Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy
Abstract
:1. Introduction
2. Plastic Mechanical Recycling: Processes and Challenges
2.1. Waste Collection and Sorting for Recycling
2.2. Shredding and Extrusion
2.3. Thermoplastic Blends in Recycling
2.4. Degradation of Recycled Plastics
3. Integrating Plastics into a Circular Economy through the 3D Printing Process
3.1. Recycling of Thermoplastics
3.1.1. Recycling Thermoplastics through Injection Molding
3.1.2. Recycling Thermoplastic through Thermoforming
3.2. Recycling of Thermoplastics through Additive Manufacturing: Opportunities and Challenges
3.3. Pathway to Community-Scale Recycling through Additive Manufacturing
3.4. Controlling the Printing Quality of the Recycling Plastic
3.4.1. Process Planning
3.4.2. Control during Printing
3.4.3. In-Process Monitoring
3.4.4. Empowering Local Communities through Self-Sustaining Recycling Centers
4. Mechanical Properties of Recycled Polymers
4.1. Mechanical Properties of Recycled Plastics
4.2. Mechanical Properties of Recycled Plastics with Additive Manufacturing
4.3. Recycled Plastics Using Compatibilizers and Stabilizers
5. Conclusions
Funding
Conflicts of Interest
References
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent trends in recycling and reusing techniques of different plastic polymers and their composite materials. Sustain. Mater. Technol. 2021, 31, e00382. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics recycling: Challenges and opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [PubMed]
- Andrady, A.L. Assessment of Environmental Biodegradation of Synthetic Polymers. J. Macromol. Sci. Part C Polym. Rev. 1994, 34, 25–76. [Google Scholar] [CrossRef]
- Milbrandt, A.; Coney, K.; Badgett, A.; Beckham, G.T. Quantification and evaluation of plastic waste in the United States. Resour. Conserv. Recycl. 2022, 183, 106363. [Google Scholar] [CrossRef]
- Barnes, D.K.A.; Galgani, F.; Thompson, R.C.; Barlaz, M. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2009, 364, 1985–1998. [Google Scholar] [CrossRef]
- Gregory, M.R. Environmental implications of plastic debris in marine settings—Entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2013–2025. [Google Scholar] [CrossRef]
- Giurco, D.; Littleboy, A.; Boyle, T.; Fyfe, J.; White, S. Circular Economy: Questions for Responsible Minerals, Additive Manufacturing and Recycling of Metals. Resources 2014, 3, 432–453. [Google Scholar] [CrossRef]
- Kravchenko, M.; Pigosso, D.C.; McAloone, T.C. Circular economy enabled by additive manufacturing: Potential opportunities and key sustainability aspects. In Proceedings of the DS 101: Proceedings of NordDesign 2020, Lyngby, Denmark, 12–14 August 2020. [Google Scholar] [CrossRef]
- Advancing Sustainable Materials Management: Facts and Figures Report|US EPA. Available online: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/advancing-sustainable-materials-management (accessed on 21 February 2023).
- Livesey, S.M. The Discourse of the Middle Ground. Manag. Commun. Q. 2002, 15, 313–349. [Google Scholar] [CrossRef]
- Political Negotiation and Co-Operation in the Shadow of Public Discourse: The Formation of the German Waste Management System DSD as a Case Study. Available online: https://www.ecolex.org/details/literature/political-negotiation-and-co-operation-in-the-shadow-of-public-discourse-the-formation-of-the-german-waste-management-system-dsd-as-a-case-study-ana-066391/ (accessed on 21 February 2023).
- PlascticsEurope. Plastics-the Facts 2021 an Analysis of European Plastics Production, Demand and Waste Data. Available online: https://www.plasticseurope.org/en/resources/publications/1804-plastics-facts-2019 (accessed on 23 February 2023).
- Voulvoulis, N.; Kirkman, R.; Giakoumis, T.; Metivier, P.; Kyle, P.; Midgley, C. Examining Material Evidence: The Carbon Fingerprint; Imperial College London: London, UK, 2020; Volume 7, pp. 1–15. [Google Scholar]
- Craighill, A.L.; Powell, J.C. Lifecycle assessment and economic evaluation of recycling: A case study. Resour. Conserv. Recycl. 1996, 17, 75–96. [Google Scholar] [CrossRef]
- Kaza, S.; Yao, L.; Bhada-Tata, P.; Van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Korhonen, J.; Nuur, C.; Feldmann, A.; Birkie, S.E. Circular economy as an essentially contested concept. J. Clean. Prod. 2018, 175, 544–552. [Google Scholar] [CrossRef]
- Kirchherr, J.; Reike, D.; Hekkert, M. Conceptualizing the circular economy: An analysis of 114 definitions. Resour. Conserv. Recycl. 2017, 127, 221–232. [Google Scholar] [CrossRef]
- Aurisano, N.; Weber, R.; Fantke, P. Enabling a circular economy for chemicals in plastics. Curr. Opin. Green Sustain. Chem. 2021, 31, 100513. [Google Scholar] [CrossRef]
- Bucknall, D.G. Plastics as a materials system in a circular economy. Philos. Trans. R. Soc. A 2020, 378, 20190268. [Google Scholar] [CrossRef]
- Havas, V.; Falk-Andersson, J.; Deshpande, P. Small circles: The role of physical distance in plastics recycling. Sci. Total Environ. 2022, 831, 154913. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, F.A.C.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. J. Clean. Prod. 2020, 264, 121602. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Wu, H.; Mehrabi, H.; Karagiannidis, P.; Naveed, N. Additive manufacturing of recycled plastics: Strategies towards a more sustainable future. J. Clean. Prod. 2021, 335, 130236. [Google Scholar] [CrossRef]
- D Printing Market: 10 Million 3D Printers to Sold by 2030. Available online: https://www.globenewswire.com/en/news-release/2022/08/08/2494063/0/en/3D-printing-Market-10-million-3D-Printers-to-Sold-by-2030-Thanks-to-Declining-Cost-and-Advancing-Technology.html (accessed on 31 August 2023).
- Wohlers Report 2016 Published: Additive Manufacturing Industry Surpassed $5.1 Billion—Wohlers Associates. Available online: https://wohlersassociates.com/press-releases/wohlers-report-2016-published-additive-manufacturing-industry/ (accessed on 31 August 2023).
- Stansbury, J.W.; Idacavage, M.J. 3D Printing with Polymers: Challenges among Expanding Options and Opportunities. Dent. Mater. 2016, 32, 54–64. [Google Scholar] [CrossRef]
- Going Green: Eco-Friendly Plastic to Replace Soldier’s Supplies in Battle|Article|The United States Army. Available online: https://www.army.mil/article/234840/going_green_eco_friendly_plastic_to_replace_soldiers_supplies_in_battle (accessed on 12 December 2022).
- Reiter, M.; Miron, V.M.; Lämmermann, S.; Freudenthaler, P.J.; Jerabek, M.; Major, Z. Comparing the mechanical properties of additively manufactured post-consumer polypropylene to injection molded specimens. Mater. Today Proc. 2022, 70, 55–60. [Google Scholar] [CrossRef]
- Sanchez, F.A.C.; Lanza, S.; Boudaoud, H.; Hoppe, S.; Camargo, M. Polymer Recycling and Additive Manufacturing in an Open Source Context: Optimization of Processes and Methods. 2017. Available online: https://www.researchgate.net/publication/318922042 (accessed on 30 November 2022).
