide/sulfide composite solid-state electrolyte for Li-anode based all-solid-state batteries. Chin. Chem. Lett. 2023, 19, 108228. [Google Scholar] [CrossRef]
- Kravchyk, K.V.; Okur, F.; Kovalenko, M.V. Break-even analysis of all-solid-state batteries with Li-garnet solid electrolytes. ACS Energy Lett. 2021, 6, 2202–2207. [Google Scholar] [CrossRef]
- Xu, A.; Wang, R.; Yao, M.; Cao, J.; Li, M.; Yang, C.; Liu, F.; Ma, J. Electrochemical properties of an Sn-doped LATP ceramic electrolyte and its derived sandwich-structured composite solid electrolyte. Nanomaterials 2022, 12, 2082. [Google Scholar] [CrossRef]
- Hamao, N.; Hamamoto, K. Fabrication of single-grain-layered garnet-type electrolyte sheets by a precursor method. J. Asian Ceram. Soc. 2022, 10, 1–8. [Google Scholar] [CrossRef]
- Lu, J.; Li, Y. Perovskite-type Li-ion solid electrolytes: A review. J. Mater. Sci. Mater. Electron. 2021, 32, 9736–9754. [Google Scholar] [CrossRef]
- Le, H.T.T.; Ngo, D.T.; Didwal, P.N.; Fisher, J.G.; Park, C.-N.; Kim, I.-D.; Park, C.-J. Highly efficient and stable solid-state Li–O2 batteries using a perovskite solid electrolyte. J. Mater. Chem. A 2019, 7, 3150–3160. [Google Scholar] [CrossRef]
- Hashishin, T.; Shimomura, H.; Kamiyama, R.; Matsuda, M. Analcime with high sodium ion conduction as a solid electrolyte. J. Phys. Chem. C 2022, 126, 19480–19486. [Google Scholar] [CrossRef]
- Liu, F.; Cui, Y. Zeolite-based electrolyte accelerating the realization of solid-state Li-air battery. Chem. Res. Chin. Univ. 2021, 37, 801–802. [Google Scholar] [CrossRef]
- Chi, X.; Li, M.; Di, J.; Bai, P.; Song, L.; Wang, X.; Li, F.; Liang, S.; Xu, J.; Yu, J. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 2021, 592, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Kishore, B.; Walker, M.; Dancer, C.E.J.; Kendrick, E. Nanozeolite ZSM-5 electrolyte additive for long life sodium-ion batteries. Chem. Commun. 2020, 56, 11609–11612. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, H. Composite solid electrolytes with NASICON-type LATP and PVDF−HFP for solid-state lithium batteries. Ind. Eng. Chem. Res. 2021, 60, 1494–1500. [Google Scholar] [CrossRef]
- Cao, W.; Yang, Y.; Deng, J.; Li, Y.; Cui, C.; Zhang, T. Localization of electrons within interlayer stabilizes NASICON-type solid-state electrolyte. Mater. Today Energy 2021, 22, 100875. [Google Scholar] [CrossRef]
- Zhang, Z.; Chen, S.; Yang, J.; Liu, G.; Yao, X.; Cui, P.; Xu, X. Stable cycling of all-solid-state lithium battery with surface amorphized Li1.5Al0.5Ge1.5(PO4)3 electrolyte and lithium anode. Electrochim. Acta 2019, 297, 281–287. [Google Scholar] [CrossRef]
- Liu, Y.; Li, B.; Kitaura, H.; Zhang, X.; Han, M.; He, P.; Zhou, H. Fabrication and performance of all-solid-state Li−air battery with SWCNTs/LAGP cathode. ACS Appl. Mater. Interfaces 2015, 7, 17307–17310. [Google Scholar] [CrossRef]
- Safanama, D.; Adams, S. High efficiency aqueous and hybrid lithium-air batteries enabled by Li1.5Al0.5Ge1.5(PO4)3 ceramic anode-protecting membranes. J. Power Sources 2017, 340, 294–301. [Google Scholar] [CrossRef]
