Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (715)

Search Parameters:
Keywords = solid-state electrolyte

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 6990 KB  
Review
Multiscale Insights into Inorganic Filler Regulation, Ion Transport Mechanisms, and Characterization Advances in Composite Solid-State Electrolytes
by Xinhao Xu, Dingyuan Lu, Sipeng Huang, Fuming Wang, Yulin Min and Qunjie Xu
Processes 2025, 13(9), 2795; https://doi.org/10.3390/pr13092795 - 1 Sep 2025
Abstract
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: [...] Read more.
All-solid-state lithium batteries (ASSLBs) are emerging as a promising alternative to conventional lithium-ion batteries, offering solutions to challenges related to energy density and safety. Their core advancement relies on breakthroughs in solid-state electrolytes (SEs). SEs can be broadly grouped into two main types: inorganic solid electrolytes (ISEs) and organic solid electrolytes (OSEs). ISEs offer high ionic conductivity (0.1~1 mS cm−1), a lithium-ion transference number close to 1, and excellent thermal stability, but their intrinsic brittleness leads to poor interfacial wettability and processing difficulties, limiting practical applications. In contrast, OSEs exhibit good flexibility and interfacial compatibility but suffer from poor ionic conductivity (10−4~10−2 mS cm−1) due to high crystallinity at room temperature, in addition to poor thermal stability and weak mechanical integrity, making it difficult to match high-voltage cathodes and suppress lithium dendrite growth. Against this backdrop, the stability of the organic–inorganic interface plays a crucial role. However, challenges such as low overall conductivity and unstable interfaces still limit their performance. This review provides a microscopic perspective on lithium-ion transport pathways across the polymer phase, the inorganic filler phase, and their interfacial regions. It categorizes inert fillers and active fillers, analyzing their structure–performance relationships and emphasizing the synergistic effects of filler dimensionality, surface chemistry, and interfacial interactions. In addition, cutting-edge analytical methods such as time-of-flight secondary ion mass spectrometry (TOF-SIMS) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) have also been employed and are summarized into their roles for revealing the microstructures and dynamic interfacial behaviors of OICSEs. Finally, future directions are proposed, such as hierarchical pore structure design, surface functionalization, and simulation-guided optimization, aiming to provide theoretical insights and technological strategies for the development of high-performance composite electrolytes for ASSLBs. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

14 pages, 3455 KB  
Article
Three-Dimensional-Printed Polymer–Polymer Composite Electrolytes for All-Solid-State Li Metal Batteries
by Hao Wang, Xin Xiong, Huie Hu and Sijie Liu
Polymers 2025, 17(17), 2369; https://doi.org/10.3390/polym17172369 - 30 Aug 2025
Abstract
High-performance batteries for military and extreme environment applications require alternatives to conventional liquid lithium-ion batteries (LIBs), which suffer from poor low-temperature performance and safety risks. All-solid-state lithium batteries (ASSLBs) offer enhanced safety and superior low-temperature capability. In this work, we designed and fabricated [...] Read more.
High-performance batteries for military and extreme environment applications require alternatives to conventional liquid lithium-ion batteries (LIBs), which suffer from poor low-temperature performance and safety risks. All-solid-state lithium batteries (ASSLBs) offer enhanced safety and superior low-temperature capability. In this work, we designed and fabricated composite solid-state electrolytes using polyvinylidene fluoride (PVDF) and polyacrylic acid (PAA) as polymer matrices, N,N-dimethylformamide (DMF) as the solvent, and lithium bis(trifluoromethane sulfonimide) (LiTFSI) as the lithium salt. Composite solutions with varying PAA mass ratios were prepared. Advanced three-dimensional (3D) printing technology enabled the rapid and precise fabrication of electrolyte membranes. An ionic conductivity of about 2.71 × 10−4 S cm−1 at 25 °C, high mechanical strength, and good thermal properties can be achieved through component and 3D printing process optimization. Assembled LiCoO2||PVDF@PAA||Li ASSLBs delivered an initial discharge capacity of 165.3 mAh/g at 0.1 mA cm−2 (room temperature), maintaining 98% capacity retention after 300 cycles. At 0 °C, these cells provided 157.4 mAh/g initial capacity with 85% retention over 100 cycles at 0.1 mA cm−2. This work identifies the optimal PAA ratio for enhanced electrochemical performance and demonstrates the viability of 3D printing for advanced ASSLB manufacturing. Full article
(This article belongs to the Special Issue Advances in Polymeric Additive Manufacturing—2nd Edition)
Show Figures