- Schyns, Z.O.G.; Shaver, M.P. Mechanical Recycling of Packaging Plastics: A Review. Macromol. Rapid Commun. 2020, 42, e2000415. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab. 2013, 98, 2801–2812. [Google Scholar] [CrossRef]
- Maris, J.; Bourdon, S.; Brossard, J.-M.; Cauret, L.; Fontaine, L.; Montembault, V. Mechanical recycling: Compatibilization of mixed thermoplastic wastes. Polym. Degrad. Stab. 2018, 147, 245–266. [Google Scholar] [CrossRef]
- Badia, J.; Ribes-Greus, A. Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. Eur. Polym. J. 2016, 84, 22–39. [Google Scholar] [CrossRef]
- Vilaplana, F.; Karlsson, S. Quality Concepts for the Improved Use of Recycled Polymeric Materials: A Review. Macromol. Mater. Eng. 2008, 293, 274–297. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Shanmugam, V.; Das, O.; Neisiany, R.E.; Babu, K.; Singh, S.; Hedenqvist, M.S.; Berto, F.; Ramakrishna, S. Polymer Recycling in Additive Manufacturing: An Opportunity for the Circular Economy. Mater. Circ. Econ. 2020, 2, 11. [Google Scholar] [CrossRef]
- Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Warchoł, J.; Moustakas, K.; Chojnacka, K.; Witek-Krowiak, A. 3D printing filament as a second life of waste plastics—A review. Environ. Sci. Pollut. Res. 2020, 28, 12321–12333. [Google Scholar] [CrossRef]
- Madhu, N.R.; Erfani, H.; Jadoun, S.; Amir, M.; Thiagarajan, Y.; Chauhan, N.P.S. Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: A review. Int. J. Adv. Manuf. Technol. 2022, 122, 2125–2138. [Google Scholar] [CrossRef]
- Brouwer, M.; Picuno, C.; van Velzen, E.U.T.; Kuchta, K.; De Meester, S.; Ragaert, K. The impact of collection portfolio expansion on key performance indicators of the Dutch recycling system for Post-Consumer Plastic Packaging Waste, a comparison between 2014 and 2017. Waste Manag. 2019, 100, 112–121. [Google Scholar] [CrossRef]
- Pan, D.; Su, F.; Liu, C.; Guo, Z. Research progress for plastic waste management and manufacture of value-added products. Adv. Compos. Hybrid Mater. 2020, 3, 443–461. [Google Scholar] [CrossRef]
- Vanapalli, K.R.; Sharma, H.B.; Ranjan, V.P.; Samal, B.; Bhattacharya, J.; Dubey, B.K.; Goel, S. Challenges and strategies for effective plastic waste management during and post COVID-19 pandemic. Sci. Total Environ. 2020, 750, 141514. [Google Scholar] [CrossRef] [PubMed]
- Idumah, C.I.; Nwuzor, I.C. Novel trends in plastic waste management. SN Appl. Sci. 2019, 1, 1402. [Google Scholar] [CrossRef]
- Alhazmi, H.; Almansour, F.H.; Aldhafeeri, Z. Plastic Waste Management: A Review of Existing Life Cycle Assessment Studies. Sustainability 2021, 13, 5340. [Google Scholar] [CrossRef]
- Silva, A.L.P.; Prata, J.C.; Walker, T.R.; Campos, D.; Duarte, A.C.; Soares, A.M.; Barcelò, D.; Rocha-Santos, T. Rethinking and optimising plastic waste management under COVID-19 pandemic: Policy solutions based on redesign and reduction of single-use plastics and personal protective equipment. Sci. Total Environ. 2020, 742, 140565. [Google Scholar] [CrossRef] [PubMed]
- Mazhandu, Z.S.; Muzenda, E.; Mamvura, T.A.; Belaid, M.; Nhubu, T. Integrated and Consolidated Review of Plastic Waste Management and Bio-Based Biodegradable Plastics: Challenges and Opportunities. Sustainability 2020, 12, 8360. [Google Scholar] [CrossRef]
- Horodytska, O.; Cabanes, A.; Fullana, A. Plastic Waste Management: Current Status and Weaknesses. In Plastics in the Aquatic Environment-Part I: Current Status and Challenges; Springer International Publishing: Cham, Switzerland, 2019; pp. 289–306. [Google Scholar] [CrossRef]
- Drzyzga, O.; Prieto, A. Plastic waste management, a matter for the ‘community’. Microb. Biotechnol. 2018, 12, 66–68. [Google Scholar] [CrossRef]
- Payne, J.; McKeown, P.; Jones, M.D. A circular economy approach to plastic waste. Polym. Degrad. Stab. 2019, 165, 170–181. [Google Scholar] [CrossRef]
- Gibovic, D.; Bikfalvi, A. Incentives for Plastic Recycling: How to Engage Citizens in Active Collection. Empirical Evidence from Spain. Recycling 2021, 6, 29. [Google Scholar] [CrossRef]
- Huang, S.; Wang, H.; Ahmad, W.; Ahmad, A.; Vatin, N.I.; Mohamed, A.M.; Deifalla, A.F.; Mehmood, I. Plastic Waste Management Strategies and Their Environmental Aspects: A Scientometric Analysis and Comprehensive Review. Int. J. Environ. Res. Public Health 2022, 19, 4556. [Google Scholar] [CrossRef]
- Santander, P.; Cruz Sanchez, F.A.; Boudaoud, H.; Camargo, M. Closed loop supply chain network for local and distributed plastic recycling for 3D printing: A MILP-based optimization approach. Resour. Conserv. Recycl. 2020, 154, 104531. [Google Scholar] [CrossRef]
- Khadke, S.; Gupta, P.; Rachakunta, S.; Mahata, C.; Dawn, S.; Sharma, M.; Verma, D.; Pradhan, A.; Krishna, A.M.S.; Ramakrishna, S.; et al. Efficient Plastic Recycling and Remolding Circular Economy Using the Technology of Trust–Blockchain. Sustainability 2021, 13, 9142. [Google Scholar] [CrossRef]
- Barford, A.; Ahmad, S.R. A Call for a Socially Restorative Circular Economy: Waste Pickers in the Recycled Plastics Supply Chain. Circ. Econ. Sustain. 2021, 1, 761–782. [Google Scholar] [CrossRef] [PubMed]
- Chaudhari, U.S.; Lin, Y.; Thompson, V.S.; Handler, R.M.; Pearce, J.M.; Caneba, G.; Muhuri, P.; Watkins, D.; Shonnard, D.R. Systems Analysis Approach to Polyethylene Terephthalate and Olefin Plastics Supply Chains in the Circular Economy: A Review of Data Sets and Models. ACS Sustain. Chem. Eng. 2021, 9, 7403–7421. [Google Scholar] [CrossRef]
- Gardas, B.B.; Raut, R.D.; Narkhede, B. Identifying critical success factors to facilitate reusable plastic packaging towards sustainable supply chain management. J. Environ. Manag. 2019, 236, 81–92. [Google Scholar] [CrossRef]
- Russo, I.; Confente, I.; Scarpi, D.; Hazen, B.T. From trash to treasure: The impact of consumer perception of bio-waste products in closed-loop supply chains. J. Clean. Prod. 2019, 218, 966–974. [Google Scholar] [CrossRef]
- Howson, P. Building trust and equity in marine conservation and fisheries supply chain management with blockchain. Mar. Policy 2020, 115, 103873. [Google Scholar] [CrossRef]
- Mumbach, G.D.; Cunha, R.d.S.; Machado, R.A.F.; Bolzan, A. Dissolution of adhesive resins present in plastic waste to recover polyolefin by sink-float separation processes. J. Environ. Manag. 2019, 243, 453–462. [Google Scholar] [CrossRef]