- Yu, J.; Liu, Q.; Hu, X.; Wang, S.; Wu, J.; Liang, B.; Han, C.; Kang, F.; Li, B. Smart construction of multifunctional Li1.5Al0.5Ge1.5(PO4)3|Li intermediate interfaces for solid-state batteries. Energy Storage Mater. 2022, 46, 68–75. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Liu, J.; Song, H.; Liu, Y.; Wang, P.; He, P.; Xu, J.; Zhou, H. Ultra-fine surface solid-state electrolytes for long cycle life all-solid-state lithium–air batteries. J. Mater. Chem. A 2018, 6, 21248–21254. [Google Scholar] [CrossRef]
- Lee, T.K.; Andersson, R.; Dzulkurnain, N.A.; Hernández, G.; Mindemark, J.; Brandell, D. Polyester-ZrO2 nanocomposite electrolytes with high Li transference numbers for ambient temperature all-solid state lithium batteries. Batter. Supercaps 2020, 4, 653–662. [Google Scholar] [CrossRef]
- Panneerselvam, T.; Rajamani, A.; Janani, N.; Murugan, R.; Sivaprakasam, S. Electrospun composite polymer electrolyte for high-performance quasi solid-state lithium metal batteries. Ionics 2023, 29, 1395–1406. [Google Scholar] [CrossRef]
- Tran, H.K.; Wu, Y.-S.; Chien, W.-C.; Wu, S.-h.; Jose, R.; Lue, S.J.; Yang, C.-C. Composite polymer electrolytes based on PVA/PAN for all-solid-state lithium metal batteries operated at room temperature. ACS Appl. Energy Mater. 2020, 3, 11024–11035. [Google Scholar] [CrossRef]
- Ren, Z.; Li, J.; Gong, Y.; Shi, C.; Liang, J.; Li, Y.; He, C.; Zhang, Q.; Ren, X. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Mater. 2022, 51, 130–138. [Google Scholar] [CrossRef]
- Isikli, S.; Ryan, K.M. Recent advances in solid-state polymer electrolytes and innovative ionic liquids based polymer electrolyte systems. Curr. Opin. Electrochem. 2020, 21, 188–191. [Google Scholar] [CrossRef]
- Sivaraj, P.; Abhilash, K.P.; Nalini, B.; Perumal, P.; Selvin, P.C. Free-standing, high Li-ion conducting hybrid PAN/PVDF/LiClO4/Li0.5La0.5TiO3 nanocomposite solid polymer electrolytes for all-solid-state batteries. J. Solid State Electrochem. 2020, 25, 905–917. [Google Scholar] [CrossRef]
- Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.M.; Li, F. Homogeneous and fast ion conduction of PEO-based solid-state electrolyte at low temperature. Adv. Funct. Mater. 2020, 30, 2007172. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, X.; Du, C.; Luo, Y.; Chen, J.; Yan, J.; Zhu, D.; Geng, L.; Liu, S.; Zhao, J.; et al. An all-solid-state battery based on sulfide and PEO composite electrolyte. Small 2022, 18, e2202069. [Google Scholar] [CrossRef] [PubMed]
- Kufian, M.Z.; Ramesh, S.; Arof, A.K. PMMA-LiTFSI based gel polymer electrolyte for lithium-oxygen cell application. Opt. Mater. 2021, 120, 111418. [Google Scholar] [CrossRef]
- Sashmitha, K.; Rani, M.U. A comprehensive review of polymer electrolyte for lithium-ion battery. Polym. Bull. 2023, 80, 89–135. [Google Scholar] [CrossRef]
- Li, S.; Ren, W.; Huang, Y.; Zhou, Q.; Luo, C.; Li, Z.; Li, X.; Wang, M.; Cao, H. Building more secure LMBs with gel polymer electrolytes based on dual matrices of PAN and HPMC by improving compatibility with anode and tuning lithium ion transference. Electrochim. Acta 2021, 391, 138950. [Google Scholar] [CrossRef]
- Wang, X.; Fang, Y.; Yan, X.; Liu, S.; Zhao, X.; Zhang, L. Highly conductive polymer electrolytes based on PAN-PEI nanofiber membranes with in situ gelated liquid electrolytes for lithium-ion batteries. Polymer 2021, 230, 124038. [Google Scholar] [CrossRef]