Figure 1

34 pages, 6812 KB  
Review
Mechanochemical Synthesis of Advanced Materials for All-Solid-State Battery (ASSB) Applications: A Review
by Zhiming Qiang, Junjun Hu and Beibei Jiang
Polymers 2025, 17(17), 2340; https://doi.org/10.3390/polym17172340 - 28 Aug 2025
Viewed by 161
Abstract
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion [...] Read more.
Mechanochemical methods have received much attention in the synthesis and design of all-solid-state battery materials in recent years due to their advantages of being green, efficient, easy to operate, and solvent-free. In this review, common mechanochemical methods, including high-energy ball milling, twin-screw extrusion (TSE), and resonant acoustic mixing (RAM), are introduced with the aim of providing a fundamental understanding of the subsequent material design. Subsequently, the discussion focuses on the application of mechanochemical methods in the construction of solid-state electrolytes, anode materials, and cathode materials, especially the research progress of mechanical energy-induced polymerization strategies in building flexible composite electrolytes and enhancing interfacial stability. Through the analysis of representative work, it is demonstrated that mechanochemical methods are gradually evolving from traditional physical processing tools to functional synthesis platforms with chemical reaction capabilities. This review systematically organizes its development and research trends in the field of all-solid-state battery materials and explores potential future breakthrough directions. Full article
(This article belongs to the Special Issue Development of Polymer Materials as Functional Coatings)
Show Figures

Figure 1

16 pages, 4846 KB  
Article
A Neodymium(III)-Based Hydrogen-Bonded Bilayer Framework with Dual Functions: Selective Ion Sensing and High Proton Conduction
by Jie Liu, Xin-Yu Guo, Wen-Duo Zhu, Nan Zheng and Jiu-Fu Lu
Molecules 2025, 30(17), 3455; https://doi.org/10.3390/molecules30173455 - 22 Aug 2025
Viewed by 453
Abstract
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a [...] Read more.
Lanthanide hydrogen-bonded organic frameworks (Ln-HOFs) integrating luminescent and proton-conductive properties hold significant promise for multifunctional sensing and energy applications, yet their development remains challenging due to the difficulty of balancing structural stability and functional diversity. In this context, this study successfully synthesized a novel neodymium(III)-based hydrogen-bonded framework material, formulated as {Nd(H2O)3(4-CPCA)[H(4-CPCA)]∙H2O}ₙ (SNUT-15), via hydrothermal assembly using 1-(4-carboxyphenyl)-4-oxo-1,4-dihydropyridazine-3-carboxylic acid (H2(4-CPCA)) as the ligand. Single-crystal X-ray diffraction analysis revealed a rare two-dimensional hydrogen-bonded bilayer structure stabilized by π-π stacking interactions and intermolecular hydrogen bonds. Hirshfeld surface analysis further corroborated the structural characteristics of this material. Moreover, leveraging the superior luminescent properties of lanthanide elements, this crystalline material exhibits dual functionality: selective fluorescence quenching toward Fe3+, La3+, and Mn2+ (with detection limits of 1.74 × 10−4, 1.88 × 10−4, and 3.57 × 10−4 mol·L−1, respectively), as well as excellent proton conductivity reaching 7.92 × 10−3 S cm−1 under conditions of 98% relative humidity and 353 K (80 °C). As a multifunctional neodymium(III)-based HOF material, SNUT-15 demonstrates its potential for applications in environmental monitoring and solid-state electrolytes, providing valuable insights into the rational design of lanthanide-containing frameworks. Full article
(This article belongs to the Section Molecular Structure)
Show Figures