- Dimas, T.; Peeters, J.; Eggers, A.; Vanierschot, M. Development and Validation of a Computational Fluid Dynamics Model for the Optimization of a Sink-Float Separator for Plastics Recycling. Procedia CIRP 2022, 105, 116–121. [Google Scholar] [CrossRef]
- Quelal, W.O.M.; Velázquez-Martí, B.; Gisbert, A.F. Separation of virgin plastic polymers and post-consumer mixed plastic waste by sinking-flotation technique. Environ. Sci. Pollut. Res. 2021, 29, 1364–1374. [Google Scholar] [CrossRef]
- Hoseini, H.; Movahed, S.O.; Jourabchi, S. The Float-Sink Behavior of Selected Pre-microwave Irradiated Plastics by Surface Adsorption of Several Dual Depressants. J. Polym. Environ. 2022, 30, 2824–2836. [Google Scholar] [CrossRef]
- Czarnecka-Komorowska, D.; Kanciak, W. Development of Sink-Float Density Separation Process of Mixed Automotive Plastics for Mechanical Recycling. In EAI International Conference on Management of Manufacturing Systems; Springer International Publishing: Cham, Switzerland, 2023; pp. 115–130. [Google Scholar] [CrossRef]
- Kökkılıç, O.; Mohammadi-Jam, S.; Chu, P.; Marion, C.; Yang, Y.; Waters, K.E. Separation of plastic wastes using froth flotation—An overview. Adv. Colloid Interface Sci. 2022, 308, 102769. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, C.; Wang, L.; Wang, H. Application of froth flotation in the separation of polyvinyl chloride and polycarbonate for recycling of waste plastic based on a novel surface modification. Waste Manag. 2020, 110, 43–52. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zhang, Y.; Guo, C.; Zhong, Y.; Wang, K.; Wang, H. Separation of polyvinyl chloride from waste plastic mixtures by froth flotation after surface modification with sodium persulfate. J. Clean. Prod. 2019, 218, 167–172. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, Y.; Jiang, H.; Li, T.; Luo, M.; Wang, L.; Wang, C.; Wang, H. Hydrophilic modification of polycarbonate surface with surface alkoxylation pretreatment for efficient separation of polycarbonate and polystyrene by froth flotation. Waste Manag. 2020, 118, 471–480. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, H.; Bian, K.; Wang, H.; Wang, C. Is froth flotation a potential scheme for microplastics removal? Analysis on flotation kinetics and surface characteristics. Sci. Total Environ. 2021, 792, 148345. [Google Scholar] [CrossRef]
- Zhao, Y.; Mishra, P.; Han, F.; Liu, X.; Shen, Z. Surface micro-alcoholysis treatment: A novel approach towards froth flotation based separation for binary mixtures of polyethylene terephthalate and polyvinyl chloride. J. Clean. Prod. 2019, 232, 848–857. [Google Scholar] [CrossRef]
- Jiang, H.; Zhang, Y.; Bian, K.; Wang, H.; Wang, C. Insight into the effect of aqueous species on microplastics removal by froth flotation: Kinetics and mechanism. J. Environ. Chem. Eng. 2022, 10, 107834. [Google Scholar] [CrossRef]
- Utimura, S.K.; Chaves, A.P.; Tenório, J.A.S.; Espinosa, D.C.R. Selecting chemicals for separation of ABS and HIPS in WEEE by froth flotation. Polímeros 2019, 29. [Google Scholar] [CrossRef]
- Saneie, R.; Abdollahi, H.; Ghassa, S.; Azizi, D.; Chelgani, S.C. Recovery of Copper and Aluminum from Spent Lithium-Ion Batteries by Froth Flotation: A Sustainable Approach. J. Sustain. Met. 2022, 8, 386–397. [Google Scholar] [CrossRef]
- Neo, E.R.K.; Yeo, Z.; Low, J.S.C.; Goodship, V.; Debattista, K. A review on chemometric techniques with infrared, Raman and laser-induced breakdown spectroscopy for sorting plastic waste in the recycling industry. Resour. Conserv. Recycl. 2022, 180, 106217. [Google Scholar] [CrossRef]
- Zeng, Q.; Sirven, J.-B.; Gabriel, J.-C.P.; Tay, C.Y.; Lee, J.-M. Laser induced breakdown spectroscopy for plastic analysis. TrAC Trends Anal. Chem. 2021, 140, 116280. [Google Scholar] [CrossRef]
- Adarsh, U.; Kartha, V.; Santhosh, C.; Unnikrishnan, V. Spectroscopy: A promising tool for plastic waste management. TrAC Trends Anal. Chem. 2022, 149, 116534. [Google Scholar] [CrossRef]
- Wu, X.; Li, J.; Yao, L.; Xu, Z. Auto-sorting commonly recovered plastics from waste household appliances and electronics using near-infrared spectroscopy. J. Clean. Prod. 2020, 246, 118732. [Google Scholar] [CrossRef]
- Chen, X.; Kroell, N.; Wickel, J.; Feil, A. Determining the composition of post-consumer flexible multilayer plastic packaging with near-infrared spectroscopy. Waste Manag. 2021, 123, 33–41. [Google Scholar] [CrossRef]
- Junjuri, R.; Gundawar, M.K. Femtosecond laser-induced breakdown spectroscopy studies for the identification of plastics. J. Anal. At. Spectrom. 2019, 34, 1683–1692. [Google Scholar] [CrossRef]
- Junjuri, R.; Zhang, C.; Barman, I.; Gundawar, M.K. Identification of post-consumer plastics using laser-induced breakdown spectroscopy. Polym. Test. 2019, 76, 101–108. [Google Scholar] [CrossRef]
- Liu, K.; Tian, D.; Li, C.; Li, Y.; Yang, G.; Ding, Y. A review of laser-induced breakdown spectroscopy for plastic analysis. TrAC Trends Anal. Chem. 2019, 110, 327–334. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, F.; Xie, J.; Zhang, C.; Fu, J.; Zhao, P. Magnetic projection: A novel separation method and its first application on separating mixed plastics. Waste Manag. 2019, 87, 805–813. [Google Scholar] [CrossRef]
- Grbic, J.; Nguyen, B.; Guo, E.; You, J.B.; Sinton, D.; Rochman, C.M. Magnetic Extraction of Microplastics from Environmental Samples. Environ. Sci. Technol. Lett. 2019, 6, 68–72. [Google Scholar] [CrossRef]
- Wong, J.H.; Gan, M.J.H.; Chua, B.L.; Gakim, M.; Siambun, N.J. Shredder machine for plastic recycling: A review paper. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1217. [Google Scholar] [CrossRef]
- Jemy, A.N.Q.; Octary, A.V.; Saptaji, K.; Septiani, T.D.; Fauziyyah, S.M.; Mohammad, R.N.; Djamari, D.W. Design and Modeling of Shredding Machine for Recycling Plastic Waste. In Proceedings of the 2021 IEEE 7th International Conference on Computing, Engineering and Design (ICCED), Sukabumi, Indonesia, 5–6 August 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Mahule, S.; Nagpure, V.; Bhoyar, S.; Bhoyar, D. Design and Fabrication of Low Cost Plastic Shredder. Int. J. Res. Eng. Sci. Manag. 2021, 4, 4–5. Available online: https://journal.ijresm.com/index.php/ijresm/article/view/709 (accessed on 23 July 2023).