- Uludağ, A.A.; Tokur, M.; Algul, H.; Cetinkaya, T.; Uysal, M.; Akbulut, H. High stable Li-air battery cells by using PEO and PVDF additives in the TEGDME/LiPF6 electrolytes. Int. J. Hydrog. Energy 2016, 41, 6954–6964. [Google Scholar] [CrossRef]
- Zhang, M.Y.; Li, M.X.; Chang, Z.; Wang, Y.F.; Gao, J.; Zhu, Y.S.; Wu, Y.P.; Huang, W. A sandwich PVDF/HEC/PVDF gel polymer electrolyte for lithium ion battery. Electrochim. Acta 2017, 245, 752–759. [Google Scholar] [CrossRef]
- Wen, X.; Zhu, X.; Wu, Y.; Wang, Y.; Man, Z.; Lv, Z.; Wang, X. A hydrophobic membrane to enable lithium-air batteries to operate in ambient air with a long cycle life. Electrochim. Acta 2022, 421, 140517. [Google Scholar] [CrossRef]
- Ren, M.; Chen, J.; Wu, G.; McHugh, E.A.; Tsai, A.-L.; Tour, J.M. Bioinspired redox mediator in lithium−oxygen batteries. ACS Catal. 2021, 11, 1833–1840. [Google Scholar] [CrossRef]
- Dirican, M.; Yan, C.; Zhu, P.; Zhang, X. Composite solid electrolytes for all-solid-state lithium batteries. Mater. Sci. Eng. R Rep. 2019, 136, 27–46. [Google Scholar] [CrossRef]
- Sen, S.; Trevisanello, E.; Niemöller, E.; Shi, B.-X.; Simon, F.J.; Richter, F.H. The role of polymers in lithium solid-state batteries with inorganic solid electrolytes. J. Mater. Chem. A 2021, 9, 18701–18732. [Google Scholar] [CrossRef]
- Xu, Z.; Liu, Z.; Gu, Z.; Zhao, X.; Guo, D.; Yao, X. Polyimide-based solid-state gel polymer electrolyte for lithium−oxygen batteries with a long-cycling life. ACS Appl. Mater. Interfaces 2023, 15, 7014–7022. [Google Scholar] [CrossRef]
- Song, S.; Qin, X.; Ruan, Y.; Li, W.; Xu, Y.; Zhang, D.; Thokchom, J. Enhanced performance of solid-state lithium-air batteries with continuous 3D garnet network added composite polymer electrolyte. J. Power Sources 2020, 461, 228146. [Google Scholar] [CrossRef]
- Zhao, C.; Sun, Q.; Luo, J.; Liang, J.; Liu, Y.; Zhang, L.; Wang, J.; Deng, S.; Lin, X.; Yang, X.; et al. 3D porous garnet/gel polymer hybrid electrolyte for safe solid-state Li−O2 batteries with long lifetimes. Chem. Mater. 2020, 32, 10113–10119. [Google Scholar] [CrossRef]
- Xu, K.; Zhou, X.; Ge, M.; Qiu, Z.; Mao, Y.; Wang, H.; Qin, Y.; Zhou, J.; Liu, Y.; Guo, B. Effect of LLZO on the in situ polymerization of acrylate solid-state electrolytes on cathodes. RSC Adv. 2023, 13, 8130–8135. [Google Scholar] [CrossRef]
- Liang, H.; Wang, L.; Wang, A.; Song, Y.; Wu, Y.; Yang, Y.; He, X. Tailoring practically accessible polymer/inorganic composite electrolytes for all-solid-state lithium metal batteries: A review. Nanomicro Lett. 2023, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Han, Y.; Wang, H.; Xiong, S.; Sun, W.; Zheng, C.; Xie, K. Novel synergistic coupling composite chelating copolymer/LAGP solid electrolyte with optimized interface for dendrite-free solid Li-metal battery. Electrochim. Acta 2019, 296, 693–700. [Google Scholar] [CrossRef]
- Chua, S.; Fang, R.; Sun, Z.; Wu, M.; Gu, Z.; Wang, Y.; Hart, J.N.; Sharma, N.; Li, F.; Wang, D.W. Hybrid solid polymer electrolytes with two-dimensional inorganic nanofillers. Chemistry 2018, 24, 18180–18203. [Google Scholar] [CrossRef]
- Gulino, V.; Brighi, M.; Murgia, F.; Ngene, P.; de Jongh, P.; Cerny, R.; Baricco, M. Room-temperature solid-state lithium-ion battery using a LiBH4–MgO composite electrolyte. ACS Appl. Energy Mater. 2021, 4, 1228–1236. [Google Scholar] [CrossRef]