Graphical abstract

31 pages, 7431 KB  
Review
Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries
by Biao Ma, Deling Hong, Xiangfeng Wei and Jiehua Liu
Batteries 2025, 11(8), 315; https://doi.org/10.3390/batteries11080315 - 19 Aug 2025
Viewed by 614
Abstract
Metal–air batteries have excellent theoretical energy density and economic advantages through abundant anode materials and open cathode structures. However, the actual energy efficiency of metal–air batteries is much lower than the theoretical value due to the effect of polarization voltage during battery operation, [...] Read more.
Metal–air batteries have excellent theoretical energy density and economic advantages through abundant anode materials and open cathode structures. However, the actual energy efficiency of metal–air batteries is much lower than the theoretical value due to the effect of polarization voltage during battery operation, limiting the power output and thus hindering their practical application. This review systematically dissects the origins of polarization: slow oxygen reduction/evolution reaction (ORR/OER) kinetics, interfacial resistance, and mass transfer bottlenecks. We highlight cutting-edge strategies to mitigate polarization, including atomic-level engineering of air cathodes (e.g., single-atom catalysts, low Pt catalysts), biomass-derived 3D porous electrodes, and electrolyte innovations (additives to inhibit corrosion, solid-state electrolytes to improve stability). In addition, breakthroughs in metal–H2O2 battery design using concentrated liquid oxygen sources are discussed. Together, these advances alleviate the battery polarization bottleneck and pave the way for practical applications of metal–air batteries in electric vehicles, drones, and deep-sea devices. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

16 pages, 2126 KB  
Article
Characteristic Influence of Cerium Ratio on PrMn Perovskite-Based Cathodes for Solid Oxide Fuel Cells
by Esra Balkanlı Ünlü, Meltem Karaismailoğlu Elibol and Halit Eren Figen
Catalysts 2025, 15(8), 786; https://doi.org/10.3390/catal15080786 - 18 Aug 2025
Viewed by 485
Abstract
In this study, cerium with different ratios (x = 0 (zero), 0.1, 0.15, 0.5) was added to the PrMn structure as an A-site material to evaluate characteristic behavior as a potential cathode material for solid oxide fuel cells. The PrxCe1−x [...] Read more.
In this study, cerium with different ratios (x = 0 (zero), 0.1, 0.15, 0.5) was added to the PrMn structure as an A-site material to evaluate characteristic behavior as a potential cathode material for solid oxide fuel cells. The PrxCe1−xMnO3−δ electrocatalysts were synthesized using the sol–gel combustion method and were assessed for their electrochemical, phase, and structural properties, as well as desorption and reducibility capabilities. Phase changes, from orthorhombic to cubic structures observed upon cerium additions, were evaluated via the X-Ray diffraction method. X-Ray photoelectron spectroscopy (XPS) showed the valence states of the surface between the Ce4+/Ce3+ and Pr4+/Pr3+ redox pairs, while oxygen temperature programmed desorption (O2-TPD) analysis was used to evaluate the oxygen adsorption and desorption behavior of the electrocatalysts. Redox characterization, evaluated via hydrogen atmosphere temperature-programmed reduction (H2-TPR), revealed that a higher cerium ratio in the structure lowered the reduction temperature, suggesting a better dynamic oxygen exchange capability at a lower temperature for the Pr0.5Ce0.5MnO3−δ catalyst compared to the electrochemical behavior analysis by the electrochemical impedance spectroscopy method. Moreover, the symmetrical cell tests with Pr0.5Ce0.5MnO3−δ electrodes showed that, when combined with scandia-stabilized zirconia (ScSZ) electrolyte, the overall polarization resistance was reduced by approximately 28% at 800 °C compared to cells with yttria-stabilized zirconia (YSZ) electrolyte. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

