Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Fabrication of PVA/ATT Nanocomposite Hydrogels
2.3. Water Content
2.4. Swelling Ratio
2.5. Gel Fraction
2.6. Porosity
2.7. X-ray Diffraction Analysis
2.8. Thermogravimetric Analysis
2.9. Scanning Electron Microscopy and Energy-Dispersive X-ray Spectroscopy
2.10. Surface Profile
2.11. Surface Roughness
2.12. Water Contact Angle
2.13. FTIR
2.14. Tensile Properties
2.15. Adsorption Studies
3. Results and Discussion
3.1. Water Content
3.2. Swelling Ratio and Gel Fraction
3.3. Porosity
3.4. X-ray Diffraction
3.5. Thermogravimetric Analysis (TGA) and Differential Thermogravimetry (DTG)
3.6. Morphology Analysis
3.7. EDS Analysis
3.8. Surface Profile
3.9. Surface Roughness
3.10. Water Contact Angle
3.11. FTIR Spectroscopy
3.12. Mechanical Properties
3.13. Dye Adsorption Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, S.; Liu, S.; Feng, W. PVA hydrogel properties for biomedical application. J. Mech. Behav. Biomed. Mater. 2011, 4, 1228–1233. [Google Scholar] [CrossRef] [PubMed]
- Arefian, M.; Hojjati, M.; Tajzad, I.; Mokhtarzade, A.; Mazhar, M.; Jamavari, A. A review of Polyvinyl alcohol/Carboxymethyl cellulose (PVA/CMC) composites for various applications. J. Compos. Constr. 2020, 2, 69–76. [Google Scholar] [CrossRef]
- Tang, Y.; Pang, L.; Wang, D. Preparation and characterization of borate bioactive glass cross-linked PVA hydrogel. J. Non-Cryst. Solids 2017, 476, 25–29. [Google Scholar] [CrossRef]
- Adelnia, H.; Ensandoost, R.; Moonshi, S.S.; Gavgani, J.N.; Vasafi, E.I.; Ta, H.T. Freeze/thawed polyvinyl alcohol hydrogels: Present, past and future. Eur. Polym. J. 2021, 164, 110974. [Google Scholar] [CrossRef]
- Spoljaric, S.; Salminen, A.; Luong, N.D.; Seppälä, J. Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking. Eur. Polym. J. 2014, 56, 105–117. [Google Scholar] [CrossRef]
- Kumar, A.; Han, S.S. PVA-based hydrogels for tissue engineering: A review. Int. J. Polym. Mater. Polym. Biomater. 2017, 66, 159–182. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Xiong, T.; Xu, A.; Pan, B.; Tang, K. Graphene oxide reinforced alginate/PVA double network hydrogels for efficient dye removal. Polymers 2018, 10, 835. [Google Scholar] [CrossRef]
- Hou, R.; Zhang, G.; Du, G.; Zhan, D.; Cong, Y.; Cheng, Y.; Fu, J. Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids Surf. B 2013, 103, 318–325. [Google Scholar] [CrossRef]
- Samaddar, P.; Kumar, S.; Kim, K.H. Polymer hydrogels and their applications toward sorptive removal of potential aqueous pollutants. Polym. Rev. 2019, 59, 418–464. [Google Scholar] [CrossRef]
- Mok, C.F.; Ching, Y.C.; Muhamad, F.; Abu Osman, N.A.; Hai, N.D.; Che Hassan, C.R. Adsorption of dyes using poly (vinyl alcohol) (PVA) and PVA-based polymer composite adsorbents: A review. J. Polym. Environ. 2020, 28, 775–793. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, Z.; Xu, C.; Li, Y.; Gao, J.; Wang, W.; Liu, Y. High strength graphene oxide/polyvinyl alcohol composite hydrogels. J. Mater. Chem. 2011, 21, 10399–10406. [Google Scholar] [CrossRef]
- Chen, S.; De Guzman, M.R.; Tsou, C.H.; Li, M.; Suen, M.C.; Gao, C.; Tsou, C.Y. Hydrophilic and absorption properties of reversible nanocomposite polyvinyl alcohol hydrogels reinforced with graphene-doped zinc oxide nanoplates for enhanced antibacterial activity. Polym. J. 2022, 55, 45–61. [Google Scholar] [CrossRef]
