Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs
Abstract
:1. Introduction
2. Materials and Method
2.1. Materials
2.2. Synthesizing Green Polymeric Nanocomposites (NC, WNC, and ENC)
2.3. CA, IFT, and Imbibition Tests
3. Results and Discussion
3.1. Chemical Composition and Surface Morphology of Nanocomposites
3.2. Results of the IFT, CA, and Imbibition Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, J.; Wang, W.; Gu, Y. Dynamic interfacial tension phenomenon and wettability alteration of crude oil-rock-alkaline-surfactant solution systems. In Proceedings of the SPE Annual Technical Conference and Exhibition, Houston, TX, USA, 26–29 September 2004; pp. 1803–1811. [Google Scholar] [CrossRef]
- Khlaifat, A.L.; Dakhlallah, D.; Sufyan, F. A Critical Review of Alkaline Flooding: Mechanism, Hybrid Flooding Methods, Laboratory Work, Pilot Projects, and Field Applications. Energies 2022, 15, 3820. [Google Scholar] [CrossRef]
- Fang, Y.; Yang, E.; Guo, S.; Cui, C.; Zhou, C. Study on micro remaining oil distribution of polymer flooding in Class-II B oil layer of Daqing Oilfield. Energy 2022, 254, 124479. [Google Scholar] [CrossRef]
- Zhong, H.; He, Y.; Yang, E.; Bi, Y.; Yang, T. Modeling of microflow during viscoelastic polymer flooding in heterogenous reservoirs of Daqing Oilfield. J. Pet. Sci. Eng. 2022, 210, 110091. [Google Scholar] [CrossRef]
- Saxena, N.; Kumar, A.; Mandal, A. Adsorption analysis of natural anionic surfactant for enhanced oil recovery: The role of mineralogy, salinity, alkalinity and nanoparticles. J. Pet. Sci. Eng. 2019, 173, 1264–1283. [Google Scholar] [CrossRef]
- Kesarwani, H.; Saxena, A.; Mandal, A.; Sharma, S. Anionic/nonionic surfactant mixture for enhanced oil recovery through the investigation of adsorption, interfacial, rheological, and rock wetting characteristics. Energy Fuels 2021, 35, 3065–3078. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Hassanbeygi, M.; Kharrat, R. The Effect of Temperature and Injection Rate during Water Flooding Using Carbonate Core Samples: An Experimental Approach. Reserv. Eng. Iran. J. Oil Gas Sci. Technol. 2016, 5, 18–24. [Google Scholar]
- Ahmadi, Y.; Malekpour, M.; Kikhavani, T.; Bayati, B. The study of the spontaneous oil imbibition in the presence of new polymer-coated nanocomposites compatible with reservoir conditions. Pet. Sci. Technol. 2022. [Google Scholar] [CrossRef]
- Xu, Z.X.; Li, S.Y.; Li, B.F.; Chen, D.Q.; Liu, Z.Y.; Li, Z.M. A review of development methods and EOR technologies for carbonate reservoirs. Pet. Sci. 2020, 17, 990–1013. [Google Scholar] [CrossRef]
- Rodriguez, E.; Roberts, M.R.; Yu, H.; Huh, C.; Bryant, S.L. Enhanced migration of surface-treated nanoparticles in sedimentary rocks. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 4–7 October 2009; Volume 4, pp. 2058–2078. [Google Scholar] [CrossRef]
- Taborda, E.A.; Alvarado, V.; Franco, C.A.; Cortés, F.B. Rheological demonstration of alteration in the heavy crude oil fluid structure upon addition of nanoparticles. Fuel 2017, 189, 322–333. [Google Scholar] [CrossRef]
- Jafarbeigi, E.; Ahmadi, Y.; Mansouri, M.; Ayatollahi, S. Experimental Core Flooding Investigation of New ZnO-γAl2O3 Nanocomposites for Enhanced Oil Recovery in Carbonate Reservoirs. ACS Omega 2022, 7, 39107–39121. [Google Scholar] [CrossRef]