- Flizikowski, J.; Kruszelnicka, W.; Macko, M. The Development of Efficient Contaminated Polymer Materials Shredding in Recycling Processes. Polymers 2021, 13, 713. [Google Scholar] [CrossRef]
- Suliman, M.S.; Johar, M.A. Development of Shredding Machine for Plastic Recycling. Res. Prog. Mech. Manuf. Eng. 2022, 3, 160–169. [Google Scholar]
- Kumaran, P.; Lakshminarayanan, N.; Martin, A.V.; George, R.; JoJo, J. Design and analysis of shredder machine for e-waste recycling using CATIA. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 993, p. 012013. [Google Scholar] [CrossRef]
- Balwada, J.; Samaiya, S.; Mishra, R.P. Packaging Plastic Waste Management for a Circular Economy and Identifying a better Waste Collection System using Analytical Hierarchy Process (AHP). Procedia CIRP 2021, 98, 270–275. [Google Scholar] [CrossRef]
- Bing, X.; de Keizer, M.; Bloemhof-Ruwaard, J.M.; van der Vorst, J.G. Vehicle routing for the eco-efficient collection of household plastic waste. Waste Manag. 2014, 34, 719–729. [Google Scholar] [CrossRef]
- Sidique, S.F.; Lupi, F.; Joshi, S.V. The effects of behavior and attitudes on drop-off recycling activities. Resour. Conserv. Recycl. 2010, 54, 163–170. [Google Scholar] [CrossRef]
- Manomaivibool, P.; Vassanadumrongdee, S. Buying back household waste electrical and electronic equipment: Assessing Thailand’s proposed policy in light of past disposal behavior and future preferences. Resour. Conserv. Recycl. 2012, 68, 117–125. [Google Scholar] [CrossRef]
- Browning, S.; Beymer-Farris, B.; Seay, J.R. Addressing the challenges associated with plastic waste disposal and management in developing countries. Curr. Opin. Chem. Eng. 2021, 32, 100682. [Google Scholar] [CrossRef]
- Lange, J.-P. Managing Plastic Waste-Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Vogt, B.D.; Stokes, K.K.; Kumar, S.K. Why is Recycling of Postconsumer Plastics so Challenging? ACS Appl. Polym. Mater. 2021, 3, 4325–4346. [Google Scholar] [CrossRef]
- Biddle, M.B.; Dinger, P. An Overview of Recycling Plastics from Durable Goods: Challenges and Opportunities. Available online: https://d1wqtxts1xzle7.cloudfront.net/74227110/46173-libre.pdf?1636121433=&response-content-disposition=inline%3B+filename%3DAn_Overview_of_Recycling_Plastics_from_D.pdf&Expires=1695092482&Signature=etZrtqEe-t9-ee5Nu~IAUVj0rEyYxGS~4C1hwbnWm50EpKgvODiPDjHMXQ~6d1WEQcilXizbzhXNHMBre2KeoTTdkAb2mu6tuUjYwVz1M3XAjH7w6ywvrJWdbGV0POxyufJ9TfHjuqerINABhMGMurDa8g1zN5aeTUw4eDwDGgPnwMyniOC4u4LzA8c5qQbfC8TO9lnUD4YD2hZNjQl4m87QCXlB7BF820pNbFUrroRu8VutddzCkSLErgs6WWyQUS5AfWPw6p1Fjq3aQc-lNEE~XfpMB98vjGuUSYq6z0hDmqCnxvweGeRFpnfQqloW2gMcjcxPghK5fomjL-YBdw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA (accessed on 26 January 2023).
- Carey, J. On the brink of a recycling revolution?: We’re awash in plastics, many of which are hard to recycle. Could innovations, girded by the right incentives, finally whittle down the piles of plastic waste? Proc. Natl. Acad. Sci. USA 2017, 114, 612–616. [Google Scholar] [CrossRef]
- Lubongo, C.; Alexandridis, P. Assessment of Performance and Challenges in Use of Commercial Automated Sorting Technology for Plastic Waste. Recycling 2022, 7, 11. [Google Scholar] [CrossRef]
- Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477. [Google Scholar] [CrossRef]
- Biron, M. Recycling Plastics: Advantages and Limitations of Use. In A Practical Guide to Plastics Sustainability; Elsevier BV: Amsterdam, The Netherlands, 2020; pp. 411–467. [Google Scholar]
- Eriksen, M.; Pivnenko, K.; Olsson, M.; Astrup, T. Contamination in plastic recycling: Influence of metals on the quality of reprocessed plastic. Waste Manag. 2018, 79, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Iacovidou, E.; Velenturf, A.P.; Purnell, P. Quality of resources: A typology for supporting transitions towards resource efficiency using the single-use plastic bottle as an example. Sci. Total Environ. 2019, 647, 441–448. [Google Scholar] [CrossRef] [PubMed]
- El-Haggar, S.M. Sustainability of Municipal Solid Waste Management. Sustain. Ind. Des. Waste Manag. 2007, 149–196. [Google Scholar] [CrossRef]
- Damanhuri, E. Post-Consumer Waste Recycling and Optimal Production; IntechOpen: London, UK, 2012. [Google Scholar] [CrossRef]
- Shen, L.; Worrell, E. Chapter 13—Plastic Recycling. In Handbook of Recycling; Worrell, E., Reuter, M.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 179–190. [Google Scholar] [CrossRef]
- Ajitha, A.R.; Thomas, S. Chapter 1—Introduction: Polymer blends, thermodynamics, miscibility, phase separation, and compatibilization. Compat. Polym. Blends 2019, 1–29. [Google Scholar] [CrossRef]
- Utracki, L.A. Compatibilization of Polymer Blends. Can. J. Chem. Eng. 2002, 80, 1008–1016. [Google Scholar] [CrossRef]
- Dorigato, A. Recycling of polymer blends. Adv. Ind. Eng. Polym. Res. 2021, 4, 53–69. [Google Scholar] [CrossRef]
- Lyatskaya, Y.; Gersappe, D.; Gross, N.A.; Balazs, A.C. Designing Compatibilizers to Reduce Interfacial Tension in Polymer Blends. 1996. Available online: https://pubs.acs.org/sharingguidelines (accessed on 21 May 2023).
