Polysaccharide-Based Supramolecular Hydrogel Coatings with Corrosion Barrier Zone for Protection of Patina Bronze
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Guanidinylation Modification of Ethylene Glycol Chitosan
2.3. Preparation of Supramolecular Hydrogels
2.4. Bronze Sheets Coating
2.5. Evaluation of Self-Healing Performance of the Coatings
2.6. Artificial Aging
2.7. Characterization
3. Results and Discussion
3.1. Chemical Structure and Thermal Analysis of Gel Coating
3.2. XRD
3.3. SAXS
3.4. X-ray Photoelectron Spectroscopy
3.5. Colorimetric Difference
3.6. Micromorphology of Gel Coating on the Bronze Surface
3.7. Self-Healing Performance of the Gel Coating
3.8. Characterization of Gel Coating Electrochemical Properties
3.9. Artificial Aging
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
GC | guanidine chitosan |
LN | lithium saponite |
PAANa | Poly (acrylic acid sodium salt) |
LN/PAANa/GC | Hydrogel composed of guanidine chitosan, laponite and poly (acrylic acid sodium salt) |
LN/PAANa | Hydrogel composed of laponite and poly (acrylic acid sodium salt) |
patina bronze (uncoated bronze sheet) | CuO, Cu2O, CuCO3·2Cu(OH)2, CuCl2·3Cu(OH)2, CuCl |
References
- Marusic, K.; Otmacic-Curkovic, H.; Horvat-Kurbegovic, S.; Takenouti, H.; Stupnisek-Lisac, E. Comparative studies of chemical and electrochemical preparation of artificial bronze patinas and their protection by corrosion inhibitor. Electrochim. Acta 2009, 54, 7106–7113. [Google Scholar] [CrossRef]
- Li, B.Q. Report on the Conservation and Restoration of Bronzes Unearthed from the Eastern Zhou Cemetery in Da Cai Yuan, Linzhou, Henan Province, 1st ed.; Zhongzhou Ancient Books Publishing House: Zhengzhou, China, 2016; ISBN 978-7-5348-6192-5. [Google Scholar]
- Shaobin, F.; Shibo, S.; Wei, Z.; Yingping, Q.I.; Liting, F. Study of corrosion and protection of bronze with potential activation theory. Sci. Conserv. Archaeol. 2005, 17, 5–8. [Google Scholar] [CrossRef]
- Seok, S.I.; Kim, J.H.; Choi, K.H.; Hwang, Y.Y. Preparation of corrosion protective coatings on galvanized iron from aqueous inorganic–organic hybrid sols by sol–gel method. Surf. Coat. Technol. 2006, 200, 3468–3472. [Google Scholar] [CrossRef]
- Zargar, V.; Asghari, M.; Dashti, A. A Review on Chitin and Chitosan Polymers: Structure, Chemistry, Solubility, Derivatives, and Applications. ChemBioEng Rev. 2015, 2, 204–226. [Google Scholar] [CrossRef]
- Zhang, D.; Zhou, W.; Wei, B.; Wang, X.; Tang, R.; Nie, J.; Wang, J. Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydr. Polym. 2015, 125, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Bai, R. Copper adsorption on chitosan–cellulose hydrogel beads: Behaviors and mechanisms. Sep. Purif. Technol. 2005, 42, 237–247. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A. Chelation capability of chitosan and chitosan derivatives: Recent developments in sustainable corrosion inhibition and metal decontamination applications. Curr. Res. Green Sustain. Chem. 2021, 4, 100184. [Google Scholar] [CrossRef]
- Ngah, W.S.W.; Fatinathan, S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan–GLA beads and chitosan–alginate beads. Chem. Eng. J. 2008, 143, 62–72. [Google Scholar] [CrossRef]
- Singh, R.K.; Awasthi, S.; Dhayalan, A.; Ferreira, J.M.F.; Kannan, S. Deposition, structure, physical and invitro characteristics of Ag-doped beta-Ca-3(PO4)(2)/chitosan hybrid composite coatings on Titanium metal. Mater. Sci. Eng. C 2016, 62, 692–701. [Google Scholar] [CrossRef]