- Cao, Y.; Zhu, X.; Ni, Z.; Ge, B.; Li, W.; Ren, G.; Liu, C. Construction of PVA hydrogel-based solar-driven interfacial distillation device and its performance research in selective adsorption of organic solvents and removal of Rh B. Sep. Purif. Technol. 2022, 295, 121274. [Google Scholar] [CrossRef]
- Umoren, S.A.; Etim, U.J.; Israel, A.U. Adsorption of methylene blue from industrial effluent using poly (vinyl alcohol). J. Mater. Environ. Sci. 2013, 4, 75–86. [Google Scholar]
- Adewunmi, A.A.; Ismail, S.; Sultan, A.S. Carbon nanotubes (CNTs) nanocomposite hydrogels developed for various applications: A critical review. J. Inorg. Organomet. Polym. Mater. 2016, 26, 717–737. [Google Scholar] [CrossRef]
- Tsou, C.H.; Chen, S.; Li, X.; Chen, J.C.; De Guzman, M.R.; Sun, Y.L.; Zhang, Y. Highly resilient antibacterial composite polyvinyl alcohol hydrogels reinforced with CNT-NZnO by forming a network of hydrogen and coordination bonding. J. Polym. Res. 2022, 29, 412. [Google Scholar] [CrossRef]
- Shi, L.; Yao, J.; Jiang, J.; Zhang, L.; Xu, N. Preparation of mesopore-rich carbons using attapulgite as templates and furfuryl alcohol as carbon source through a vapor deposition polymerization method. Microporous Mesoporous Mater. 2009, 122, 294–300. [Google Scholar] [CrossRef]
- Wang, L.; Sheng, J. Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 2005, 46, 6243–6249. [Google Scholar] [CrossRef]
- Chen, Y.; Tang, P.; Li, Y.; Chen, L.; Jiang, H.; Liu, Y.; Luo, X. Effect of attapulgite on heavy metals passivation and microbial community during co-composting of river sediment with agricultural wastes. Chemosphere 2022, 299, 134347. [Google Scholar] [CrossRef]
- Zhao, Y.; Jiang, C.; Yang, L.; Liu, N. Adsorption of Lactobacillus acidophilus on attapulgite: Kinetics and thermodynamics and survival in simulated gastrointestinal conditions. LWT 2017, 78, 189–197. [Google Scholar] [CrossRef]
- Tsou, C.H.; Guo, J.; Lei, J.A.; De Guzman, M.R.; Suen, M.C. Characterizing attapulgite-reinforced nanocomposites of poly (lactic acid). Polym. Sci. Ser. A 2020, 62, 732–743. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, Y.; Jiang, J.; Yao, J. Designing of recyclable attapulgite for wastewater treatments: A review. ACS Sustain. Chem. Eng. 2018, 7, 1855–1869. [Google Scholar] [CrossRef]
- Anang, E.; Hong, L.; Fan, X.; Asamoah, E.N. Attapulgite supported nanoscale zero-valent iron in wastewater treatment and groundwater remediation: Synthesis, application, performance and limitation. Environ. Technol. Rev. 2022, 11, 1–17. [Google Scholar] [CrossRef]
- Song, S.; Liu, Z.; Zhang, J.; Jiao, C.; Ding, L.; Yang, S. Synthesis and adsorption properties of novel bacterial cellulose/graphene oxide/attapulgite materials for Cu and Pb Ions in aqueous solutions. Materials 2020, 13, 3703. [Google Scholar] [CrossRef] [PubMed]
- Elbassyoni, S.; Kamoun, E.A.; Taha, T.H. Effect of Egyptian attapulgite clay on the properties of PVA-HES–clay nanocomposite hydrogel membranes for wound dressing applications. Arab. J. Sci. Eng. 2020, 45, 4737–4749. [Google Scholar] [CrossRef]
- Farid, E.; Kamoun, E.A.; Taha, T.H.; El-Dissouky, A.; Khalil, T.E. PVA/CMC/attapulgite clay composite hydrogel membranes for biomedical applications: Factors affecting hydrogel membranes crosslinking and bio-evaluation tests. J. Polym. Environ. 2022, 30, 4675–4689. [Google Scholar] [CrossRef]