- La Mantia, F.P.; Morreale, M.; Botta, L.; Mistretta, M.C.; Ceraulo, M.; Scaffaro, R. Degradation of polymer blends: A brief review. Polym. Degrad. Stab. 2017, 145, 79–92. [Google Scholar] [CrossRef]
- Mistretta, M.; Fontana, P.; Ceraulo, M.; Morreale, M.; La Mantia, F. Effect of compatibilization on the photo-oxidation behaviour of polyethylene/polyamide 6 blends and their nanocomposites. Polym. Degrad. Stab. 2015, 112, 192–197. [Google Scholar] [CrossRef]
- Taufiq, M.; Mustafa, Z.; Mansor, M. Utilisation of recycled thermoplastics sourced from rejected-unused disposable diapers as polymer blends. J. Mech. Eng. Sci. 2017, 11, 3137–3143. [Google Scholar] [CrossRef]
- Mnif, R.; Elleuch, R. Effects of reprocessing cycles and ageing on the rheological and mechanical properties of virgin-recycled HDPE blends. Matér. Tech. 2015, 103, 704. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Effect of recycling on rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. J. Mater Sci. 2011, 46, 3013–3019. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Velis, C.A.; Weber, R.; Iacovidou, E.; Purnell, P. An overview of chemical additives present in plastics: Migration, release, fate and environmental impact during their use, disposal and recycling. J. Hazard. Mater. 2018, 344, 179–199. [Google Scholar] [CrossRef]
- Zweifel, H. Principles of Oxidative Degradation. Stab. Polym. Mater. 1998, 1–40. [Google Scholar] [CrossRef]
- Niaounakis, M. Chapter 2—Properties. Biopolym. Process. Prod. 2015, 79–116. [Google Scholar] [CrossRef]
- Capone, C.; Di Landro, L.; Inzoli, F.; Penco, M.; Sartore, L. Thermal and mechanical degradation during polymer extrusion processing. Polym. Eng. Sci. 2007, 47, 1813–1819. [Google Scholar] [CrossRef]
- Schweighuber, A.; Felgel-Farnholz, A.; Bögl, T.; Fischer, J.; Buchberger, W. Investigations on the influence of multiple extrusion on the degradation of polyolefins. Polym. Degrad. Stab. 2021, 192, 109689. [Google Scholar] [CrossRef]
- Pielichowski, K.; Njuguna, J. Thermal Degradation of Polymeric Materials. Available online: http://www.rapra.net (accessed on 13 March 2023).
- Lederer, K. Thermal degradation of polymeric materials. Polimeri 1993, 14, 253–257. [Google Scholar]
- White, J.R. Polymer ageing: Physics, chemistry or engineering? Time to reflect. Comptes Rendus Chim. 2006, 9, 1396–1408. [Google Scholar] [CrossRef]
- Peterson, J.D.; Vyazovkin, S.; Wight, C.A. Kinetics of the Thermal and Thermo-Oxidative Degradation of Polystyrene, Polyethylene and Poly(propylene). Macromol. Chem. Phys. 2001, 202, 775–784. [Google Scholar] [CrossRef]
- Botelho, G.; Queiros, A.; Liberal, S.; Gijsman, P. Studies on thermal and thermo-oxidative degradation of poly(ethylene ter-ephthalate) and poly(butylene terephthalate). Polym. Degrad. Stab. 2001, 74, 39–48. [Google Scholar] [CrossRef]
- Romão, W.; Franco, M.F.; Corilo, Y.E.; Eberlin, M.N.; Spinacé, M.A.; De Paoli, M.-A. Poly (ethylene terephthalate) thermo-mechanical and thermo-oxidative degradation mechanisms. Polym. Degrad. Stab. 2009, 94, 1849–1859. [Google Scholar] [CrossRef]
- Phanthong, P.; Yao, S. Revolutionary Plastic Mechanical Recycling Process: Regeneration of Mechanical Properties and Lamellar Structures. In Recycling Strategy and Challenges Associated with Waste Management towards Sustaining the World; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Banjo, A.D.; Agrawal, V.; Auad, M.L.; Celestine, A.-D.N. Moisture-induced changes in the mechanical behavior of 3D printed polymers. Compos. Part C Open Access 2022, 7, 100243. [Google Scholar] [CrossRef]
- Weitsman, Y.J.; Elahi, M. Effects of fluids on the deformation, strength and durability of polymeric composites—An overview. Mech. Time-Depend. Mater. 2000, 4, 107–126. [Google Scholar] [CrossRef]
- Long, T.S.; Sokol, R.J. Molding polycarbonate: Moisture degradation effect on physical and chemical properties. Polym. Eng. Sci. 1974, 14, 817–822. [Google Scholar] [CrossRef]
- Feldman, D. Polymer Weathering: Photo-Oxidation. J. Polym. Environ. 2002, 10, 163–173. [Google Scholar] [CrossRef]
- Allara, D.L. Aging of polymers. Environ. Health Perspect. 1975, 11, 29–33. [Google Scholar] [CrossRef]
- Hashim, U.R.; Jumahat, A.; Jawaid, M.; Dungani, R.; Alamery, S. Effects of Accelerated Weathering on Degradation Behavior of Basalt Fiber Reinforced Polymer Nanocomposites. Polymers 2020, 12, 2621. [Google Scholar] [CrossRef]
- Geissdoerfer, M.; Savaget, P.; Bocken, N.M.P.; Hultink, E.J. The circular economy—A new sustainability paradigm? J. Clean. Prod. 2017, 143, 757–768. [Google Scholar] [CrossRef]
- Barbier, E.B. The Concept of Sustainable Economic Development. Environ. Conserv. 1987, 14, 101–110. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Elia, V.; Gnoni, M.G.; Tornese, F. Measuring circular economy strategies through index methods: A critical analysis. J. Clean. Prod. 2017, 142, 2741–2751. [Google Scholar] [CrossRef]
- Korhonen, J.; Honkasalo, A.; Seppälä, J. Circular Economy: The Concept and its Limitations. Ecol. Econ. 2018, 143, 37–46. [Google Scholar] [CrossRef]
- Murray, A.; Skene, K.; Haynes, K. The Circular Economy: An Interdisciplinary Exploration of the Concept and Application in a Global Context. J. Bus. Ethics 2017, 140, 369–380. [Google Scholar] [CrossRef]
- Niyommaneerat, W.; Suwanteep, K.; Chavalparit, O. Sustainability indicators to achieve a circular economy: A case study of renewable energy and plastic waste recycling corporate social responsibility (CSR) projects in Thailand. J. Clean. Prod. 2023, 391, 136203. [Google Scholar] [CrossRef]
- Schwarz, A.E.; Ligthart, T.N.; Bizarro, D.G.; De Wild, P.; Vreugdenhil, B.; van Harmelen, T. Plastic recycling in a circular economy; determining environmental performance through an LCA matrix model approach. Waste Manag. 2021, 121, 331–342. [Google Scholar] [CrossRef]
- Shamsuyeva, M.; Endres, H.-J. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos. Part C Open Access 2021, 6, 100168. [Google Scholar] [CrossRef]
- Genovese, A.; Acquaye, A.A.; Figueroa, A.; Koh, S.C.L. Sustainable supply chain management and the transition towards a circular economy: Evidence and some applications. Omega 2017, 66, 344–357. [Google Scholar] [CrossRef]
- Potting, J.; Hekkert, M.; Worrell, E.; Hanemaaijer, A. Circular Economy: Measuring Innovation in the Product Chain Policy Report; PBL Netherlands Environmental Assessment Agency: The Hague, Netherlands, 2017. [Google Scholar]
- Valencia, M.; Bocken, N.; Loaiza, C.; De Jaeger, S. The social contribution of the circular economy. J. Clean. Prod. 2023, 408, 137082. [Google Scholar] [CrossRef]
- Khan, A.A.; Abonyi, J. Simulation of Sustainable Manufacturing Solutions: Tools for Enabling Circular Economy. Sustainability 2022, 14, 9796. [Google Scholar] [CrossRef]
- Figge, F.; Thorpe, A.S.; Gutberlet, M. Definitions of the circular economy: Circularity matters. Ecol. Econ. 2023, 208, 107823. [Google Scholar] [CrossRef]
- Luan, Y.; Huang, B.; Chen, L.; Wang, X.; Ma, Y.; Yin, M.; Song, Y.; Liu, H.; Ma, X.; Zhang, X.; et al. High-performance, low-cost, chemical-free, and reusable bamboo drinking straw: An all-natural substitute for plastic straws. Ind. Crop. Prod. 2023, 200, 116829. [Google Scholar] [CrossRef]
- Nicolau, J.L.; Stadlthanner, K.A.; Andreu, L.; Font, X. Explaining the willingness of consumers to bring their own reusable coffee cups under the condition of monetary incentives. J. Retail. Consum. Serv. 2022, 66, 102908. [Google Scholar] [CrossRef]
- Krause, R.M. Why Are We Doing This? Issue Framing, Problem Proximity, and Cities’ Rationale for Regulating Single-Use Plastics. J. Environ. Policy Plan. 2021, 23, 482–495. [Google Scholar] [CrossRef]
- Lessard, J.-M.; Habert, G.; Tagnit-Hamou, A.; Amor, B. Tracking the Environmental Consequences of Circular Economy over Space and Time: The Case of Close- and Open-Loop Recovery of Postconsumer Glass. Environ. Sci. Technol. 2021, 55, 11521–11532. [Google Scholar] [CrossRef] [PubMed]
- Nylén, E.-J.A.; Salminen, J.M. How does the circular economy discourse affect policy-making? The case of streamlining waste utilisation in Finnish earthworks. Resour. Conserv. Recycl. 2019, 149, 532–540. [Google Scholar] [CrossRef]
- Hekkert, M.P.; Worrell, E. Sustainable Agriculture View Project Regional Economic and Environmental Impacts of Wind Power Developments: A Case Study of a German Region View Project José Potting. Available online: https://www.researchgate.net/publication/319314335 (accessed on 23 February 2023).