35 pages, 3497 KB  
Review
Recent Advances in Dendrite Suppression Strategies for Solid-State Lithium Batteries: From Interface Engineering to Material Innovations
by Abniel Machín, Francisco Díaz, María C. Cotto, José Ducongé and Francisco Márquez
Batteries 2025, 11(8), 304; https://doi.org/10.3390/batteries11080304 - 8 Aug 2025
Viewed by 1603
Abstract
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth [...] Read more.
Solid-state lithium batteries (SSLBs) have emerged as a promising alternative to conventional lithium-ion systems due to their superior safety profile, higher energy density, and potential compatibility with lithium metal anodes. However, a major challenge hindering their widespread deployment is the formation and growth of lithium dendrites, which compromise both performance and safety. This review provides a comprehensive and structured overview of recent advances in dendrite suppression strategies, with special emphasis on the role played by the nature of the solid electrolyte. In particular, we examine suppression mechanisms and material innovations within the three main classes of solid electrolytes: sulfide-based, oxide-based, and polymer-based systems. Each electrolyte class presents distinct advantages and challenges in relation to dendrite behavior. Sulfide electrolytes, known for their high ionic conductivity and good interfacial wettability, suffer from poor mechanical strength and chemical instability. Oxide electrolytes exhibit excellent electrochemical stability and mechanical rigidity but often face high interfacial resistance. Polymer electrolytes, while mechanically flexible and easy to process, generally have lower ionic conductivity and limited thermal stability. This review discusses how these intrinsic properties influence dendrite nucleation and propagation, including the role of interfacial stress, grain boundaries, void formation, and electrochemical heterogeneity. To mitigate dendrite formation, we explore a variety of strategies including interfacial engineering (e.g., the use of artificial interlayers, surface coatings, and chemical additives), mechanical reinforcement (e.g., incorporation of nanostructured or gradient architectures, pressure modulation, and self-healing materials), and modifications of the solid electrolyte and electrode structure. Additionally, we highlight the critical role of advanced characterization techniques—such as in situ electron microscopy, synchrotron-based X-ray diffraction, vibrational spectroscopy, and nuclear magnetic resonance (NMR)—for elucidating dendrite formation mechanisms and evaluating the effectiveness of suppression strategies in real time. By integrating recent experimental and theoretical insights across multiple disciplines, this review identifies key limitations in current approaches and outlines emerging research directions. These include the design of multifunctional interphases, hybrid electrolytes, and real-time diagnostic tools aimed at enabling the development of reliable, scalable, and dendrite-free SSLBs suitable for practical applications in next-generation energy storage. Full article
(This article belongs to the Special Issue Advances in Solid Electrolytes and Solid-State Batteries)
Show Figures

Graphical abstract

19 pages, 2474 KB  
Article
Unraveling the Role of Aluminum in Boosting Lithium-Ionic Conductivity of LLZO
by Md Mozammal Raju, Yi Ding and Qifeng Zhang
Electrochem 2025, 6(3), 29; https://doi.org/10.3390/electrochem6030029 - 4 Aug 2025
Viewed by 649
Abstract
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of [...] Read more.
The development of high-performance solid electrolytes is critical to advancing solid-state lithium-ion batteries (SSBs), with lithium lanthanum zirconium oxide (LLZO) emerging as a leading candidate due to its chemical stability and wide electrochemical window. In this study, we systematically investigated the effects of cation dopants, including aluminum (Al3+), tantalum (Ta5+), gallium (Ga3+), and rubidium (Rb+), on the structural, electronic, and ionic transport properties of LLZO using density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations. It appeared that, among all simulated results, Al-LLZO exhibits the highest ionic conductivity of 1.439 × 10−2 S/cm with reduced activation energy of 0.138 eV, driven by enhanced lithium vacancy concentrations and preserved cubic-phase stability. Ta-LLZO follows, with a conductivity of 7.12 × 10−3 S/cm, while Ga-LLZO and Rb-LLZO provide moderate conductivity of 3.73 × 10−3 S/cm and 3.32 × 10−3 S/cm, respectively. Charge density analysis reveals that Al and Ta dopants facilitate smoother lithium-ion migration by minimizing electrostatic barriers. Furthermore, Al-LLZO demonstrates low electronic conductivity (1.72 × 10−8 S/cm) and favorable binding energy, mitigating dendrite formation risks. Comparative evaluations of radial distribution functions (RDFs) and XRD patterns confirm the structural integrity of doped systems. Overall, Al emerges as the most effective and economically viable dopant, optimizing LLZO for scalable, durable, and high-conductivity solid-state batteries. Full article
Show Figures

