Rapid Transformation in Wetting Properties of PTFE Membrane Using Plasma Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrumentation Methods
2.2. Plasma Treatment Procedure
2.2.1. Flow Rate of Carrier Gas
2.2.2. Flow Rate of Active Gas
2.2.3. RF Power
2.2.4. Distance
2.2.5. Duration of Plasma Treatment
- Flow rate of Ar: 4.5 L/min;
- Flow rate of N2: 20 mL/min;
- RF power: 150 W;
- Distance between the plasma nozzle and Teflon sheet: 3 mm;
- Duration of plasma treatment: 1, 2, 3, and 4 min.
3. Results and Discussion
3.1. FT-IR Analysis
3.2. Water Contact Angle Analysis
3.3. SEM Analysis
3.4. XPS Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, C.; Arnell, R.D.; Gibbons, A.R.; Green, S.M.; Ren, L.; Tong, J. Surface Modification of PTFE By Plasma Treatment. Surf. Eng. 2000, 16, 215–217. [Google Scholar] [CrossRef]
- Reznickova, A.; Sajdl, P.; Nguyenova, H.Y.; Lacmanova, V.; Kolska, Z.; Kasalkova, N.S.; Kvitek, O.; Svorcik, V. Plasma treatment of PTFE at elevated temperature: The effect of surface properties on its biological performance. Mater. Today Commun. 2022, 31, 103254. [Google Scholar] [CrossRef]
- Ohkubo, Y.; Ishihara, K.; Shibahara, M.; Nagatani, A.; Honda, K.; Endo, K.; Yamamura, K. Drastic Improvement in Adhesion Property of Polytetrafluoroethylene (PTFE) via Heat-Assisted Plasma Treatment Using a Heater. Sci. Rep. 2017, 7, 9476. [Google Scholar] [CrossRef]
- Primc, G. Recent Advances in Surface Activation of Polytetrafluoroethylene (PTFE) by Gaseous Plasma Treatments. Polymers 2020, 12, 2295. [Google Scholar] [CrossRef]
- Kang, H.; Lee, S.H.; Kim, K. Wettability of polytetrafluoroethylene surfaces by plasma etching modifications. PLoS ONE 2023, 18, e0282352. [Google Scholar] [CrossRef]
- Kaplan, S.L.; Lopata, E.S.; Smith, J. Plasma processes and adhesive bonding of polytetrafluoroethylene. Surf. Interface Anal. 1993, 20, 331–336. [Google Scholar] [CrossRef]
- Lo Porto, C.; Di Mundo, R.; Veronico, V.; Trizio, I.; Barucca, G.; Palumbo, F. Easy plasma nano-texturing of PTFE surface: From pyramid to unusual spherules-on-pyramid features. Appl. Surf. Sci. 2019, 483, 60–68. [Google Scholar] [CrossRef]
- Nioras, D.; Ellinas, K.; Gogolides, E. Atmospheric Water Harvesting on Micro-nanotextured Biphilic Surfaces. ACS Appl. Nano Mater. 2022, 5, 11334–11341. [Google Scholar] [CrossRef]
- Yamada, Y.; Yamada, T.; Tasaka, S.; Inagaki, N. Surface Modification of Poly(Tetrafluoroethylene) by Remote Hydrogen Plasma. Macromolecules 1996, 29, 4331–4339. [Google Scholar] [CrossRef]
- Liu, S.J.; Cui, S.P.; Qin, Z.P.; Fei, C.J.; Wang, Y.L.; Guo, H.X. A Novel Way to Modify PTFE Membrane into Hydrophilicity. Mater. Sci. Forum 2017, 898, 1892–1895. [Google Scholar] [CrossRef]
- Sharma, M.; Bharatiya, B.; Mehta, K.; Shukla, A.; Shah, D.O. Novel Strategy Involving Surfactant-Polymer Combinations for Enhanced Stability of Aqueous Teflon Dispersions. Langmuir 2014, 30, 7077–7084. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M.C.; Tibirna, C.M.; Tuchilus, C.; Debarnot, D.; Pslaru, E.; Poncin-Epaillard, F. Microwave Plasma Activation of a Polyvinylidene Fluoride Surface for Protein Immobilization. J. Phys. D Appl. Phys. 2011, 44, 475303. [Google Scholar] [CrossRef]
- Toma, M.; Loget, G.; Corn, R.M. Flexible Teflon Nanocone Array Surfaces with Tunable Superhydrophobicity for Self-Cleaning and Aqueous Droplet Patterning. ACS Appl. Mater. Interfaces 2014, 6, 11110–11117. [Google Scholar] [CrossRef] [PubMed]
- Zdziennicka, A.; Jańczuk, B.; Wójcik, W. Wettability of Polytetrafluoroethylene by Aqueous Solutions of Two Anionic Surfactant Mixtures. J. Colloid Interface Sci. 2003, 268, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, J.; Suo, J. Surface modification of porous poly(tetrafluoraethylene) film by a simple chemical oxidation treatment. Appl. Surf. Sci. 2010, 256, 2293–2298. [Google Scholar] [CrossRef]