- Taghavi, N.; Udugama, I.A.; Zhuang, W.-Q.; Baroutian, S. Challenges in biodegradation of non-degradable thermoplastic waste: From environmental impact to operational readiness. Biotechnol. Adv. 2021, 49, 107731. [Google Scholar] [CrossRef]
- Kazemi, M.; Kabir, S.F.; Fini, E.H. State of the art in recycling waste thermoplastics and thermosets and their applications in construction. Resour. Conserv. Recycl. 2021, 174, 105776. [Google Scholar] [CrossRef]
- Di, L.; Yang, Y. Towards closed-loop material flow in additive manufacturing: Recyclability analysis of thermoplastic waste. J. Clean. Prod. 2022, 362, 132427. [Google Scholar] [CrossRef]
- Zainudin, S.; Shuaib, N.A.; Omar, N.W.Y.; Azmi, A.I. Using taguchi approach for investigating mechanical properties of recycled carbon fibre reinforced thermoplastics for injection moulding applications. Int. J. Mod. Manuf. Technol. 2021, 13, 149–154. [Google Scholar] [CrossRef]
- Borkar, A.; Hendlmeier, A.; Simon, Z.; Randall, J.D.; Stojcevski, F.; Henderson, L.C. A comparison of mechanical properties of recycled high-density polyethylene/waste carbon fiber via injection molding and 3D printing. Polym. Compos. 2022, 43, 2408–2418. [Google Scholar] [CrossRef]
- Huang, P.-W.; Peng, H.-S. Number of Times Recycled and Its Effect on the Recyclability, Fluidity and Tensile Properties of Polypropylene Injection Molded Parts. Sustainability 2021, 13, 11085. [Google Scholar] [CrossRef]
- Romoaldo, C.H.; Francisquetti, E.L.; Simon, D.A.; Ernze, J.R.; Bischoff, E. Recycling Tetrafluoroethylene–Perfluoroalkyl Vinylether Copolymer (PFA) Using Extrusion Process. Macromol. Mater. Eng. 2022, 308, 2200458. [Google Scholar] [CrossRef]
- Benyathiar, P.; Kumar, P.; Carpenter, G.; Brace, J.; Mishra, D.K. Polyethylene Terephthalate (PET) Bottle-to-Bottle Recycling for the Beverage Industry: A Review. Polymers 2022, 14, 2366. [Google Scholar] [CrossRef]
- Ronkay, F.; Molnar, B.; Gere, D.; Czigany, T. Plastic waste from marine environment: Demonstration of possible routes for recycling by different manufacturing technologies. Waste Manag. 2020, 119, 101–110. [Google Scholar] [CrossRef]
- Freudenthaler, P.J.; Fischer, J.; Liu, Y.; Lang, R.W. Polypropylene Post-Consumer Recyclate Compounds for Thermoforming Packaging Applications. Polymers 2023, 15, 345. [Google Scholar] [CrossRef]
- Zhong, S.; Pearce, J.M. Tightening the loop on the circular economy: Coupled distributed recycling and manufacturing with recyclebot and RepRap 3-D printing. Resour. Conserv. Recycl. 2017, 128, 48–58. [Google Scholar] [CrossRef]
- Woern, A.L.; Byard, D.J.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Fused Particle Fabrication 3-D Printing: Recycled Materials’ Optimization and Mechanical Properties. Materials 2018, 11, 1413. [Google Scholar] [CrossRef]
- Dertinger, S.C.; Gallup, N.; Tanikella, N.G.; Grasso, M.; Vahid, S.; Foot, P.J.S.; Pearce, J.M. Technical pathways for distributed recycling of polymer composites for distributed manufacturing: Windshield wiper blades. Resour. Conserv. Recycl. 2020, 157, 104810. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Maniadi, A.; Velidakis, E.; Mountakis, N.; Kechagias, J.D. Sustainable Additive Manufacturing: Mechanical Response of Polyamide 12 over Multiple Recycling Processes. Materials 2021, 14, 466. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Huang, H.; Zhu, L.; Liu, Z. Integrating carbon fiber reclamation and additive manufacturing for recycling CFRP waste. Compos. Part B Eng. 2021, 215, 108808. [Google Scholar] [CrossRef]
- Kreiger, M.; Pearce, J.M. Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products. ACS Sustain. Chem. Eng. 2013, 1, 1511–1519. [Google Scholar] [CrossRef]
- Dong, X.; Hu, D.; Wang, H.; Huang, Y.; Long, S.; Zhang, G.; Li, X. Mechanical characterizations, recyclability of thermoplastics through melt grafting a dynamic covalent network onto polyethylene. Polym. Test. 2023, 122, 108005. [Google Scholar] [CrossRef]
- Domingues, J.; Marques, T.; Mateus, A.; Carreira, P.; Malça, C. An Additive Manufacturing Solution to Produce Big Green Parts from Tires and Recycled Plastics. Procedia Manuf. 2017, 12, 242–248. [Google Scholar] [CrossRef]
- Schneevogt, H.; Stelzner, K.; Yilmaz, B.; Abali, B.E.; Klunker, A.; Völlmecke, C. Sustainability in additive manufacturing: Exploring the mechanical potential of recycled PET filaments. Compos. Adv. Mater. 2021, 30. [Google Scholar] [CrossRef]
- Reich, M.J.; Woern, A.L.; Tanikella, N.G.; Pearce, J.M. Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing. Materials 2019, 12, 1642. [Google Scholar] [CrossRef]
- Wei, B.; Yang, S.; Wang, Q. Green recycling of aluminum plastic packaging waste by solid-state shear milling and 3D printing for thermal conductive composites. Polym. Adv. Technol. 2021, 32, 2576–2587. [Google Scholar] [CrossRef]
- Rahmatabadi, D.; Soltanmohammadi, K.; Aberoumand, M.; Soleyman, E.; Ghasemi, I.; Baniassadi, M.; Abrinia, K.; Bodaghi, M.; Baghani, M. Development of Pure Poly Vinyl Chloride (PVC) with Excellent 3D Printability and Macro- and Micro-Structural Properties. Macromol. Mater. Eng. 2022, 308, 2200568. [Google Scholar] [CrossRef]
- Meyer, T.K.; Tanikella, N.G.; Reich, M.J.; Pearce, J.M. Potential of distributed recycling from hybrid manufacturing of 3-D printing and injection molding of stamp sand and acrylonitrile styrene acrylate waste composite. Sustain. Mater. Technol. 2020, 25, e00169. [Google Scholar] [CrossRef]
- Sasse, J.; Pelzer, L.; Schön, M.; Ghaddar, T.; Hopmann, C. Investigation of Recycled and Coextruded PLA Filament for Additive Manufacturing. Polymers 2022, 14, 2407. [Google Scholar] [CrossRef] [PubMed]
- Patti, A.; Acierno, S.; Cicala, G.; Zarrelli, M.; Acierno, D. Assessment of Recycled PLA-Based Filament for 3D Printing. Mater. Proc. 2021, 7, 16. [Google Scholar] [CrossRef]
- Alexandre, A.; Sanchez, F.A.C.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers. 3D Print. Addit. Manuf. 2020, 7, 237–247. [Google Scholar] [CrossRef]
- Thompson, N.; Weaver, J.M. Closed Loop Recycling of Low Friction Polymers in Fused Granule Fabrication Additive Manufacturing Processes. Faculty Publications. 2022. Available online: https://scholarsarchive.byu.edu/facpubhttps://scholarsarchive.byu.edu/facpub/5871 (accessed on 18 August 2023).