Graphical abstract

23 pages, 3040 KB  
Review
All-Solid-State Anode-Free Sodium Batteries: Challenges and Prospects
by Alexander M. Skundin and Tatiana L. Kulova
Batteries 2025, 11(8), 292; https://doi.org/10.3390/batteries11080292 - 2 Aug 2025
Viewed by 898
Abstract
All-solid-state anode-free sodium batteries present a special and especially important kind of energy storage device. Unfortunately, the industrial production of such batteries has been absent up to now, although the prospects of their development seem to be rather optimistic. The present mini review [...] Read more.
All-solid-state anode-free sodium batteries present a special and especially important kind of energy storage device. Unfortunately, the industrial production of such batteries has been absent up to now, although the prospects of their development seem to be rather optimistic. The present mini review considers the fundamental advantages of all-solid-state anode-free sodium batteries as well as challenges in their creation. The advantages of all-solid-state anode-free sodium batteries reveal themselves when comparing them with ordinary sodium-ion batteries, sodium metal batteries, sodium batteries with liquid electrolyte, and their lithium counterparts. Full article
Show Figures

Graphical abstract

18 pages, 4344 KB  
Article
Lithium Lanthanum Titanate (LLTO) Solid Electrolyte with High Ionic Conductivity and Excellent Mechanical Properties Prepared by Aerodynamic Levitation Rapid Solidification
by Yidong Hu, Fan Yang, Jianguo Li and Qiaodan Hu
Crystals 2025, 15(8), 707; https://doi.org/10.3390/cryst15080707 - 31 Jul 2025
Viewed by 497
Abstract
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like [...] Read more.
Lithium lanthanum titanate (LLTO) is a promising solid electrolyte for all-solid-state lithium-ion batteries (ASSLIBs), and its total conductivity is dramatically influenced by the ceramic microstructure. Here we report a novel aerodynamic levitation rapid solidification method to prepare dense LLTO ceramics with a dendrite-like microstructure, which can be hardly obtained by conventional sintering. At optimal nominal lithium content and cooling rate, the solidified LLTO ceramic achieved a high total conductivity of 2.5 × 10−4 S·cm−1 at room temperature, along with excellent mechanical properties such as a high Young’s modulus of 240 GPa and a high hardness of 16.7 GPa. Results from this work suggest that aerodynamic levitation rapid solidification is an effective processing method to manipulate the microstructure of LLTO ceramics to minimize the GBs’ contribution to the total conductivity, which may be expanded to prepare other oxide-type lithium electrolytes. Full article
Show Figures

