Exploring the Potential of Seaweed Derivatives for the Development of Biodegradable Plastics: A Comparative Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Kappaphycus Alvarezii (KA)
2.3. Extraction of κappa Carrageenan (KC)
2.4. Extraction of Refined Carrageenan (RC)
2.5. Extraction of Semi-Refined Carregeenan (SRC)
2.6. Preparation of Bio-Nanocomposite Films
2.7. Tensile Strength (TS) and Elongation at Break (EAB)
2.8. Thickness Measurement
2.9. Opacity Measurement
2.10. Solubility in Water
2.11. Moisture Content
2.12. FT-IR Spectroscopy
2.13. Thermal Properties
2.14. Scanning Electron Microscopy
2.15. Water Vapor Permeability
2.16. Quantum Mechanic Simulation
3. Results
3.1. Mechanical Properties of Films
3.2. Physical Properties of Films
3.3. FT-IR Spectroscopy
3.4. Thermal Stability
3.5. Morphology of Film
3.6. Water Vapor Permeability
3.7. Quantum Mechanic Simulation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferreira, L.F.; Figueiredo, L.P.; Martins, M.A.; Luvizaro, L.B.; de Blara, B.R.B.; Oliveira, C.R.d.; Júnior, M.G.; Tonoli, G.H.D.; Dias, M.V. Active coatings of thermoplastic starch and chitosan with alpha-tocopherol/bentonite for special green coffee beans. Int. J. Biol. Macromol. 2021, 170, 810–819. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tian, X.; Jin, R.; Li, D. Preparation and characterization of nanocomposite films containing starch and cellulose nanofibers. Ind. Crop. Prod. 2018, 123, 654–660. [Google Scholar] [CrossRef]
- Fabra, M.J.; Talens, P.; Chiralt, A. Effect of alginate and λ-carrageenan on tensile properties and water vapour permeability of sodium caseinate–lipid based films. Carbohydr. Polym. 2008, 74, 419–426. [Google Scholar] [CrossRef]
- Gereniu, C.R.N.; Saravana, P.S.; Getachew, A.T.; Chun, B.-S. Characteristics of functional materials recovered from Solomon Islands red seaweed (Kappaphycus alvarezii) using pressurized hot water extraction. J. Appl. Phycol. 2017, 29, 1609–1621. [Google Scholar] [CrossRef]
- Das, A.K.; Prasad, K. Extraction of plant growth regulators present in Kappaphycus alvarezii sap by imidazolium based ionic liquids: Detection and quantification by HPLC–DAD technique. Anal. Methods 2015, 7, 9064–9067. [Google Scholar] [CrossRef]
- Masarin, F.; Cedeno, F.R.P.; Chavez, E.G.S.; De Oliveira, L.E.; Gelli, V.C.; Monti, R. Chemical analysis and biorefinery of red algae Kappaphycus alvarezii for efficient production of glucose from residue of carrageenan extraction process. Biotechnol. Biofuels 2016, 9, 122. [Google Scholar] [CrossRef] [Green Version]
- Solorzano-Chavez, E.G.; Paz-Cedeno, F.R.; de Oliveira, L.E.; Gelli, V.C.; Monti, R.; de Oliveira, S.C.; Masarin, F. Evaluation of the Kappaphycus alvarezii growth under different environmental conditions and efficiency of the enzymatic hydrolysis of the residue generated in the carrageenan processing. Biomass Bioenergy 2019, 127, 105254. [Google Scholar] [CrossRef]
- Gunning, A.; Cairns, P.; Kirby, A.; Round, A.; Bixler, H.; Morris, V. Characterising semi-refined iota-carrageenan networks by atomic force microscopy. Carbohydr. Polym. 1998, 36, 67–72. [Google Scholar] [CrossRef]