- van Straten, B.; van der Heiden, D.; Robertson, D.; Riekwel, C.; Jansen, F.; van der Elst, M.; Horeman, T. Surgical waste reprocessing: Injection molding using recycled blue wrapping paper from the operating room. J. Clean. Prod. 2021, 322, 129121. [Google Scholar] [CrossRef]
- Othman, M.H. Recycled Clothes with Polypropylene-Nanoclay for Industrial Product via Injection Molding. Mater. Sci. Mater. Eng. 2019, 1, 713–716. [Google Scholar] [CrossRef]
- He, W.; Yang, J.; Chen, Y.; Liu, P.; Li, C.; Xiong, M.; Niu, X.; Li, X. Study on co-injection molding of poly(styrene-ethylene-butylene-styrene) and polypropylene: Simulation and experiment. Polym. Test. 2022, 108, 107510. [Google Scholar] [CrossRef]
- Myasoedova, V.V. Graded Recycled Polymers Modified by Thermoelastoplasts: Composite Materials to Be Used for Injection Molding. Polym. Sci. Ser. D 2021, 14, 462–466. [Google Scholar] [CrossRef]
- Synyuk, O.; Musiał, J.; Zlotenko, B.; Kulik, T. Development of Equipment for Injection Molding of Polymer Products Filled with Recycled Polymer Waste. Polymers 2020, 12, 2725. [Google Scholar] [CrossRef]
- Nur-A-Tomal, M.; Pahlevani, F.; Handoko, W.; Cholake, S.; Sahajwalla, V. Effect of cyclic reprocessing on nylon 12 under injection molding: Working toward more efficient recycling of plastic waste. Mater. Today Sustain. 2021, 11–12, 100056. [Google Scholar] [CrossRef]
- Gu, F.; Hall, P.; Miles, N. Development of composites based on recycled polypropylene for injection moulding automobile parts using hierarchical clustering analysis and principal component estimate. J. Clean. Prod. 2016, 137, 632–643. [Google Scholar] [CrossRef]
- Mejia, E.B.; Al-Maqdi, S.; Alkaabi, M.; Alhammadi, A. Upcycling of HDPE Waste using Additive Manufacturing: Feasibility and Challenges; Upcycling of HDPE Waste using Additive Manufacturing: Feasibility and Challenges. 2020. Available online: https://www.researchgate.net/publication/342221344_Upcycling_of_HDPE_Waste_using_Additive_Manufacturing_Feasibility_and_Challenges (accessed on 18 August 2023).
- Patra, N.R.; Negi, Y.S. Thermal, structural, and rheological modifications in recycled polyethylene terephthalate for a sustainable alternative source for additive manufacturing. Polym. Eng. Sci. 2022, 62, 2486–2497. [Google Scholar] [CrossRef]
- Boparai, K.S.; Singh, R.; Fabbrocino, F.; Fraternali, F. Thermal characterization of recycled polymer for additive manufacturing applications. Compos. Part B Eng. 2016, 106, 42–47. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Maniadi, A.; Velidakis, E.; Mountakis, N.; Papageorgiou, D.; Liebscher, M.; Mechtcherine, V. Sustainable Additive Manufacturing: Mechanical Response of Polypropylene over Multiple Recycling Processes. Sustainability 2021, 13, 159. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A. Sustainable Additive Manufacturing: Mechanical Response of High-Density Polyethylene over Multiple Recycling Processes. Recycling 2021, 6, 4. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Maniadi, A.; Koudoumas, E.; Vairis, A.; Kechagias, J. Sustainable Additive Manufacturing: Mechanical Response of Acrylonitrile-Butadiene-Styrene over Multiple Recycling Processes. Sustainability 2020, 12, 3568. [Google Scholar] [CrossRef]
- Zander, N.E.; Boelter, Z.R. Rubber toughened recycled polyethylene terephthalate for material extrusion additive manufacturing. Polym. Int. 2020, 70, 742–748. [Google Scholar] [CrossRef]
- Rahimizadeh, A.; Kalman, J.; Fayazbakhsh, K.; Lessard, L. Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing. Compos. Part B Eng. 2019, 175, 107101. [Google Scholar] [CrossRef]
- Hart, K.R.; Frketic, J.B.; Brown, J.R. Recycling meal-ready-to-eat (MRE) pouches into polymer filament for material extrusion additive manufacturing. Addit. Manuf. 2018, 21, 536–543. [Google Scholar] [CrossRef]
- Zander, N.E.; Gillan, M.; Burckhard, Z.; Gardea, F. Recycled polypropylene blends as novel 3D printing materials. Addit. Manuf. 2018, 25, 122–130. [Google Scholar] [CrossRef]
- Zander, N.E.; Gillan, M.; Lambeth, R.H. Recycled polyethylene terephthalate as a new FFF feedstock material. Addit. Manuf. 2018, 21, 174–182. [Google Scholar] [CrossRef]
- Zander, N.E.; Park, J.H.; Boelter, Z.R.; Gillan, M.A. Recycled Cellulose Polypropylene Composite Feedstocks for Material Extrusion Additive Manufacturing. ACS Omega 2019, 4, 13879–13888. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.; Joung, C.; Kim, H.; Im, S.; Kang, S.; Ji, W.; Park, Y. Manufacturing, thermoforming, and recycling of glass fiber/PET/PET foam sandwich composites: DOE analysis of recycled materials. Polym. Compos. 2022, 43, 8807–8817. [Google Scholar] [CrossRef]
- von Freeden, J.; Rodenwaldt, B.; Nebel, D. Investigation of the influence of multiple thermoforming processes on the properties of continuous fiber-reinforced thermoplastics to enable structural reuse. SN Appl. Sci. 2023, 5, 54. [Google Scholar] [CrossRef]
- Kreiger, M.; Anzalone, G.C.; Mulder, M.L.; Glover, A.; Pearce, J.M. Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas. In MRS Proceedings; Cambridge University Press (CUP): Cambridge, UK, 2013; Volume 1492, pp. 91–96. [Google Scholar]
- Spekkink, W.; Rödl, M.; Charter, M. Repair Cafés and Precious Plastic as translocal networks for the circular economy. J. Clean. Prod. 2022, 380, 135125. [Google Scholar] [CrossRef]