- Jafarbeigi, E.; Kamari, E.; Salimi, F.; Mohammadidoust, A. Experimental study of the effects of a novel nanoparticle on enhanced oil recovery in carbonate porous media. J. Pet. Sci. Eng. 2020, 195, 107602. [Google Scholar] [CrossRef]
- Hassan, Y.M.; Guan, B.H.; Chuan, L.K.; Sikiru, S.; Hamza, M.F.; Halilu, A.; Adam, A.A.; Abdulkadir, B.A.; Ayub, S. Stability and viscosity of zinc oxide–silicon dioxide nanocomposite in synthetic seawater supported by surfactant for enhanced oil recovery. Nano-Struct. Nano-Objects 2022, 31, 100902. [Google Scholar] [CrossRef]
- Jafarbeigi, E.; Salimi, F.; Kamari, E.; Mansouri, M. Effects of modified graphene oxide (GO) nanofluid on wettability and IFT changes: Experimental study for EOR applications. Pet. Sci. 2022, 19, 1779–1792. [Google Scholar] [CrossRef]
- Jafarbeigi, E.; Mohammadidoust, A.; Ranjbar, B. A review on applications of nanoparticles in the enhanced oil recovery in carbonate reservoirs. Pet. Sci. Technol. 2022, 40, 1811–1828. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Mansouri, M. An experimental investigation of using Ni-doped ZnO–ZrO2 nanoparticles as a new asphaltene deposition inhibitor in ultra low carbonate porous media. Energy Sources Part A Recover. Util. Environ. Eff. 2022, 44, 9429–9447. [Google Scholar] [CrossRef]
- Izadi, N.; Nasernejad, B. Newly engineered alumina quantum dot-based nanofluid in enhanced oil recovery at reservoir conditions. Sci. Rep. 2022, 12, 9505. [Google Scholar] [CrossRef]
- Esmaeili-Faraj, S.H.; Hassanzadeh, A.; Shakeriankhoo, F.; Hosseini, S.; Vaferi, B. Diesel fuel desulfurization by alumina/polymer nanocomposite membrane: Experimental analysis and modeling by the response surface methodology. Chem. Eng. Process. Process Intensif. 2021, 164, 108396. [Google Scholar] [CrossRef]
- Ali, J.A.; Kolo, K.; Khaksar Manshad, A.; Stephen, K.D. Low-Salinity Polymeric Nanofluid-Enhanced Oil Recovery Using Green Polymer-Coated ZnO/SiO2 Nanocomposites in the Upper Qamchuqa Formation in Kurdistan Region, Iraq. Energy Fuels 2019, 33, 927–937. [Google Scholar] [CrossRef]
- Tohidian, M.; Ghaffarian, S.R.; Nouri, M.; Jaafarnia, E.; Haghighi, A.H. Polyelectrolyte nanocomposite membranes using imidazole-functionalized nanosilica for fuel cell applications. J. Macromol. Sci. Part B 2015, 54, 17–31. [Google Scholar] [CrossRef]
- Xue, B.; Yang, Q.; Xia, K.; Li, Z.; Chen, G.Y.; Zhang, D.; Zhou, X. An AuNPs/mesoporous NiO/nickel foam nanocomposite as a miniaturized electrode for heavy metal detection in groundwater. Engineering 2022. [Google Scholar] [CrossRef]
- Yu, H.; Zhu, J.; Qiao, R.; Zhao, N.; Zhao, M.; Kong, L. Facile Preparation and Controllable Absorption of a Composite Based on PMo12/Ag Nanoparticles: Photodegradation Activity and Mechanism. ChemistrySelect 2022, 7, e202103668. [Google Scholar] [CrossRef]
- Ali, J.; Manshad, A.K.; Imani, I.; Sajadi, S.M.; Keshavarz, A. Greenly Synthesized Magnetite@SiO2@Xanthan Nanocomposites and Its Application in Enhanced Oil Recovery: IFT Reduction and Wettability Alteration. Arab. J. Sci. Eng. 2020, 45, 7751–7761. [Google Scholar] [CrossRef]