- Wang, S.; Hu, J.; Gui, X.; Lin, S.; Tu, Y. A promising PMMA/m-MgO all-solid-state electrolyte for lithium-oxygen batteries. J. Electrochem. Soc. 2021, 168, 020514. [Google Scholar] [CrossRef]
- Yi, L.; Zou, C.; Chen, X.; Liu, J.; Cao, S.; Tao, X.; Zang, Z.; Liu, L.; Chang, B.; Shen, Y.; et al. One-step synthesis of PVDF-HFP/PMMA-ZrO2 gel polymer electrolyte to boost the performance of a lithium metal battery. ACS Appl. Energy Mater. 2022, 5, 7317–7327. [Google Scholar] [CrossRef]
- Colombo, F.; Bonizzoni, S.; Ferrara, C.; Simonutti, R.; Mauri, M.; Falco, M.; Gerbaldi, C.; Mustarelli, P.; Ruffo, R. Polymer-in-ceramic nanocomposite solid electrolyte for lithium metal batteries encompassing PEO-grafted TiO2 nanocrystals. J. Electrochem. Soc. 2020, 167, 070535. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, K.; Xue, S.; Li, W.; Chen, S.; Song, Y.; Song, Z.; Zhao, W.; Zhao, Y.; Pan, F.; et al. Surface defects reinforced polymer-ceramic interfacial anchoring for high-rate flexible solid-state batteries. Adv. Funct. Mater. 2023, 33, 2210845. [Google Scholar] [CrossRef]
- Hamao, N.; Yamaguchi, Y.; Hamamoto, K. Densification of a NASICON-type LATP electrolyte sheet by a cold-sintering process. Materials 2021, 14, 4737. [Google Scholar] [CrossRef]
- Jadhav, H.S.; Cho, M.-S.; Kalubarme, R.S.; Lee, J.-S.; Jung, K.-N.; Shin, K.-H.; Park, C.-J. Influence of B2O3 addition on the ionic conductivity of Li1.5Al0.5Ge1.5(PO4)3 glass ceramics. J. Power Sources 2013, 241, 502–508. [Google Scholar] [CrossRef]
- Dai, L.; Wang, J.; Shi, Z.; Yu, L.; Shi, J. Influence of LiBF4 sintering aid on the microstructure and conductivity of LATP solid electrolyte. Ceram. Int. 2021, 47, 11662–11667. [Google Scholar] [CrossRef]
- Bai, H.; Hu, J.; Li, X.; Duan, Y.; Shao, F.; Kozawa, T.; Naito, M.; Zhang, J. Influence of LiBO2 addition on the microstructure and lithium-ion conductivity of Li1+xAlxTi2−x(PO4)3(x = 0.3) ceramic electrolyte. Ceram. Int. 2018, 44, 6558–6563. [Google Scholar] [CrossRef]
- Davaasuren, B.; Tietz, F. Impact of sintering temperature on phase formation, microstructure, crystallinity and ionic conductivity of Li1.5Al0.5Ti1.5(PO4)3. Solid State Ion. 2019, 338, 144–152. [Google Scholar] [CrossRef]
- Shen, S.P.; Tang, G.; Li, H.J.; Zhang, L.; Zheng, J.C.; Luo, Y.; Yue, J.P.; Shi, Y.Z.; Chen, Z. Low-temperature fabrication of NASICON-type LATP with superior ionic conductivity. Ceram. Int. 2022, 48, 36961–36967. [Google Scholar] [CrossRef]
- Kwatek, K.; Ślubowska, W.; Trébosc, J.; Lafon, O.; Nowiński, J.L. Structural and electrical properties of ceramic Li-ion conductors based on Li1.3Al0.3Ti1.7(PO4)3-LiF. J. Eur. Ceram. Soc. 2020, 40, 85–93. [Google Scholar] [CrossRef]
- Maria, J.-P.; Kang, X.; Floyd, R.D.; Dickey, E.C.; Guo, H.; Guo, J.; Baker, A.; Funihashi, S.; Randall, C.A. Cold sintering: Current status and prospects. J. Mater. Res. 2017, 32, 3205–3218. [Google Scholar] [CrossRef]
- Wang, L.; Wang, L.; Shi, Q.; Zhong, C.; Gong, D.; Wang, X.; Zhan, C.; Liu, G. In-situ constructed SnO2 gradient buffer layer as a tight and robust interphase toward Li metal anodes in LATP solid state batteries. J. Energy Chem. 2023, 80, 89–98. [Google Scholar] [CrossRef]
- Cao, D.; Sun, X.; Li, Q.; Natan, A.; Xiang, P.; Zhu, H. Lithium dendrite in all-solid-state batteries: Growth mechanisms, suppression strategies, and characterizations. Matter 2020, 3, 57–94. [Google Scholar] [CrossRef]