- Ping, L.; Yangyang, G.; Zijia, S.; Dan, C.; Ge, G.; Alideertu, D. Synthesis, Characterization, and Bactericidal Evaluation of Chitosan/Guanidine Functionalized Graphene Oxide Composites. Molecules 2016, 22, 12. [Google Scholar] [CrossRef] [Green Version]
- Sahariah, P.; Oskarsson, B.M.; Hjalmarsdottir, M.A.; Masson, M. Synthesis of guanidinylated chitosan with the aid of multiple protecting groups and investigation of antibacterial activity. Carbohydr. Polym. 2015, 127, 407–417. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Munoz, P.; Almenar, E.; Del Valle, V.; Velez, D.; Gavara, R. Effect of chitosan coating combined with postharvest calcium treatment on strawberry (Fragaria×ananassa) quality during refrigerated storage. Food Chem. 2008, 110, 428–435. [Google Scholar] [CrossRef] [PubMed]
- Farajzadeh, F.; Motamedzadegan, A.; Shahidi, S.A.; Hamzeh, S. The effect of chitosan-gelatin coating on the quality of shrimp (Litopenaeus vannamei) under refrigerated condition. Food Control 2016, 67, 163–170. [Google Scholar] [CrossRef]
- Pan, Z.; Lv, Y.; Chen, Y.; Qian, X. Enhanced strength and self-healing properties of CA-Mg2/PVA IPN hydrogel used for shot-membrane waterproofing materials. J. Polym. Res. 2020, 27, 114. [Google Scholar] [CrossRef]
- Blumstein, A. Polymerization of adsorbed monolayers. I. Preparation of the clay–polymer complex. J. Polym. Sci. Part A Gen. Pap. 1965, 3, 2653–2664. [Google Scholar] [CrossRef]
- Fu, H.L.; Zhang, W.; Zhang, H.; Song, S.B.; Li, W. Preparation and Antibacterial Activity of Chitosan/Organic Laponite Nanocomposites. J. Inorg. Mater. 2016, 31, 479. [Google Scholar] [CrossRef]
- Zhai, X.Y.; Sun, P.; Luo, Y.F.; Ma, C.N.; Xu, J.; Liu, W.G. Guanidinylation: A simple way to fabricate cell penetrating peptide analogue-modified chitosan vector for enhanced gene delivery. J. Appl. Polym. Sci. 2011, 121, 3569–3578. [Google Scholar] [CrossRef]
- Sheikhi, A.; Afewerki, S.; Oklu, R.; Gaharwar, A.K.; Khademhosseini, A. Effect of ionic strength on shear-thinning nanoclay-polymer composite hydrogels. Biomater. Sci. 2018, 6, 2073–2083. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, J.B.; Lee, C.S.; Kim, S.; Lee, M. Supramolecular Hydrogels Based on Nanoclay and Guanidine-Rich Chitosan: Injectable and Moldable Osteoinductive Carriers. ACS Appl. Mater. Interfaces 2020, 12, 16088–16096. [Google Scholar] [CrossRef]
- Takeno, H.i.; Kimura, Y.; Nakamura, W. Mechanical, Swelling, and Structural Properties of Mechanically Tough Clay-Sodium Polyacrylate Blend Hydrogels. Gels 2017, 3, 10. [Google Scholar] [CrossRef]
- Haraguchi, K.; Li, H.J.; Matsuda, K.; Takehisa, T.; Elliott, E. Mechanism of forming organic/inorganic network structures during in-situ free-radical polymerization in PNIPA-clay nanocomposite hydrogels. Macromolecules 2005, 38, 3482–3490. [Google Scholar] [CrossRef]
- Joung, Y.K.; You, S.S.; Park, K.M.; Go, D.H.; Park, K.D. In situ forming, metal-adhesive heparin hydrogel surfaces for blood-compatible coating. Colloids Surf. B Biointerfaces 2012, 99, 102–107. [Google Scholar] [CrossRef]
- Lin, F.M.; Jia, H.R.; Wu, F.G. Glycol Chitosan: A Water-Soluble Polymer for Cell Imaging and Drug Delivery. Molecules 2019, 24, 4371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moussout, H.; Ahlafi, H.; Aazza, M.; Bourakhouadar, M. Kinetics and mechanism of the thermal degradation of biopolymers chitin and chitosan using thermogravimetric analysis. Polym. Degrad. Stab. 2016, 130, 1–9. [Google Scholar] [CrossRef]