- Rind, I.K.; Tuzen, M.; Sarı, A.; Lanjwani, M.F.; Memon, N.; Saleh, T.A. Synthesis of TiO2 nanoparticles loaded on magnetite nanoparticles modified kaolinite clay (KC) and their efficiency for As (III) adsorption. Chem. Eng. Res. Des. 2023, 191, 523–536. [Google Scholar] [CrossRef]
- Emadi, S.; Shadizadeh, S.R.; Manshad, A.K.; Rahimi, A.M.; Mohammadi, A.H. Effect of nano silica particles on Interfacial Tension (IFT) and mobility control of natural surfactant (Cedr Extraction) solution in enhanced oil recovery process with nano—Surfactant flooding. J. Mol. Liq. 2017, 248, 163–167. [Google Scholar] [CrossRef]
- Maleki, A.; Sedaee, B.; Bahramian, A.; Gharechelou, S.; Sarlak, N.; Mehdizad, A.; reza Rasaei, M.; Dehghan, A. Effect of alumina and silica nanocomposite based on polyacrylamide on light and heavy oil recovery in presence of formation water using micromodel. Petroleum 2023. [Google Scholar] [CrossRef]
- Fu, X.; Qin, F.; Liu, T.; Zhang, X. Enhanced Oil Recovery Performance and Solution Properties of Hydrophobic Associative Xanthan Gum. Energy Fuels 2022, 36, 181–194. [Google Scholar] [CrossRef]
- Fawaz, J.; Mittal, V. Synthesis of polymer nanocomposites: Review of various techniques. In Synthesis Techniques for Polymer Nanocomposites; Mittal, V., Ed.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–30. [Google Scholar] [CrossRef]
- Navaie, F.; Esmaeilnezhad, E.; Choi, H.J. Xanthan gum-added natural surfactant solution of Chuback: A green and clean technique for enhanced oil recovery. J. Mol. Liq. 2022, 354, 118909. [Google Scholar] [CrossRef]
- Motraghi, F.; Manshad, A.K.; Akbari, M.; Ali, J.A.; Sajadi, S.M.; Iglauer, S.; Keshavarz, A. Interfacial tension reduction of hybrid crude-oil/mutual-solvent systems under the influence of water salinity, temperature and green SiO2/KCl/Xanthan nanocomposites. Fuel 2023, 340, 127464. [Google Scholar] [CrossRef]
- Aristizábal-Fontal, J.E.; Cortés, F.B.; Franco, C.A. Viscosity reduction of extra heavy crude oil by magnetite nanoparticle-based ferrofluids. Adsorpt. Sci. Technol. 2018, 36, 23–45. [Google Scholar] [CrossRef]
- Betancur, S.; Franco, C.A.; Cortés, F.B. Magnetite-silica nanoparticles with a core-shell structure for inhibiting the formation damage caused by the precipitation/deposition of asphaltene. In Asphaltenes: Fundamentals, Applications and Future Developments; Nova Science Publishers, Inc.: New York, NY, USA, 2016; pp. 85–138. [Google Scholar]
- Anwar, A.; Masri, A.; Rao, K.; Rajendran, K.; Khan, N.A.; Shah, M.R.; Siddiqui, R. Antimicrobial activities of green synthesized gums-stabilized nanoparticles loaded with flavonoids. Sci. Rep. 2019, 9, 3122. [Google Scholar] [CrossRef]
- Selim, Y.A.; Azb, M.A.; Ragab, I.; HM Abd El-Azim, M. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 2020, 10, 3445. [Google Scholar] [CrossRef] [Green Version]
- Duan, H.; Wang, D.; Li, Y. Green chemistry for nanoparticle synthesis. Chem. Soc. Rev. 2015, 44, 5778–5792. [Google Scholar] [CrossRef] [PubMed]
- Quadrelli, E.A. 25 years of energy and green chemistry: Saving, storing, distributing and using energy responsibly. Green Chem. 2016, 18, 328–330. [Google Scholar] [CrossRef]