Figure 1

18 pages, 4914 KB  
Article
Preparation and Failure Behavior of Gel Electrolytes for Multilayer Structure Lithium Metal Solid-State Batteries
by Chu Chen, Wendong Qin, Qiankun Hun, Yujiang Wang, Xinghua Liang, Renji Tan, Junming Li and Yifeng Guo
Gels 2025, 11(8), 573; https://doi.org/10.3390/gels11080573 - 23 Jul 2025
Viewed by 395
Abstract
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple [...] Read more.
High safety gel polymer electrolyte (GPE) is used in lithium metal solid state batteries, which has the advantages of high energy density, wide temperature range, high safety, and is considered as a subversive new generation battery technology. However, solid-state lithium batteries with multiple layers and large capacity currently have poor cycle life and a large gap between the actual output cycle capacity retention rate and the theoretical level. In this paper, polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP)/polyacrylonitrile (PAN)—lithium perchlorate (LiClO4)—lithium lanthanum zirconium tantalate (LLZTO) gel polymer electrolytes was prepared by UV curing process using a UV curing machine at a speed of 0.01 m/min for 10 s, with the temperature controlled at 30 °C and wavelength 365 nm. In order to study the performance and failure mechanism of multilayer solid state batteries, single and three layers of solid state batteries with ceramic/polymer composite gel electrolyte were assembled. The results show that the rate and cycle performance of single-layer solid state battery with gel electrolyte are better than those of three-layer solid state battery. As the number of cycles increases, the interface impedance of both single-layer and three-layer electrolyte membrane solid-state batteries shows an increasing trend. Specifically, the three-layer battery impedance increased from 17 Ω to 42 Ω after 100 cycles, while the single-layer battery showed a smaller increase, from 2.2 Ω to 4.8 Ω, indicating better interfacial stability. After 100 cycles, the interface impedance of multi-layer solid-state batteries increases by 9.61 times that of single-layer batteries. After 100 cycles, the corresponding capacity retention rates were 48.9% and 15.6%, respectively. This work provides a new strategy for large capacity solid state batteries with gel electrolyte design. Full article
(This article belongs to the Special Issue Research Progress and Application Prospects of Gel Electrolytes)
Show Figures

Figure 1

12 pages, 4279 KB  
Article
Dynamic Ester-Linked Vitrimers for Reprocessable and Recyclable Solid Electrolytes
by Xiaojuan Shi, Hui Zhang and Hongjiu Hu
Polymers 2025, 17(14), 1991; https://doi.org/10.3390/polym17141991 - 21 Jul 2025
Viewed by 425
Abstract
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer [...] Read more.
Traditional covalently cross-linked solid-state electrolytes exhibit desirable mechanical durability but suffer from limited processability and recyclability due to their permanent network structures. Incorporating dynamic covalent bonds offers a promising solution to these challenges. In this study, we report a reprocessable and recyclable polymer electrolyte based on a dynamic ester bond network, synthesized from commercially available materials. Polyethylene glycol diglycidyl ether (PEGDE) and glutaric anhydride (GA) were cross-linked and cured in the presence of benzyl dimethylamine (BDMA), forming an ester-rich polymer backbone. Subsequently, 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) was introduced as a transesterification catalyst to facilitate network rearrangement. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was incorporated to establish efficient ion transport pathways. By tuning the cross-linking density and catalyst ratio, the electrolyte achieved an ionic conductivity of 1.89 × 10−5 S/cm at room temperature along with excellent reprocessability. Full article
(This article belongs to the Special Issue Recycling and Circularity of Polymeric Materials)
Show Figures

Graphical abstract

17 pages, 6759 KB  
Review
Novel Structural Janus Hydrogels for Battery Applications: Structure Design, Properties, and Prospects
by Ping Li and Qiushi Wang
Colloids Interfaces 2025, 9(4), 48; https://doi.org/10.3390/colloids9040048 - 19 Jul 2025
Viewed by 530
Abstract
Janus hydrogels, defined by their asymmetric architectures and bifunctional interfaces, have emerged as a transformative class of solid-state electrolytes in electrochemical energy storage. By integrating spatially distinct chemomechanical and ionic functionalities within a single matrix, they overcome the intrinsic limitations of conventional isotropic [...] Read more.
Janus hydrogels, defined by their asymmetric architectures and bifunctional interfaces, have emerged as a transformative class of solid-state electrolytes in electrochemical energy storage. By integrating spatially distinct chemomechanical and ionic functionalities within a single matrix, they overcome the intrinsic limitations of conventional isotropic hydrogels, offering enhanced interfacial stability, directional ion transport, and dendrite suppression in lithium- and zinc-based batteries. This mini-review systematically highlights recent breakthroughs in Janus hydrogel design, including interfacial polymerization and layer-by-layer assembly, which collectively enable precise modulation of crosslinking gradients and ion transport pathways. This review uniquely frames Janus hydrogels from a battery-centric and interface-engineering perspective. It elucidates key structure–function correlations, identifies current limitations in scalable fabrication and electrochemical longevity, and outlines future directions toward intelligent, multifunctional platforms for next-generation flexible and biointegrated energy systems. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Graphical abstract