- Abdul Khalil, H.; Banerjee, A.; Saurabh, C.K.; Tye, Y.; Suriani, A.; Mohamed, A.; Karim, A.; Rizal, S.; Paridah, M. Biodegradable films for fruits and vegetables packaging application: Preparation and properties. Food Eng. Rev. 2018, 10, 139–153. [Google Scholar] [CrossRef]
- Ajesh, K.V.; Hasan, M.; Mangaraj, S.; Pravitha, M.; Verma, D.K.; Srivastav, P.P. Trends in Edible Packaging Films and its Prospective Future in Food: A Review. Appl. Food Res. 2022, 2, 100118. [Google Scholar] [CrossRef]
- Warid, M.N.M.; Ariffin, H.; Hassan, M.A.; Shirai, Y. Optimization of superheated steam treatment to improve surface modification of oil palm biomass fiber. BioResources 2016, 11, 5780–5796. [Google Scholar]
- Dai, L.; Wang, B.; Long, Z.; Chen, L.; Zhang, D.; Guo, S. Properties of hydroxypropyl guar/TEMPO-oxidized cellulose nanofibrils composite films. Cellulose 2015, 22, 3117–3126. [Google Scholar] [CrossRef]
- Manuhara, G.J.; Praseptiangga, D.; Riyanto, R.A. Extraction and Characterization of Refined K-carrageenan of Red Algae [Kappaphycus alvarezii (Doty ex P.C. Silva, 1996)] Originated from Karimun Jawa Islands. Aquat. Procedia 2016, 7, 106–111. [Google Scholar] [CrossRef]
- Normah, O.; Nazarifah, I. Production of semi-refined carrageenan from locally available red seaweed, Eucheuma cottonii on a laboratory scale. J. Trop. Agric. Food Sci. 2003, 31, 207. [Google Scholar]
- Mohd Azman, N.A.; Gallego, M.G.; Segovia, F.; Abdullah, S.; Shaarani, S.M.; Almajano Pablos, M.P. Study of the Properties of Bearberry Leaf Extract as a Natural Antioxidant in Model Foods. Antioxidants 2016, 5, 11. [Google Scholar] [CrossRef] [Green Version]
- Farhan, A.; Hani, N.M. Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll. 2017, 64, 48–58. [Google Scholar] [CrossRef]
- Shojaee-Aliabadi, S.; Hosseini, H.; Mohammadifar, M.A.; Mohammadi, A.; Ghasemlou, M.; Hosseini, S.M.; Khaksar, R. Characterization of κ-carrageenan films incorporated plant essential oils with improved antimicrobial activity. Carbohydr. Polym. 2014, 101, 582–591. [Google Scholar] [CrossRef]
- Balqis, A.I.; Nor Khaizura, M.A.R.; Russly, A.R.; Nur Hanani, Z.A. Effects of plasticizers on the physicochemical properties of kappa-carrageenan films extracted from Eucheuma cottonii. Int. J. Biol. Macromol. 2017, 103, 721–732. [Google Scholar] [CrossRef]
- Adam, F.; Othman, N.A.; Yasin, N.H.M.; Cheng, C.K.; Azman, N.A.M. Evaluation of Reinforced and Green Bioplastic from Carrageenan Seaweed with Nanocellulose. Fibers Polym. 2022, 23, 2885–2896. [Google Scholar] [CrossRef]
- Nur Hanani, Z.A.; Roos, Y.H.; Kerry, J.P. Use of beef, pork and fish gelatin sources in the manufacture of films and assessment of their composition and mechanical properties. Food Hydrocoll. 2012, 29, 144–151. [Google Scholar] [CrossRef]
- Subramaniam, S.D.; Wan Yahaya, W.A.; Mohd Azman, N.A.; Mohd Arshad, Z.I.; Basrawi, F. Sustainable Carrageenan/Nanocomposite Films Incorporated with Optimized Zingiber officinale Extracts for Active Packaging Systems. Chem. Eng. Technol. 2023, 46. [Google Scholar] [CrossRef]