- Byeon, Y.-W.; Kim, H. Review on interface and interphase issues in sulfide solid-state electrolytes for all-solid-state Li-metal batteries. Electrochem 2021, 2, 452–471. [Google Scholar] [CrossRef]
- Stegmaier, S.; Schierholz, R.; Povstugar, I.; Barthel, J.; Rittmeyer, S.P.; Yu, S.; Wengert, S.; Rostami, S.; Kungl, H.; Reuter, K.; et al. Nano-scale complexions facilitate Li dendrite-free operation in LATP solid-state electrolyte. Adv. Energy Mater. 2021, 11, 2100707. [Google Scholar] [CrossRef]
- Stegmaier, S.; Reuter, K.; Scheurer, C. Exploiting nanoscale complexion in LATP solid-state electrolyte via interfacial Mg2+ doping. Nanomaterials 2022, 12, 2912. [Google Scholar] [CrossRef]
- Mandal, P.; Marcasuzaa, P.; Billon, L. Highly conductive solid polymer electrolytes by para-fluoro/thiol clicked diblock copolymer self-assembly: Paving the way for nanostructured materials for lithium-ion conductivity. ACS Appl. Energy Mater. 2022, 5, 15520–15528. [Google Scholar] [CrossRef]
- Huo, H.; Zhao, W.; Duan, X.; Sun, Z.-Y. Control of diblock copolyelectrolyte morphology through electric field application. Macromolecules 2023, 56, 1065–1076. [Google Scholar] [CrossRef]
Composites | Initial Capacity (mAh g−1) (Current Density) | End of Capacity (mAhg−1) (Cycle Number) | Ionic Conductivity (S cm−1) /Temperature | Type | Reference |
---|---|---|---|---|---|
LLZTO/PPC/LiTFSI | 20,300/20 μA cm−2 | -/(50) | 1.6 × 10−3/RT | ISE | [27] |
ZSM-5 | -/400 mA g−1 | 70/480 | - | ISE | [53] |
UFSLAGP | 152.2/(0.1 C) | -/31 | 1.6 × 10−3/RT | ISE | [60] |
LAGP@glass | 414/0.1 A g−1 | 142.5/120 | 9.85 × 10−4/60 °C | ISE | [56] |
S-CPE | 123/- | 404.89/100 | - | CPE | [68] |
PMMA-LiTFSI | 159.6/(0.1 C) | -/5 | 2.80 × 10−4/RT | GPE | [69] |
PVAN50−20%LATP−10%SN | 140/34 mA g−1 | 156.9/30 | 1.13 × 10−4/RT | CPE | [63] |
PVDF/HEC/PVDF | 6019/100 mA g−1 | 125/140 | 0.88 × 10−4/RT | GPE | [74] |
PFPE@PVDF-HFP | -/0.1 mA cm−2 | -/1200 h | - | SPE | [75] |
PI@GPE | 2485/0.05 mA cm−2 | -/366 | 0.44 × 10−4/RT | CPE | [79] |
3D-CPE | 7540/312.5 mA g−1 | 1786/3 | 9.2 × 10−5/RT | CPE | [80] |
PSSE/GPE | 173/24 mA g−1 | -/194 | 1.06 × 10−3/RT | CPE | [81] |
LiBH4-MgO | 35,111/50 mA g−1 | 162/5 | 2.86 × 10−4/RT | ISE | [86] |
PMMA/m-MgO | 153.0/0.5 C | -/52 | 7.76 × 10−4/RT | CPE | [87] |
PVDF-HFP/PMMA ZrO2-6% (PPZ-6%) | 120/0.1 A g−1 | 151.0/200 | 1.46 × 10−3/RT | CPE | [88] |
PEO-TiO2 SnO2@LATP | 157.6/0.1 C - | 119/50 142.1/200 | 3 × 10−4/70 °C - | CPE ISE | [89] [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Q.; Ma, J.; Li, S.; Mao, D. Solid-State Electrolyte for Lithium-Air Batteries: A Review. Polymers 2023, 15, 2469. https://doi.org/10.3390/polym15112469
Zhu Q, Ma J, Li S, Mao D. Solid-State Electrolyte for Lithium-Air Batteries: A Review. Polymers. 2023; 15(11):2469. https://doi.org/10.3390/polym15112469
Chicago/Turabian StyleZhu, Qiancheng, Jie Ma, Shujian Li, and Deyu Mao. 2023. "Solid-State Electrolyte for Lithium-Air Batteries: A Review" Polymers 15, no. 11: 2469. https://doi.org/10.3390/polym15112469
APA StyleZhu, Q., Ma, J., Li, S., & Mao, D. (2023). Solid-State Electrolyte for Lithium-Air Batteries: A Review. Polymers, 15(11), 2469. https://doi.org/10.3390/polym15112469