- Ahmadi, Y.; Javadi, F.; Kikhavandi, T. Effect of different salinity on low permeability carbonate reservoir recovery using a new green polymeric nanocomposites. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 1091–1103. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Khan, N.; Zhu, C.; Gao, Y. Effects of the Surfactant, Polymer, and Crude Oil Properties on the Formation and Stabilization of Oil-Based Foam Liquid Films: Insights from the Microscale. J. Mol. Liq. 2023, 373, 121194. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Hao, J.; Wang, W. Study of almond shell characteristics. Materials 2018, 11, 1782. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Li, Y.; Hou, Y. Effects of alkalinity of ionic liquids on the structure of biomass in pretreatment process. Wood Sci. Technol. 2019, 53, 177–189. [Google Scholar] [CrossRef]
- Scatolino, M.V.; Dias, M.C.; Silva, D.W.; Bufalino, L.; Martins, M.A.; Piccoli, R.H.; Tonoli, G.H.D.; Londero, A.A.; Neto, V.O.; Mendes, L.M. Tannin-stabilized silver nanoparticles and citric acid added associated to cellulose nanofibrils: Effect on film antimicrobial properties. SN Appl. Sci. 2019, 1243. [Google Scholar] [CrossRef] [Green Version]
- Rashid, F. Experimental Investigation of the Effect of Nanoparticles and Polymer on Interfacial Tension between Oil and Water during Enhanced Oil Recovery (EOR). Ph.D. Thesis, University of Salford, Salford, UK, 2021. [Google Scholar]
- Joonaki, E.; Ghanaatian, S. The application of nanofluids for enhanced oil recovery: Effects on interfacial tension and coreflooding process. Pet. Sci. Technol. 2014, 32, 2599–2607. [Google Scholar] [CrossRef]
- Seid Mohammadi, M.; Moghadasi, J.; Naseri, S. An experimental investigation of wettability alteration in carbonate reservoir using γ-Al2O3 nanoparticles. Iran. J. Oil Gas Sci. Technol. 2014, 3, 18–26. [Google Scholar]
- Nazari Moghaddam, R.; Bahramian, A.; Fakhroueian, Z.; Karimi, A.; Arya, S. Comparative study of using nanoparticles for enhanced oil recovery: Wettability alteration of carbonate rocks. Energy Fuels 2015, 29, 2111–2119. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Nowrouzi, I.; Manshad, A.K.; Mohammadi, A.H. Effects of dissolved binary ionic compounds and different densities of brine on interfacial tension (IFT), wettability alteration, and contact angle in smart water and carbonated smart water injection processes in carbonate oil reservoirs. J. Mol. Liq. 2018, 254, 83–92. [Google Scholar] [CrossRef]
- Ali, J.A.; Kolo, K.; Manshad, A.K.; Stephen, K.D. Potential application of low-salinity polymeric-nanofluid in carbonate oil reservoirs: IFT reduction, wettability alteration, rheology and emulsification characteristics. J. Mol. Liq. 2019, 284, 735–747. [Google Scholar] [CrossRef]
- Zargartalebi, M.; Barati, N.; Kharrat, R. Influences of hydrophilic and hydrophobic silica nanoparticles on anionic surfactant properties: Interfacial and adsorption behaviors. J. Pet. Sci. Eng. 2014, 119, 36–43. [Google Scholar] [CrossRef]
- Azarshin, S.; Moghadasi, J.; Aboosadi, Z.A. Surface functionalization of silica nanoparticles to improve the performance of water flooding in oil wet reservoirs. Energy Explor. Exploit. 2017, 35, 685–697. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.; Lv, W.; Li, Y.; Dai, C.; Wang, X.; Zhou, H.; Zou, C.; Gao, M.; Zhang, Y.; Wu, Y. Study on the synergy between silica nanoparticles and surfactants for enhanced oil recovery during spontaneous imbibition. J. Mol. Liq. 2018, 261, 373–378. [Google Scholar] [CrossRef]