- Sang, W.; Tang, Z.; He, M.Y.; Hua, Y.P.; Xu, Q. Synthesis and preservative application of quaternized carboxymethyl chitosan containing guanidine groups. Int. J. Biol. Macromol. 2015, 75, 489–494. [Google Scholar] [CrossRef]
- Selim, A.; Toth, A.J.; Haaz, E.; Fozer, D.; Szanyi, A.; Hegyesi, N.; Mizsey, P. Preparation and characterization of PVA/GA/Laponite membranes to enhance pervaporation desalination performance. Sep. Purif. Technol. 2019, 221, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Sethi, S.; Medha; Singh, G.; Sharma, R.; Kaith, B.S.; Sharma, N.; Khullar, S. Fluorescent hydrogel of chitosan and gelatin cross-linked with maleic acid for optical detection of heavy metals. J. Appl. Polym. Sci. 2021, 139, 51941. [Google Scholar] [CrossRef]
- Zhang, Q.S.; Li, C.L.; Du, X.M.; Zhong, H.J.; He, Z.W.; Hong, P.Z.; Li, Y.; Jing, Z.X. High strength, tough and self-healing chitosan-based nanocomposite hydrogels based on the synergistic effects of hydrogen bond and coordination bond. J. Polym. Res. 2022, 29, 335. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.L.; Bai, H.Y.; Zhang, T.T.; Ibarra-Galvan, V.; Song, S.X. Methylene blue removal from water using the hydrogel beads of poly(vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr. Polym. 2018, 198, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Donnici, M.; Ferrari, E.; Neff, D.; Daniele, S. Green protectives on corroded copper artworks: Surface characterization and electrochemical behaviour in simulated acid rain. J. Cult. Herit. 2021, 51, 97–106. [Google Scholar] [CrossRef]
- Ramezanzadeh, M.; Ramezanzadeh, B.; Mahdavian, M.; Bahlakeh, G. Development of metal-organic framework (MOF) decorated graphene oxide nanoplatforms for anti-corrosion epoxy coatings. Carbon 2020, 161, 231–251. [Google Scholar] [CrossRef]
- Cao, K.Y.; Yu, Z.X.; Yin, D. Preparation of Ce-MOF@TEOS to enhance the anti-corrosion properties of epoxy coatings. Prog. Org. Coat. 2019, 135, 613–621. [Google Scholar] [CrossRef]
L* | a* | b* | |
---|---|---|---|
Rusting bronze sheets coated with LN/PAANa/GC hydrogel | 48.142 | −11.818 | 5.440 |
Bare bronze sheet | 51.716 | −9.848 | 5.388 |
ΔE | 7.638 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Huang, X.; Chen, J.; Zhou, S.; Chen, J. Polysaccharide-Based Supramolecular Hydrogel Coatings with Corrosion Barrier Zone for Protection of Patina Bronze. Polymers 2023, 15, 3357. https://doi.org/10.3390/polym15163357
Zhang J, Huang X, Chen J, Zhou S, Chen J. Polysaccharide-Based Supramolecular Hydrogel Coatings with Corrosion Barrier Zone for Protection of Patina Bronze. Polymers. 2023; 15(16):3357. https://doi.org/10.3390/polym15163357
Chicago/Turabian StyleZhang, Jiamei, Xia Huang, Jiachang Chen, Sheng Zhou, and Junying Chen. 2023. "Polysaccharide-Based Supramolecular Hydrogel Coatings with Corrosion Barrier Zone for Protection of Patina Bronze" Polymers 15, no. 16: 3357. https://doi.org/10.3390/polym15163357
APA StyleZhang, J., Huang, X., Chen, J., Zhou, S., & Chen, J. (2023). Polysaccharide-Based Supramolecular Hydrogel Coatings with Corrosion Barrier Zone for Protection of Patina Bronze. Polymers, 15(16), 3357. https://doi.org/10.3390/polym15163357