- Bagheri, V.; Ghanbarzadeh, B.; Ayaseh, A.; Ostadrahimi, A.; Ehsani, A.; Alizadeh-Sani, M.; Adun, P.A. The optimization of physico-mechanical properties of bionanocomposite films based on gluten/carboxymethyl cellulose/ cellulose nanofiber using response surface methodology. Polym. Test. 2019, 78, 105989. [Google Scholar] [CrossRef]
- Kaewtatip, K.; Thongmee, J. Studies on the structure and properties of thermoplastic starch/luffa fiber composites. Mater. Des. 2012, 40, 314–318. [Google Scholar] [CrossRef]
- Zare, Y. Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos. Part A Appl. Sci. Manuf. 2016, 84, 158–164. [Google Scholar] [CrossRef]
- Sogut, E.; Seydim, A.C. Development of Chitosan and Polycaprolactone based active bilayer films enhanced with nanocellulose and grape seed extract. Carbohydr. Polym. 2018, 195, 180–188. [Google Scholar] [CrossRef]
- Xu, Y.; Ren, X.; Hanna, M. Chitosan Clay Nano Composites Film Preparation and Characterization. J. Appl. Polym. Sci. 2006, 99, 1684–1691. [Google Scholar] [CrossRef]
- Innovations in Food Packaging, 2nd ed.; Han, J.H. (Ed.) Academic Press: San Diego, CA, USA, 2014; pp. 213–255. [Google Scholar] [CrossRef]
- Isselé, H.; Mercier, D.; Parry, G.; Estevez, R.; Vignoud, L.; Olagnon, C. Determination of the Young’s Modulus of a TiN Thin Film by Nanoindentation: Analytical Models and FEM Simulation. E-J. Surf. Sci. Nanotechnol. 2012, 10, 624–629. [Google Scholar] [CrossRef] [Green Version]
- Alizadeh-Sani, M.; Khezerlou, A.; Ehsani, A. Fabrication and characterization of the bionanocomposite film based on whey protein biopolymer loaded with TiO2 nanoparticles, cellulose nanofibers and rosemary essential oil. Ind. Crop. Prod. 2018, 124, 300–315. [Google Scholar] [CrossRef]
- Rodríguez, G.M.; Sibaja, J.C.; Espitia, P.J.P.; Otoni, C.G. Antioxidant active packaging based on papaya edible films incorporated with Moringa oleifera and ascorbic acid for food preservation. Food Hydrocoll. 2020, 103, 105630. [Google Scholar] [CrossRef]
- González, A.; Gastelú, G.; Barrera, G.N.; Ribotta, P.D.; Álvarez Igarzabal, C.I. Preparation and characterization of soy protein films reinforced with cellulose nanofibers obtained from soybean by-products. Food Hydrocoll. 2019, 89, 758–764. [Google Scholar] [CrossRef]
- Nur Fatin, N.R.; Nur Hanani, Z.A. Physicochemical characterization of kappa-carrageenan (Euchema cottoni) based films incorporated with various plant oils. Carbohydr. Polym. 2017, 157, 1479–1487. [Google Scholar] [CrossRef]
- Gong, G.; Pyo, J.; Mathew, A.P.; Oksman, K. Tensile behavior, morphology and viscoelastic analysis of cellulose nanofiber-reinforced (CNF) polyvinyl acetate (PVAc). Compos. Part A Appl. Sci. Manuf. 2011, 42, 1275–1282. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Carrageenan/agar-based functional film integrated with zinc sulfide nanoparticles and Pickering emulsion of tea tree essential oil for active packaging applications. Int. J. Biol. Macromol. 2021, 193, 2038–2046. [Google Scholar] [CrossRef]
- Wan Yahaya, W.A.; Abu Yazid, N.; Mohd Azman, N.A.; Almajano, M.P. Antioxidant Activities and Total Phenolic Content of Malaysian Herbs as Components of Active Packaging Film in Beef Patties. Antioxidants 2019, 8, 204. [Google Scholar] [CrossRef] [Green Version]