- Ma, Z.L.; Tsou, C.H.; Cui, X.; Wu, J.; Lin, L.; Wen, H.; Liao, B. Barrier properties of nanocomposites from high-density polyethylene reinforced with natural attapulgite. Curr. Res. Green Sustain. Chem. 2022, 5, 100314. [Google Scholar] [CrossRef]
- Dingwell, D.B. The density of titanium (IV) oxide liquid. J. Am. Ceram. Soc. 1991, 74, 2718–2719. [Google Scholar]
- Dong, K.; Qiu, F.; Guo, X.; Xu, J.; Yang, D.; He, K. Polyurethane–attapulgite porous material: Preparation, characterization, and application for dye adsorption. J. Appl. Polym. Sci. 2013, 129, 1697–1706. [Google Scholar] [CrossRef]
- Li, A.; Wang, A.; Chen, J. Studies on poly (acrylic acid)/attapulgite superabsorbent composite. I. Synthesis and characterization. J. Appl. Polym. Sci. 2004, 92, 1596–1603. [Google Scholar] [CrossRef]
- Masci, G.; Husu, I.; Murtas, S.; Piozzi, A.; Crescenzi, V. Physical hydrogels of poly (vinyl alcohol) with different syndiotacticity prepared in the presence of lactosilated chitosan derivatives. Macromol. Biosci. 2003, 3, 455–461. [Google Scholar] [CrossRef]
- Pirzada, T.; Shah, S.S. Potential of PVA templated Silica Xerogels as Adsorbents for Rhodamine 6G. J. Korean Chem. Soc. 2011, 55, 1024–1029. [Google Scholar] [CrossRef]
- Ma, X.D.; Qian, X.F.; Yin, J.; Xi, H.A.; Zhu, Z.K. Preparation and characterization of polyvinyl alcohol-capped CdSe nanoparticles at room temperature. J. Colloid Interface Sci. 2002, 252, 77–81. [Google Scholar] [CrossRef]
- García-Cerda, L.A.; Escareno-Castro, M.U.; Salazar-Zertuche, M. Preparation and characterization of polyvinyl alcohol–cobalt ferrite nanocomposites. J. Non-Cryst. Solids 2007, 353, 808–810. [Google Scholar] [CrossRef]
- Yang, C.C.; Lee, Y.J.; Yang, J.M. Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J. Power Sources 2009, 188, 30–37. [Google Scholar] [CrossRef]
- Liu, D.; Sun, X.; Tian, H.; Maiti, S.; Ma, Z. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites. Cellulose 2013, 20, 2981–2989. [Google Scholar] [CrossRef]
- Niknia, N.; Kadkhodaee, R. Gum tragacanth-polyvinyl alcohol cryogel and xerogel blends for oral delivery of silymarin: Structural characterization and mucoadhesive property. Carbohydr. Polym. 2017, 177, 315–323. [Google Scholar] [CrossRef]
- Khan, M.U.A.; Yaqoob, Z.; Ansari, M.N.M.; Razak, S.I.A.; Raza, M.A.; Sajjad, A.; Busra, F.M. Chitosan/poly vinyl alcohol/graphene oxide based pH-responsive composite hydrogel films: Drug release, anti-microbial and cell viability studies. Polymers 2021, 13, 3124. [Google Scholar] [CrossRef]
- Bajpai, A.K.; Bhatt, R.; Katare, R. Atomic force microscopy enabled roughness analysis of nanostructured poly (diaminonaphthalene) doped poly (vinyl alcohol) conducting polymer thin films. Micron 2016, 90, 12–17. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, H.; Yang, X.; Lv, J.; Zhou, L.; Luo, Z. Hydrophilic modification on polyvinyl alcohol membrane by hyaluronic acid. Biomed. Mater. 2019, 14, 055009. [Google Scholar] [CrossRef]
- Wenzel, R.N. Surface roughness and contact angle. J. Phys. Chem. 1949, 53, 1466–1467. [Google Scholar] [CrossRef]
- Jiao, L.; Xiao, H.; Wang, Q.; Sun, J. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab. 2013, 98, 2687–2696. [Google Scholar] [CrossRef]
- Azahari, N.A.; Othman, N.; Ismail, H. Effect of attapulgite clay on biodegradability and tensile properties of polyvinyl alcohol/corn starch blend film. Int. J. Polym. Mater. 2012, 61, 1065–1078. [Google Scholar] [CrossRef]
