Detailed Study of the Correlation between Cross-Linking of Thick SU-8 and UV–NIR Optical Transmission/Photoluminescence Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Transmission Spectrum
3.2. Photoluminescence Spectroscopy
3.3. Swelling Behavior in Water
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, M.; Lee, W.; Lee, S.-K.; Lee, S.S. 3D microfabrication with inclined/rotated UV lithography. Sens. Actuators A Phys. 2004, 111, 14. [Google Scholar] [CrossRef]
- Lin, C.-H.; Lee, G.-B.; Chang, B.-W.; Chang, G.-L. A new fabrication process for ultra-thick microfluidic microstructures utilizing SU-8 photoresist. J. Micromech. Microeng. 2002, 12, 590–597. [Google Scholar] [CrossRef]
- Bêche, B.; Pelletier, N.; Gaviot, E.; Zyss, J. Single-mode TE00–TM00 optical waveguides on SU-8 polymer. Opt. Commun. 2004, 230, 91–94. [Google Scholar] [CrossRef]
- Lee, G.-B.; Lin, C.-H.; Chang, G.-L. Micro flow cytometers with buried SU-8/SOG optical waveguides. Sens. Actuators A Phys. 2003, 103, 165–170. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, K.L.; Hong, G.D.; Yang, L.J.; Gong, H.Q. Polymerization optimization of SU-8 photoresist and its applications in microfluidic systems and MEMS. J. Micromech. Microeng. 2001, 11, 20–26. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, K.; Gong, H. Characterization of the polymerization of SU-8 photoresist and its applications in mi-cro-electro-mechanical systems (MEMS). Polym. Test. 2001, 20, 693. [Google Scholar] [CrossRef]
- Baibarac, M.; Radu, A.; Cristea, M.; Cercel, R.; Smaranda, I. UV light effect on cationic photopolymerization of the SU8 pho-toresist and its composites with carbon nanotubes: New evidence shown by photoluminescence studies. J. Phys. Chem. 2020, 124, 7467–7476. [Google Scholar]
- del Campo, A.; Greiner, C. SU-8: A photoresist for high-aspect-ratio and 3D submicron lithography. J. Micromech. Microeng. 2007, 17, R81–R95. [Google Scholar] [CrossRef]
- Abliz, D.; Duan, Y.; Steuernagel, L.; Xie, L.; Li, D.; Ziegmann, G. Curing Methods for Advanced Polymer Composites—A Review. Polym. Polym. Compos. 2013, 21, 341–348. [Google Scholar] [CrossRef]
- Velioglu, S.; Ahunbay, M.G.; Tantekin-Ersolmaz, S.B. Propylene/propane plasticization in polyimide membranes. J. Membr. Sci. 2016, 501, 179–190. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Guan, J.; Yang, L.; Ren, Y.; Nasir, N.; Wu, H.; Chen, Z.; Jiang, Z. 110th Anniversary: Mixed Matrix Membranes with Fillers of Intrinsic Nanopores for Gas Separation. Ind. Eng. Chem. Res. 2019, 58, 7706–7724. [Google Scholar] [CrossRef]
- Park, S.; Jeong, H.-K. Cross-Linked Polyimide/ZIF-8 Mixed-Matrix Membranes by In Situ Formation of ZIF-8: Effect of Cross-Linking on Their Propylene/Propane Separation. Membranes 2022, 12, 964. [Google Scholar] [CrossRef]
- Park, S.; Jeong, H.-K. In-situ linker doping as an effective means to tune zeolitic-imidazolate framework-8 (ZIF-8) fillers in mixed-matrix membranes for propylene/propane separation. J. Membr. Sci. 2020, 596, 117689. [Google Scholar] [CrossRef]
- Song, S.; Jiang, H.; Wu, H.; Zhao, M.; Guo, Z.; Li, B.; Ren, Y.; Wang, Y.; Ye, C.; Guiver, M.D.; et al. Weakly pres-sure-dependent molecular sieving of propylene/propane mixtures through mixed matrix membrane with ZIF-8 direct-through channels. J. Membr. Sci. 2022, 648, 120366. [Google Scholar] [CrossRef]