- Ahmadizadeh, N.; Sobhani, M.; Habibolahzadeh, A. Enhancement of hydrophobic properties of HTV silicone rubber by CF4 plasma treatment. Appl. Surf. Sci. 2023, 641, 158534. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.R.; Li, R. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma. Appl. Surf. Sci. 2008, 254, 2882–2888. [Google Scholar] [CrossRef]
- Tu, C.Y.; Wang, Y.C.; Li, C.L. Expanded poly(tetrafluoroethylene) membrane surface modification using acetylene/nitrogen plasma treatment. Eur. Polym. J. 2005, 41, 2343–2353. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.R. Studies on surface graft polymerization of acrylic acid onto PTFE film by remote argon plasma initiation. Appl. Surf. Sci. 2007, 10, 4599–4606. [Google Scholar] [CrossRef]
- Feng, W.; Li, J.; Zhu, H. Physical modification of polytetrafluoroethylene flat membrane by a simple heat setting process and membrane wetting remission in SGMD for desalination. Desalination 2014, 354, 143–152. [Google Scholar]
- Rychkov, D.; Yablokov, M.; Rychkov, A. Chemical and physical surface modification of PTFE films—An approach to produce stable electrets. Appl. Phys. A 2012, 107, 589–596. [Google Scholar] [CrossRef]
- Lee, S.W.; Hong, J.W.; Wye, M.Y. Surface modification and adhesion improvement of PTFE film by ion beam irradiation. Nucl. Instrum. Methods Phys. Res. 2004, 219, 963–967. [Google Scholar] [CrossRef]
- Sun, H.X.; Zhang, L.; Chai, H. Surface modification of poly (tetrafluoroethylene) films via plasma treatment and graft copolymerization of acrylic acid. Desalination 2006, 192, 271–279. [Google Scholar] [CrossRef]
- Hopp, B.; Smausz, T.; Kresz, N. Adhesion strength measurements of excimer-laser-treated PTFE surfaces using liquid photoreagents. Proc. SPIE 2003, 5131, 190–194. [Google Scholar]
- Noh, J.H.; Hong, K.B.; Noh, I. Surface modification of polytetrafluoroethylene using atmospheric pressure plasma jet for medical application. Surf. Coat. Technol. 2007, 201, 5097–5101. [Google Scholar] [CrossRef]
- Kato, Y.; Kanda, K.; Haruyama, Y. Surface modification of PTFE by synchrotron radiation under the O2 gas atmosphere. In Proceedings of the 2004 International Microprocesses and Nanotechnology Conference, Digest of Papers, Osaka, Japan, 26–29 October 2004; pp. 413–415. [Google Scholar]
- Sprick, R.S.; Cheetham, K.J.; Bai, Y.; Alves Fernandes, J.; Barnes, M.; Bradley, J.W.; Cooper, A.I. Polymer Photocatalysts with Plasma-Enhanced Activity. J. Mater. Chem. A 2020, 8, 7125–7129. [Google Scholar] [CrossRef]
- Garbassi, F.; Sommazzi, A.; Meda, L.; Mestroni, G.; Sciutto, A. Surface properties of alternated aliphatic polyketones. Polymer 1998, 39, 1503–1506. [Google Scholar] [CrossRef]
- Akkan, C.K.; Hammadeh, M.; Bruck, S.; Park, H.W.; Veith, M.; Addul-Khaliq, H.; Aktas, C. Plasma and short pulse laser treatment of medical grade PEEK surfaces for controlled wetting. Mater. Lett. 2013, 109, 261–264. [Google Scholar] [CrossRef]
- Morra, M.; Occhiello, E.; Garbassi, F. Contact Angle Hysteresis in Oxygen Plasma Treated Poly(tetrafluoroethylene). Langmuir 1989, 5, 872–876. [Google Scholar] [CrossRef]
- Dhayal, M.; Alexander, M.R.; Bradley, J.W. The surface chemistry resulting from low-pressure plasma treatment of polystyrene: The effect of residual vessel bound oxygen. Appl. Surf. Sci. 2006, 252, 7957–7963. [Google Scholar] [CrossRef]
- France, R.M.; Short, R.D. Plasma Treatment of Polymers: The Effects of Energy Transfer from an Argon Plasma on the Surface Chemistry of Polystyrene, and Polypropylene. A High-Energy Resolution X-ray Photoelectron Spectroscopy Study. Langmuir 1998, 14, 4827–4835. [Google Scholar] [CrossRef]