15 pages, 1845 KB  
Article
Comparing the SEI Formation on Copper and Amorphous Carbon: A Study with Combined Operando Methods
by Michael Stich, Christian Leppin, Falk Thorsten Krauss, Jesus Eduardo Valdes Landa, Isabel Pantenburg, Bernhard Roling and Andreas Bund
Batteries 2025, 11(7), 273; https://doi.org/10.3390/batteries11070273 - 18 Jul 2025
Viewed by 495
Abstract
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce [...] Read more.
The solid electrolyte interphase (SEI) on the anode of lithium-ion batteries (LIBs) has been studied thoroughly due to its crucial importance to the battery’s long-term performance. At the same time, most studies of the SEI apply ex situ characterization methods, which may introduce artifacts or misinterpretations as they do not investigate the SEI in its unaltered state immersed in liquid battery electrolyte. Thus, in this work, we focus on using the non-destructive combination of electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) and impedance spectroscopy (EIS) in the same electrochemical cell. EQCM-D can not only probe the solidified products of the SEI but also allows for the monitoring of viscoelastic layers and viscosity changes of the electrolyte at the interphase during the SEI formation. EIS complements those results by providing electrochemical properties of the formed interphase. Our results highlight substantial differences in the physical and electrochemical properties between the SEI formed on copper and on amorphous carbon and show how formation parameters and the additive vinylene carbonate (VC) influence their growth. The EQCM-D results show consistently that much thicker SEIs are formed on carbon substrates in comparison to copper substrates. Full article
(This article belongs to the Special Issue Electrocrystallization in Rechargeable Batteries)
Show Figures

Figure 1

15 pages, 4059 KB  
Article
Surface Fluorination for the Stabilization in Air of Garnet-Type Oxide Solid Electrolyte for Lithium Ion Battery
by Michael Herraiz, Saida Moumen, Kevin Lemoine, Laurent Jouffret, Katia Guérin, Elodie Petit, Nathalie Gaillard, Laure Bertry, Reka Toth, Thierry Le Mercier, Valérie Buissette and Marc Dubois
Batteries 2025, 11(7), 268; https://doi.org/10.3390/batteries11070268 - 16 Jul 2025
Viewed by 479
Abstract
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3 [...] Read more.
After reviewing the state of the art of the fluorination of inorganic solid electrolytes, an application of gas/solid fluorination is given and how it can be processed. Garnet-type oxide has been chosen. These oxides with an ideal structure of chemical formula A3B2(XO4)3 are mainly known for their magnetic and dielectric properties. Certain garnets may have a high enough Li+ ionic conductivity to be used as solid electrolyte of lithium ion battery. The surface of LLZO may be changed in contact with the moisture and CO2 present in the atmosphere that results in a change of the conductivity at the interface of the solid. LiOH and/or lithium carbonate are formed at the surface of the garnet particles. In order to allow for handling and storage under normal conditions of this solid electrolyte, surface fluorination was performed using elemental fluorine. When controlled using mild conditions (temperature lower or equal to 200 °C, either in static or dynamic mode), the addition of fluorine atoms to LLZO with Li6,4Al0,2La3Zr2O12 composition is limited to the surface, forming a covering layer of lithium fluoride LiF. The effect of the fluorination was evidenced by IR, Raman, and NMR spectroscopies. If present in the pristine LLZO powder, then the carbonate groups disappear. More interestingly, contrary to the pristine LLZO, the contents of these groups are drastically reduced even after storage in air up to 45 days when the powder is covered with the LiF layer. Surface fluorination could be applied to other solid electrolytes that are air sensitive. Full article
Show Figures

Figure 1

Back to TopTop