- Xu, D.; Bai, B.; Wu, H.; Hou, J.; Meng, Z.; Sun, R.; Li, Z.; Lu, Y.; Kang, W. Mechanisms of imbibition enhanced oil recovery in low permeability reservoirs: Effect of IFT reduction and wettability alteration. Fuel 2019, 244, 110–119. [Google Scholar] [CrossRef]
- Buitrago-Rincon, D.L.; Sadtler, V.; Mercado, R.A.; Roques-Carmes, T.; Marchal, P.; Muñoz-Navarro, S.F.; Sandoval, M.; Pedraza-Avella, J.A.; Lemaitre, C. Silica Nanoparticles in Xanthan Gum Solutions: Oil Recovery Efficiency in Core Flooding Tests. Nanomaterials 2023, 13, 925. [Google Scholar] [CrossRef]
- Ahmadi, A.; Manshad, A.K.; Ali, J.A.; Iglauer, S.; Sajadi, S.M.; Keshavarz, A.; Mohammadi, A.H. Insight into nano-chemical enhanced oil recovery from carbonate reservoirs using environmentally friendly nanomaterials. ACS Omega 2022, 7, 36165–36174. [Google Scholar] [CrossRef]
NPs | IFT (mN/N) Clean/with NPs | Contact Angle (°) Clean/with NPs | Ref. |
---|---|---|---|
SiO2 | 38.5/1.45 | 134/82 | [39] |
Fe2O3 | 38.5/2.75 | 132.5/101 | [39] |
SiO2 | 38.4/26.5 | 90/60 | [40] |
SiO2 | - | 135.5/66 | [41] |
SiO2 | 20/1.87 | - | [42] |
ZnO/SiO2/Xanthan | - | 79/75 (2 SW) | [8] |
ZnO/SiO2/Xanthan | - | 78/74 (10 SW) | [8] |
SiO2 | 37.5/22.1 | - | [43] |
SiO2 | 35/10.9 | - | [26] |
Type | Ten Dilute SW (ppm) | Two Dilute SW (ppm) | SW (ppm) | Formation Water (ppm) |
---|---|---|---|---|
NaCl | 2840 | 14,200 | 28,400 | 140,316 |
CaCl2 | 138 | 690 | 1380 | 40,287 |
MgCl2 | 643 | 3215 | 6430 | 2856 |
KCl | 80 | 400 | 800 | 800 |
Salinity Type | Density (g/mL) | pH (-) |
---|---|---|
DIW | 1.00 | 7.00 |
SW | 1.05 | 6.46 |
2 SW | 1.01 | 6.93 |
10 SW | 1.00 | 6.42 |
FW | 1.07 | 8.11 |
Elements | NC (%) | ENC (%) | WNC (%) |
---|---|---|---|
C | 44.78 | 29.78 | 43.57 |
O | 47.17 | 47.63 | 43.41 |
Na | 1.66 | 3.92 | 2.46 |
Mg | 0.30 | 0.56 | 0.31 |
Al | 0.17 | 0.24 | 0.15 |
Si | 1.37 | 8.8 | 2.71 |
P | 0.26 | 0.19 | 0.36 |
S | 0.24 | 0.26 | 0.27 |
Cl | 0.78 | 0.28 | 0.57 |
K | 0.60 | 0.82 | 1.31 |
Ca | 1.93 | 0.65 | 2.21 |
Fe | 0.74 | 6.87 | 2.85 |
Sample | Surface Area (m2/g) | Average Pore Diameter (nm) | Pore Volume (cm3 (STP)/g) |
---|---|---|---|
NC | 14.22 | 14.29 | 0.05 |
ENC | 36.04 | 11.65 | 0.10 |
WNC | 30.97 | 11.35 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, Y.; Ayari, M.A.; Olfati, M.; Hosseini, S.H.; Khandakar, A.; Vaferi, B.; Olazar, M. Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs. Polymers 2023, 15, 3064. https://doi.org/10.3390/polym15143064
Ahmadi Y, Ayari MA, Olfati M, Hosseini SH, Khandakar A, Vaferi B, Olazar M. Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs. Polymers. 2023; 15(14):3064. https://doi.org/10.3390/polym15143064
Chicago/Turabian StyleAhmadi, Yaser, Mohamed Arselene Ayari, Meysam Olfati, Seyyed Hossein Hosseini, Amith Khandakar, Behzad Vaferi, and Martin Olazar. 2023. "Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs" Polymers 15, no. 14: 3064. https://doi.org/10.3390/polym15143064
APA StyleAhmadi, Y., Ayari, M. A., Olfati, M., Hosseini, S. H., Khandakar, A., Vaferi, B., & Olazar, M. (2023). Application of Green Polymeric Nanocomposites for Enhanced Oil Recovery by Spontaneous Imbibition from Carbonate Reservoirs. Polymers, 15(14), 3064. https://doi.org/10.3390/polym15143064