- Lorenz, H.; Despont, M.; Fahrni, N.; LaBianca, N.; Renaud, P.; Vettiger, P. SU-8: A low-cost negative resist for MEMS. J. Micromech. Microeng. 1997, 7, 121. [Google Scholar] [CrossRef]
- Feng, R.; Farris, R.J. Influence of processing conditions on the thermal and mechanical properties of SU8 negative photoresist coatings. J. Micromech. Microeng. 2002, 13, 80–88. [Google Scholar] [CrossRef]
- Kalaiselvi, S.M.P.; Tan, R.S.R.T.L.; Lee, S.P.H.P.; Breese, M.B.H. Ftir spectroscopic studies on cross linking of su-8 photoresist. Cosmos 2013, 9, 37–46. [Google Scholar] [CrossRef]
- Song, P.; Wang, H. High-Performance Polymeric Materials through Hydrogen-Bond Cross-Linking. Adv. Mater. 2020, 32, 1901244. [Google Scholar] [CrossRef] [PubMed]
- Qin, B.; Zhang, S.; Sun, P.; Tang, B.; Yin, Z.; Cao, X.; Chen, Q.; Xu, J.; Zhang, X. Tough and Multi-Recyclable Cross-Linked Supramolecular Polyureas via Incorporating Noncovalent Bonds into Main-Chains. Adv. Mater. 2020, 32, e2000096. [Google Scholar] [CrossRef]
- Charfi, B.; Damak, K.; Maâlej, R.; Alqahtani, M.S.; Hussein, K.I.; Alshehri, A.M.; Hussain, A.M.; Burtan-Gwizdala, B.; Reben, M.; Yousef, E.S. Enhancement of Optical Telecommunication Bands: Pr3+-Doped Halide Phosphate Glasses Display Broadband NIR Photoluminescence Emission. Materials 2022, 15, 6518. [Google Scholar] [CrossRef]
- Xin, Y.; Pandraud, G.; Zhang, Y.; French, P. Single-Mode Tapered Vertical SU-8 Waveguide Fabricated by E-Beam Lithography for Analyte Sensing. Sensors 2019, 19, 3383. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-B.; Sun, J.; Chen, C.-M.; Sun, X.-Q.; Wang, F.; Zhang, D.-M. Thermal UV treatment on SU-8 polymer for integrated optics. Opt. Mater. Express 2014, 4, 509–517. [Google Scholar] [CrossRef]
- Ghanekar, A.; Ricci, M.; Tian, Y.; Gregory, O.; Zheng, Y. Dynamic optical response of SU-8 upon UV treatment. Opt. Mater. Express 2018, 8, 2017–2025. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Xia, Y.; Liu, J.; Zhang, S.; Shao, J.; Lu, B.-R.; Chen, Y. Processing study of SU-8 pillar profiles with high aspect ratio by electron-beam lithography. Microelectron. Eng. 2016, 149, 141–144. [Google Scholar] [CrossRef]
- Eravuchira, P.J.; Baranowska, M.; Eckstein, C.; Díaz, F.; Llobet, E.; Marsal, L.F.; Ferré-Borrull, J. Immunosensing by lumi-nescence reduction in surface-modified microstructured SU-8. Appl. Surf. Sci. 2017, 392, 883–888. [Google Scholar] [CrossRef]
- Pang, L.; Tetz, K.; Shen, Y.; Chen, C.-H.; Fainman, Y. Photosensitive quantum dot composites and their applications in optical structures. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2005, 23, 2413–2418. [Google Scholar] [CrossRef]
- Suzuki, T.; Morikawa, J.; Hashimoto, T.; Buividas, R.; Gervinskas, G.; Paipulas, D.; Malinauskas, M.; Mizeikis, V.; Juodkazis, S. Thermal and optical properties of sol-gel and SU-8 resists. In Advanced Fabrication Technologies for Micro/Nano Optics and Photonics V; SPIE: Bellingham, MA, USA, 2012; Volume 8249, pp. 93–101. [Google Scholar]
- 2.-2. T. D. S. v. 1. U-8 2000, "6," k a y a k u A M, Tuesday August 2020. Available online: https://kayakuam.com/wp-content/uploads/2020/08/KAM-SU-8-2000-2000.5-2015-Datasheet-8.13.20-final.pdf (accessed on 12 September 2023).