- Yahaya, W.A.W.; Subramaniam, S.D.; Azman, N.A.M.; Adam, F.; Almajano, M.P. Synthesis of Active Hybrid Films Reinforced with Cellulose Nanofibers as Active Packaging Material. Chem. Eng. Technol. 2022, 45, 1448–1453. [Google Scholar] [CrossRef]
- Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym. 2012, 90, 1609–1613. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocoll. 2019, 90, 500–507. [Google Scholar] [CrossRef]
- Yadav, M.; Chiu, F.-C. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films for sustainable packaging applications. Carbohydr. Polym. 2019, 211, 181–194. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J.; Kan, J.; Liu, J. Active/intelligent packaging films developed by immobilizing anthocyanins from purple sweetpotato and purple cabbage in locust bean gum, chitosan and κ-carrageenan-based matrices. Int. J. Biol. Macromol. 2022, 211, 238–248. [Google Scholar] [CrossRef]
- Kim, H.-J.; Roy, S.; Rhim, J.-W. Effects of various types of cellulose nanofibers on the physical properties of the CNF-based films. J. Environ. Chem. Eng. 2021, 9, 106043. [Google Scholar] [CrossRef]
- Ezati, P.; Priyadarshi, R.; Bang, Y.-J.; Rhim, J.-W. CMC and CNF-based intelligent pH-responsive color indicator films integrated with shikonin to monitor fish freshness. Food Control 2021, 126, 108046. [Google Scholar] [CrossRef]
- Woranuch, S.; Yoksan, R. Eugenol-loaded chitosan nanoparticles: II. Application in bio-based plastics for active packaging. Carbohydr. Polym. 2013, 96, 586–592. [Google Scholar] [CrossRef] [PubMed]
- Ab Ghani, M.H.; Salleh, M.N.; Chen, R.S.; Ahmad, S.; Yusof Hamid, M.R.; Hanafi, I.; Rajendran Royan, N.R. The effects of antioxidants content on mechanical properties and water absorption behaviour of biocomposites prepared by single screw extrusion process. Polym. J. 2014, 2014, 243078. [Google Scholar] [CrossRef]
- Abd Hamid, K.H.; Wan Yahaya, W.A.; Mohd Saupy, N.A.Z.; Almajano, M.P.; Mohd Azman, N.A. Semi-refined carrageenan film incorporated with α-tocopherol: Application in food model. J. Food Process. Preserv. 2019, 43, e13937. [Google Scholar] [CrossRef]
- Kong, I.; Degraeve, P.; Pui, L.P. Polysaccharide-Based Edible Films Incorporated with Essential Oil Nanoemulsions: Physico-Chemical, Mechanical Properties and Its Application in Food Preservation-A Review. Foods 2022, 11, 555. [Google Scholar] [CrossRef]
- Moura, M.; Avena-Bustillos, R.; McHugh, T.; Krochta, J.M.; Mattoso, L.H.C. Properties of Novel Hydroxypropyl Methylcellulose Films Containing Chitosan Nanoparticles. J. Food Sci. 2008, 73, N31–N37. [Google Scholar] [CrossRef]
- Soni, B.; Schilling, M.W.; Mahmoud, B. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties. Carbohydr. Polym. 2016, 151, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Espitia, P.J.P.; Soares, N.d.F.F.; Teófilo, R.F.; dos Reis Coimbra, J.S.; Vitor, D.M.; Batista, R.A.; Ferreira, S.O.; de Andrade, N.J.; Medeiros, E.A.A. Physical–mechanical and antimicrobial properties of nanocomposite films with pediocin and ZnO nanoparticles. Carbohydr. Polym. 2013, 94, 199–208. [Google Scholar] [CrossRef]