- Tsou, C.H.; Zhao, L.; Gao, C.; Duan, H.; Lin, X.; Wen, Y.; De Guzman, M.R. Characterization of network bonding created by intercalated functionalized graphene and polyvinyl alcohol in nanocomposite films for reinforced mechanical properties and barrier performance. Nanotechnology 2020, 31, 385703. [Google Scholar] [CrossRef]
- Kanimozhi, K.; Basha, S.K.; Kumari, V.S.; Kaviyarasu, K. Development of biomimetic hybrid porous scaffold of chitosan/polyvinyl alcohol/carboxymethyl cellulose by freeze-dried and salt leached technique. J. Nanosci. Nanotechnol. 2018, 18, 4916–4922. [Google Scholar] [CrossRef]
- Zhou, T.; Cheng, X.; Pan, Y.; Li, C.; Gong, L. Mechanical performance and thermal stability of polyvinyl alcohol–cellulose aerogels by freeze drying. Cellulose 2019, 26, 1747–1755. [Google Scholar] [CrossRef]
- Tsou, C.H.; Zeng, R.; Wan, N.; De Guzman, M.R.; Hu, X.F.; Yang, T.; Sun, Y.L. Biological oyster shell waste enhances polyphenylene sulfide composites and endows them with antibacterial properties. Chin. J. Chem. Eng. 2022, 57, 118–131. [Google Scholar] [CrossRef]
- Tsou, C.H.; Ge, F.F.; Lin, L.; Yuan, S.; De Guzman, M.R.; Potiyaraj, P. Barrier and Biodegradable Properties of Poly (butylene adipate-co-terephthalate) Reinforced with ZnO-Decorated Graphene Rendering it Antibacterial. ACS Appl. Polym. Mater. 2023, 5, 1681–1695. [Google Scholar] [CrossRef]
- Yuan, X.; Li, C.; Guan, G.; Liu, X.; Xiao, Y.; Zhang, D. Synthesis and characterization of poly (ethylene terephthalate)/attapulgite nanocomposites. J. Appl. Polym. Sci. 2007, 103, 1279–1286. [Google Scholar] [CrossRef]
- Tsou, C.H.; Zeng, R.; Tsou, C.Y.; Chen, J.C.; Sun, Y.L.; Ma, Z.L.; Wu, C.S. Mechanical, Hydrophobic, and Barrier Properties of Nanocomposites of Modified Polypropylene Reinforced with Low-Content Attapulgite. Polymers 2022, 14, 3696. [Google Scholar] [CrossRef]
Sample | PVA (%) | ATT (%) |
---|---|---|
PVA | 100.00 | 0 |
PVA/ATT0.25 | 99.75 | 0.25 |
PVA/ATT0.5 | 99.50 | 0.50 |
PVA/ATT0.75 | 99.25 | 0.75 |
PVA/ATT1 | 99.00 | 1 |
Samples | T1 (°C) | T2 (°C) | DTG Peak 1 (°C) | DTG Peak 2 (°C) |
---|---|---|---|---|
PVA | 247.6 | 358.4 | 272.9 | 438.4 |
PVA/ATT0.25 | 255.3 | 382.7 | 283.1 | 442.9 |
PVA/ATT0.5 | 253.1 | 393.8 | 285.0 | 445.4 |
PVA/ATT0.75 | 251.9 | 336.6 | 280.7 | 445.4 |
PVA/ATT1 | 243.8 | 335.6 | 272.9 | 449.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsou, C.-H.; Shui, Y.-J.; Du, J.; Yao, W.-H.; Wu, C.-S.; Suen, M.-C.; Chen, S. Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol. Polymers 2023, 15, 2535. https://doi.org/10.3390/polym15112535
Tsou C-H, Shui Y-J, Du J, Yao W-H, Wu C-S, Suen M-C, Chen S. Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol. Polymers. 2023; 15(11):2535. https://doi.org/10.3390/polym15112535
Chicago/Turabian StyleTsou, Chi-Hui, Yu-Jie Shui, Juan Du, Wei-Hua Yao, Chin-San Wu, Maw-Cherng Suen, and Shuang Chen. 2023. "Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol" Polymers 15, no. 11: 2535. https://doi.org/10.3390/polym15112535
APA StyleTsou, C. -H., Shui, Y. -J., Du, J., Yao, W. -H., Wu, C. -S., Suen, M. -C., & Chen, S. (2023). Characterization and Morphology of Nanocomposite Hydrogels with a 3D Network Structure Prepared Using Attapulgite-Enhanced Polyvinyl Alcohol. Polymers, 15(11), 2535. https://doi.org/10.3390/polym15112535