- Ives, R. Microfabrication of High-Frequency Vacuum Electron Devices. IEEE Trans. Plasma Sci. 2004, 32, 1277–1291. [Google Scholar] [CrossRef]
- Wang, J.; Xu, R.; Yang, S. Estimation of plant water content by spectral absorption features centered at 1450 nm and 1940 nm regions. Environ. Monit. Assess. 2009, 157, 459. [Google Scholar] [CrossRef]
- Keller, S.; Blagoi, G.; Lillemose, M.; Haefliger, D.; Boisen, A. Processing of thin SU-8 films. J. Micromech. Microeng. 2008, 18, 125020. [Google Scholar] [CrossRef]
- Jamal, M.; Zarafshar, A.M.; Gracias, D.H. Differentially photo-crosslinked polymers enable self-assembling microfluidics. Nat. Commun. 2011, 2, 527. [Google Scholar] [CrossRef]
- Schmid, S.; Kühne, S.; Hierold, C. Influence of air humidity on polymeric microresonators. J. Micromech. Microeng. 2009, 19, 065018. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Sokuler, M.; Fell, D.; Keller, S.; Boisen, A.; Butt, H.-J.; Auernhammer, G.K.; Bonaccurso, E. Diffusion of water into SU-8 microcantilevers. Phys. Chem. Chem. Phys. 2010, 12, 10577–10583. [Google Scholar] [CrossRef]
- Wouters, K.; Puers, R. Accurate measurement of the steady-state swelling behavior of SU8 negative photoresist. Procedia Chem. 2009, 1, 60–63. [Google Scholar] [CrossRef]
- Vera-Graziano, R.; Hernandez-Sanchez, F.; Cauich-Rodriguez, J.V. era-Graziano. Study of crosslinking density in polydimethylsiloxane networks by DSC. J. Appl. Polym. Sci. 1995, 1317–1327. [Google Scholar] [CrossRef]
- Alfihed, S.; Bergen, M.H.; Holzman, J.F.; Foulds, I.G. A detailed investigation on the terahertz absorption characteristics of polydime-thylsiloxane (PDMS). Polymer 2018, 153, 325–350. [Google Scholar] [CrossRef]
- Nandi, S.; Winter, H.H. Swelling Behavior of Partially Cross-Linked Polymers: A Ternary System. Macromolecules 2005, 38, 4447–4455. [Google Scholar] [CrossRef]
Sample Group | Temp. 1 (°C) | Temp. 1 Time (min) | UV Exposure (s) | Temp. 2 (°C) | Temp. 2 Time (min) |
---|---|---|---|---|---|
Group 1: cross-linking as a function of curing time | 90 | 60 | 240 | 90 | 30 |
90 | 60 | 240 | 90 | 90 | |
90 | 60 | 240 | 90 | 120 | |
Group 2: cross-linking as a function of curing temperature | 90 | 60 | 240 | 80 | 60 |
90 | 60 | 240 | 100 | 60 | |
90 | 60 | 240 | 110 | 60 | |
90 | 60 | 240 | 120 | 60 | |
Group 3: cross-linking as a function of UV exposure time | 90 | 60 | 60 | 90 | 60 |
90 | 60 | 120 | 90 | 60 | |
90 | 60 | 180 | 90 | 60 | |
90 | 60 | 240 | 90 | 60 | |
90 | 60 | 300 | 90 | 60 |
Weight Change Percentage as a Function of Time | Thermal Annealing Time (min) | Temperature (°C) | UV Curing Time (s) | ||||||
---|---|---|---|---|---|---|---|---|---|
30 | 90 | 120 | 80 | 100 | 110 | 60 | 120 | 180 | |
20 min | 2.434 | 1.502 | 0.358 | 2.299 | 1.723 | 0.614 | 2.939 | 2.80 | 0.616 |
30 min | 4.239 | 1.939 | 1.083 | 3.100 | 2.215 | 1.025 | 7.254 | 4.357 | 1.063 |
40 min | 5.579 | 2.493 | 1.382 | 4.408 | 3.751 | 3.055 | 12.262 | 5.026 | 1.192 |
50 min | 6.810 | 3.514 | 1.853 | 8.626 | 4.765 | 3.726 | 15.750 | 7.269 | 2.665 |
60 min | 6.906 | 3.542 | 1.808 | 9.681 | 5.441 | 3.968 | 16.787 | 7.675 | 3.179 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, A.; Almutairi, D.; Hussain, H.; Alfihed, S. Detailed Study of the Correlation between Cross-Linking of Thick SU-8 and UV–NIR Optical Transmission/Photoluminescence Spectroscopy. Polymers 2023, 15, 3866. https://doi.org/10.3390/polym15193866
Alharbi A, Almutairi D, Hussain H, Alfihed S. Detailed Study of the Correlation between Cross-Linking of Thick SU-8 and UV–NIR Optical Transmission/Photoluminescence Spectroscopy. Polymers. 2023; 15(19):3866. https://doi.org/10.3390/polym15193866
Chicago/Turabian StyleAlharbi, Abdullah, Dhaifallah Almutairi, Hadba Hussain, and Salman Alfihed. 2023. "Detailed Study of the Correlation between Cross-Linking of Thick SU-8 and UV–NIR Optical Transmission/Photoluminescence Spectroscopy" Polymers 15, no. 19: 3866. https://doi.org/10.3390/polym15193866
APA StyleAlharbi, A., Almutairi, D., Hussain, H., & Alfihed, S. (2023). Detailed Study of the Correlation between Cross-Linking of Thick SU-8 and UV–NIR Optical Transmission/Photoluminescence Spectroscopy. Polymers, 15(19), 3866. https://doi.org/10.3390/polym15193866