- Kanmani, P.; Rhim, J.-W. Properties and characterization of bionanocomposite films prepared with various biopolymers and ZnO nanoparticles. Carbohydr. Polym. 2014, 106, 190–199. [Google Scholar] [CrossRef]
- Paisoonsin, S.; Pornsunthorntawee, O.; Rujiravanit, R. Preparation and characterization of ZnO-deposited DBD plasma-treated PP packaging film with antibacterial activities. Appl. Surf. Sci. 2013, 273, 824–835. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.-W. Carrageenan-based hydrogels and films: Effect of ZnO and CuO nanoparticles on the physical, mechanical, and antimicrobial properties. Food Hydrocoll. 2017, 67, 45–53. [Google Scholar] [CrossRef]
- Oun, A.A.; Rhim, J.-W. Preparation and characterization of sodium carboxymethyl cellulose/cotton linter cellulose nanofibril composite films. Carbohydr. Polym. 2015, 127, 101–109. [Google Scholar] [CrossRef]
- BenBettaïeb, N.; Karbowiak, T.; Bornaz, S.; Debeaufort, F. Spectroscopic analyses of the influence of electron beam irradiation doses on mechanical, transport properties and microstructure of chitosan-fish gelatin blend films. Food Hydrocoll. 2015, 46, 37–51. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Almasi, H.; Entezami, A.A. Physical properties of edible modified starch/carboxymethyl cellulose films. Innov. Food Sci. Emerg. Technol. 2010, 11, 697–702. [Google Scholar] [CrossRef]
- Kollman, P.A.; Allen, L.C. Theory of the hydrogen bond. Chem. Rev. 1972, 72, 283–303. [Google Scholar] [CrossRef]
Sample | Seaweed Derivatives | Glycerol | Cellulose Nanofiber |
---|---|---|---|
KA | KA | 0 | 0 |
KA + G | KA | 0.9 | 0 |
KA + G + 5%CNF | KA | 0.9 | 5 |
KA + G + 10%CNF | KA | 0.9 | 10 |
KA + G + 15%CNF | KA | 0.9 | 15 |
KC | KC | 0 | 0 |
KC + G | KC | 0.9 | 0 |
KC + G + 5%CNF | KC | 0.9 | 5 |
KC + G + 10%CNF | KC | 0.9 | 10 |
KC + G + 15%CNF | KC | 0.9 | 15 |
RC | RC | 0 | 0 |
RC + G | RC | 0.9 | 0 |
RC + G + 5%CNF | RC | 0.9 | 5 |
RC + G + 10%CNF | RC | 0.9 | 10 |
RC + G + 15%CNF | RC | 0.9 | 15 |
SRC | SRC | 0 | 0 |
SRC + G | SRC | 0.9 | 0 |
SRC + G + 5%CNF | SRC | 0.9 | 5 |
SRC + G + 10%CNF | SRC | 0.9 | 10 |
SRC + G + 15%CNF | SRC | 0.9 | 15 |
Sample | Mechanical Properties | ||
---|---|---|---|
TS (Mpa) | EAB (%) | Young Modulus | |
KA | 11.36 ± 1.22 a | 1.99 ± 1.03 a | 5.71 |
KA + G | 15.02 ± 1.64 b | 5.54 ± 2.09 b | 2.71 |
KA + G + 5%CNF | 16.79 ±0.86 c | 5.96 ± 1.64 c | 2.82 |
KA + G + 10%CNF | 18.50 ± 0.53 d | 6.58 ± 1.12 d | 2.81 |
KA + G + 15%CNF | 20.21 ± 1.08 e | 9.40 ± 1.39 e | 2.15 |
KC | 46.87 ± 1.1 a | 0.97 ± 0.03 a | 48.23 |
KC + G | 18.31 ± 0.04 b | 22.32 ± 0.13 b | 0.82 |
KC + G + 5%CNF | 24.22 ±0.16 c | 20.27 ± 0.20 c | 1.19 |
KC + G + 10%CNF | 24.97 ± 2.83 d | 15.22 ± 1.39 d | 1.64 |
KC + G + 15%CNF | 22.08 ± 1.40 e | 13.45 ± 0.99 e | 1.64 |
RC | 59.03 ± 0.48 a | 2.65 ± 0.13 a | 22.27 |
RC + G | 40.63 ± 0.52 b | 18.46 ± 0.16 b | 2.20 |
RC + G + 5%CNF | 42.90 ±6.98 c | 11.10 ± 1.73 c | 3.86 |
RC + G + 10%CNF | 48.23 ± 2.54 d | 8.22 ± 1.68 d | 5.87 |
RC + G + 15%CNF | 41.39 ± 7.34 e | 12.86 ± 2.71 e | 3.22 |
SRC | 50.83 ± 1.52 a | 1.02 ± 0.13 a | 49.83 |