- Pegalajar-Jurado, A.; Joslin, J.M.; Hawker, M.J.; Reynolds, M.M.; Fisher, E.R. Creation of Hydrophilic Nitric Oxide Releasing Polymers via Plasma Surface Modification. ACS Appl. Mater. Interfaces 2014, 6, 12307–12320. [Google Scholar] [CrossRef] [PubMed]
- López, C.D.; Cedeño-Mata, M.; Dominguez-Pumar, M.; Bermejo, S. Surface Modification of Polytetrafluoroethylene Thin Films by Non-Coherent UV Light and Water Treatment for Electrowetting Applications. Prog. Org. Coat. 2020, 149, 105593. [Google Scholar] [CrossRef]
- Liu, C.; Cui, N.; Brown, N.M.D.; Meenan, B.J. Effects of DBD Plasma Operating Parameters on the Polymer Surface Modification. Surf. Coat. Technol. 2004, 185, 311–320. [Google Scholar] [CrossRef]
- Guruvenket, S.; Rao, G.M.; Komath, M.; Raichur, A.M. Plasma Surface Modification of Polystyrene and Polyethylene. Appl. Surf. Sci. 2004, 236, 278–284. [Google Scholar] [CrossRef]
- Bhowmik, S.; Jana, P.; Chaki, T.K.; Ray, S. Surface Modification of PP under Different Electrodes of DC Glow Discharge and Its Physicochemical Characteristics. Surf. Coat. Technol. 2004, 185, 81–91. [Google Scholar] [CrossRef]
- Farhadi, S.; Farzaneh, M.; Kulinich, S.A. Anti-icing performance of superhydrophobic surfaces. Appl. Surf. Sci. 2011, 257, 6264–6269. [Google Scholar] [CrossRef]
- Wang, K.; Hou, D.; Wang, J.; Wang, Z.; Tian, B.; Liang, P. Hydrophilic Surface Coating on Hydrophobic PTFE Membrane for Robust Anti-Oil-Fouling Membrane Distillation. Appl. Surf. Sci. 2018, 450, 57–65. [Google Scholar] [CrossRef]
- Park, S.Y.; Chung, J.W.; Kwak, S.Y. Regenerable Anti-Fouling Active PTFE Membrane with Thermo-Reversible “Peel-and-Stick” Hydrophilic Layer. J. Memb. Sci. 2015, 491, 1–9. [Google Scholar] [CrossRef]
- Dowd, R.P.; Day, C.S.; Van Nguyen, T. Engineering the Ionic Polymer Phase Surface Properties of a PEM Fuel Cell Catalyst Layer. J. Electrochem. Soc. 2017, 164, F138–F146. [Google Scholar] [CrossRef]
- Biro, D.A.; Pleizier, G.; Deslandes, Y. Application of the microbond technique. IV. Improved fiber–matrix adhesion by RF plasma treatment of organic fibers. J. Appl. Polym. Sci. 1993, 47, 883–894. [Google Scholar] [CrossRef]
Plasma Treatment | Carrier Gas | Active Gas | Distance (mm) | Duration (min) | ||
---|---|---|---|---|---|---|
Gas | Flow Rate (L/min) | Gas | Flow Rate (mL/min) | |||
N2 Plasma treatment | Ar | 4.5 | N2 | 20 | 3 | 1–4 |
O2 Plasma treatment | Ar | 4.5 | O2 | 20 | 3 | 1–4 |
H2 Plasma treatment | Ar | 4.5 | Ar+H2 (4%) | 20 | 3 | 1–4 |
Plasma Treatment | Atomic % of Different Elements | |||
---|---|---|---|---|
C | N | O | F | |
Teflon sheet | 32.26 | - | - | 67.51 |
N2 plasma | 34.06 | 0.48 | 1.81 | 63.39 |
O2 plasma | 34.26 | - | 1.33 | 64.22 |
Ar+H2 plasma | 34.79 | - | 1.23 | 63.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asrafali, S.P.; Periyasamy, T.; Kim, S.-C. Rapid Transformation in Wetting Properties of PTFE Membrane Using Plasma Treatment. Polymers 2023, 15, 3874. https://doi.org/10.3390/polym15193874
Asrafali SP, Periyasamy T, Kim S-C. Rapid Transformation in Wetting Properties of PTFE Membrane Using Plasma Treatment. Polymers. 2023; 15(19):3874. https://doi.org/10.3390/polym15193874
Chicago/Turabian StyleAsrafali, Shakila Parveen, Thirukumaran Periyasamy, and Seong-Cheol Kim. 2023. "Rapid Transformation in Wetting Properties of PTFE Membrane Using Plasma Treatment" Polymers 15, no. 19: 3874. https://doi.org/10.3390/polym15193874
APA StyleAsrafali, S. P., Periyasamy, T., & Kim, S. -C. (2023). Rapid Transformation in Wetting Properties of PTFE Membrane Using Plasma Treatment. Polymers, 15(19), 3874. https://doi.org/10.3390/polym15193874