SRC + G | 36.08 ± 1.79 b | 15.82 ± 1.06 b | 2.28 |
SRC + G + 5%CNF | 39.63 ±0.95 c | 23.56 ± 3.88 c | 1.68 |
SRC + G + 10%CNF | 45.98 ± 0.57 d | 19.18 ± 0.78 d | 2.39 |
SRC + G + 15%CNF | 26.72 ± 2.28 e | 20.28 ± 3.42 e | 1.32 |
Sample | Physical Properties | |||
---|---|---|---|---|
Thickness (mm) | Opacity | Water Solubility (%) | Moisture Content (%) | |
KA | 0.060 ±0.00 | 4.50 ± 0.40 b | 60.00 ± 4.60 b | 1.64 ± 0.27 b |
KA + G | 0.060 ±0.00 | 3.86 ± 0.26 b | 67.92 ± 0.30 c | 39.23 ± 0.33 c |
KA + G + 5%CNF | 0.060 ± 0.00 | 5.63 ± 0.50 c | 57.01 ± 4.02 d | 30.18 ± 1.13 d |
KA + G + 10%CNF | 0.060 ± 0.00 | 7.32 ± 0.25 c | 47.22 ± 3.48 e | 28.85 ± 0.12 d |
KA + G + 15%CNF | 0.060 ± 0.00 | 7.29 ± 0.18 c | 43.92 ± 0.39 f | 27.31 ± 0.39 e |
KC | 0.040 ± 0.00 | 9.98 ± 1.10 a | 60.52 ± 5.40 a | 1.98 ± 0.07 a |
KC + G | 0.092 ± 0.01 b | 1.90 ± 0.12 b | 80.00 ± 6.72 a | 35.83 ± 0.16 b |
KC + G + 5%CNF | 0.092 ± 0.01 b | 3.09 ± 0.25 b | 55.45 ± 1.36 b | 30.27 ± 1.05 c |
KC + G + 10%CNF | 0.092 ± 0.01 c | 3.92 ± 0.03 c | 53.26 ± 0.66 c | 30.12 ± 0.08 d |
KC + G + 15%CNF | 0.100 ± 0.00 | 3.93 ± 0.02 c | 53.01 ± 5.92 d | 29.62 ± 0.29 d |
RC | 0.020 ± 0.00 | 3.65 ± 0.48 c | 82.00 ± 0.57 e | 8.48 ± 0.36 e |
RC + G | 0.024 ± 0.01 c | 2.68 ± 0.30 c | 88.03 ± 7.89 f | 35.61 ± 0.16 e |
RC + G + 5%CNF | 0.040 ± 0.00 | 3.51 ± 0.29 a | 68.18 ± 0.81 a | 29.08 ± 0.54 a |
RC + G + 10%CNF | 0.040 ± 0.00 | 6.94 ± 1.38 b | 66.71 ± 3.68 a | 29.06 ± 0.95 b |
RC + G + 15%CNF | 0.040 ± 0.00 | 7.27 ± 0.78 b | 66.00 ± 0.54 b | 26.24 ± 0.41 c |
SRC | 0.068 ± 0.01 c | 10.88 ± 0.5 c | 66.69 ± 2.09 c | 1.50 ± 0.08 d |
SRC + G | 0.072 ± 0.01 c | 7.91 ± 0.44 c | 93.19 ± 6.18 d | 31.85 ± 0.48 d |
SRC + G + 5%CNF | 0.072 ± 0.01 c | 8.62 ± 0.02 c | 53.04 ± 2.59 e | 29.36 ± 0.39 e |
SRC + G + 10%CNF | 0.080 ± 0.00 | 8.68 ± 0.17 c | 42.59 ± 7.78 a | 28.84 ± 0.71 e |
SRC + G + 15%CNF | 0.088 ± 0.01 c | 8.85 ± 0.85 a | 40.00 ± 2.86 a | 27.35 ± 0.29 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Yahaya, W.A.; Azman, N.A.M.; Adam, F.; Subramaniam, S.D.; Abd Hamid, K.H.; Almajano, M.P. Exploring the Potential of Seaweed Derivatives for the Development of Biodegradable Plastics: A Comparative Study. Polymers 2023, 15, 2884. https://doi.org/10.3390/polym15132884
Wan Yahaya WA, Azman NAM, Adam F, Subramaniam SD, Abd Hamid KH, Almajano MP. Exploring the Potential of Seaweed Derivatives for the Development of Biodegradable Plastics: A Comparative Study. Polymers. 2023; 15(13):2884. https://doi.org/10.3390/polym15132884
Chicago/Turabian StyleWan Yahaya, Wan Amnin, Nurul Aini Mohd Azman, Fatmawati Adam, Sarmilaah Dewi Subramaniam, Khadijah Husna Abd Hamid, and Maria Pilar Almajano. 2023. "Exploring the Potential of Seaweed Derivatives for the Development of Biodegradable Plastics: A Comparative Study" Polymers 15, no. 13: 2884. https://doi.org/10.3390/polym15132884
APA StyleWan Yahaya, W. A., Azman, N. A. M., Adam, F., Subramaniam, S. D., Abd Hamid, K. H., & Almajano, M. P. (2023). Exploring the Potential of Seaweed Derivatives for the Development of Biodegradable Plastics: A Comparative Study. Polymers, 15(13), 2884. https://doi.org/10.3390/polym15132884