- Byard, D.J.; Woern, A.L.; Oakley, R.B.; Fiedler, M.J.; Snabes, S.L.; Pearce, J.M. Green fab lab applications of large-area waste polymer-based additive manufacturing. Addit. Manuf. 2019, 27, 515–525. [Google Scholar] [CrossRef]
- Ravindran, A.; Scsavnicki, S.; Nelson, W.; Gorecki, P.; Franz, J.; Oberloier, S.; Meyer, T.K.; Barnard, A.R.; Pearce, J.M. Open Source Waste Plastic Granulator. Technologies 2019, 7, 74. [Google Scholar] [CrossRef]
- Berkane, I.; Aracil, I.; Fullana, A. Evaluation of thermal drying for the recycling of flexible plastics. Waste Manag. 2023, 168, 116–125. [Google Scholar] [CrossRef]
- Woern, A.L.; McCaslin, J.R.; Pringle, A.M.; Pearce, J.M. RepRapable Recyclebot: Open source 3-D printable extruder for converting plastic to 3-D printing filament. HardwareX 2018, 4, e00026. [Google Scholar] [CrossRef]
- Al Nabhani, D.; Kassab, A.; Habbal, O.; Mohanty, P.; Ayoub, G.; Pannier, C. Benchmarking the Tensile Properties of Polylactic Acid (PLA) Recycled Through Fused Granule Fabrication Additive Manufacturing. In Proceedings of the Solid Freeform Fabrication Symposium, Austin, TX, USA, 14–16 August 2023. [Google Scholar]
- Woern, A.L.; Pearce, J.M. 3-D Printable Polymer Pelletizer Chopper for Fused Granular Fabrication-Based Additive Manufacturing. Inventions 2018, 3, 78. [Google Scholar] [CrossRef]
- Wu, H.-C.; Chen, T.-C.T. Quality control issues in 3D-printing manufacturing: A review. Rapid Prototyp. J. 2018, 24, 607–614. [Google Scholar] [CrossRef]
- Vidakis, N.; David, C.; Petousis, M.; Sagris, D.; Mountakis, N. Optimization of key quality indicators in material extrusion 3D printing of acrylonitrile butadiene styrene: The impact of critical process control parameters on the surface roughness, dimensional accuracy, and porosity. Mater. Today Commun. 2023, 34, 105171. [Google Scholar] [CrossRef]
- Patel, R.; Desai, C.; Kushwah, S.; Mangrola, M.H. A review article on FDM process parameters in 3D printing for composite materials. Mater. Today Proc. 2022, 60 Pt 3, 2162–2166. [Google Scholar] [CrossRef]
- Ambade, V.V.; Rajurkar, S.W.; Awari, G.K. Optimization of process parameters affecting performance of part characteristics in fused deposition modeling (FDM) 3D printing: A critical review. AIP Conf. Proc. 2023, 2800, 020072. [Google Scholar]
- Urbanic, R.J.; Hedrick, R.W.; Burford, C.G. A process planning framework and virtual representation for bead-based additive manufacturing processes. Int. J. Adv. Manuf. Technol. 2016, 90, 361–376. [Google Scholar] [CrossRef]
- Sampedro, G.A.R.; Agron, D.J.S.; Amaizu, G.C.; Kim, D.-S.; Lee, J.-M. Design of an In-Process Quality Monitoring Strategy for FDM-Type 3D Printer Using Deep Learning. Appl. Sci. 2022, 12, 8753. [Google Scholar] [CrossRef]
- Honarvar, F.; Varvani-Farahani, A. A review of ultrasonic testing applications in additive manufacturing: Defect evaluation, material characterization, and process control. Ultrasonics 2020, 108, 106227. [Google Scholar] [CrossRef]
- Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press (CUP): Cambridge, UK, 2008. [Google Scholar]
- Rozanski, A.; Galeski, A. Plastic yielding of semicrystalline polymers affected by amorphous phase. Int. J. Plast. 2013, 41, 14–29. [Google Scholar] [CrossRef]
- Chudnovsky, A.; Preston, S. Configurational mechanics of necking phenomena in engineering thermoplastics. Mech. Res. Commun. 2002, 29, 465–475. [Google Scholar] [CrossRef]
- Galeski, A.; Bartczak, Z.; Kazmierczak, T.; Slouf, M. Morphology of undeformed and deformed polyethylene lamellar crystals. Polymer 2010, 51, 5780–5787. [Google Scholar] [CrossRef]
- Bartczak, Z.; Galeski, A. Plasticity of Semicrystalline Polymers. Macromol. Symp. 2010, 294, 67–90. [Google Scholar] [CrossRef]
- La Mantia, F.P. Mechanical properties of recycled polymers. Macromol. Symp. 1999, 147, 167–172. [Google Scholar] [CrossRef]
- Guyot, A. Recent developments in the thermal degradation of polystyrene—A review. Polym. Degrad. Stab. 1986, 15, 219–235. [Google Scholar] [CrossRef]
- Cameron, G.; Kerr, G. Thermal degradation of polystyrene—I. Chain scission at low temperatures. Eur. Polym. J. 1968, 4, 709–717. [Google Scholar] [CrossRef]
- Zahavich, A.T.P.; Latto, B.; Takacs, E.; Vlachopoulos, J. The Effect of Multiple Extrusion Passes During Recycling of High Density Polyethylene. Adv. Polym. Technol. J. Polym. Process. Inst. 1997, 16, 11–24. [Google Scholar] [CrossRef]
- Oblak, P.; Gonzalez-Gutierrez, J.; Zupančič, B.; Aulova, A.; Emri, I. Processability and mechanical properties of extensively recycled high density polyethylene. Polym. Degrad. Stab. 2015, 114, 133–145. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical reprocessing of polyolefin waste: A review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef]
- Cusano, I.; Campagnolo, L.; Aurilia, M.; Costanzo, S.; Grizzuti, N. Rheology of Recycled PET. Materials 2023, 16, 3358. [Google Scholar] [CrossRef]
- Takkalkar, P.; Jatoi, A.S.; Jadhav, A.; Jadhav, H.; Nizamuddin, S. Thermo-mechanical, rheological, and chemical properties of recycled plastics. Plast. Waste Sustain. Asph. Roads 2022, 29–42. [Google Scholar] [CrossRef]
- Gonzàlez, V.A.; Neira-Velázquez, G.; Angulo-Sánchez, J.L. Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym. Degrad. Stab. 1998, 60, 33–42. [Google Scholar] [CrossRef]
- Scaffaro, R.; Maio, A.; Sutera, F.; Gulino, E.F.; Morreale, M. Degradation and Recycling of Films Based on Biodegradable Polymers: A Short Review. Polymers 2019, 11, 651. [Google Scholar] [CrossRef]
- Vohlidal, J. Polymer degradation: A short review. Chem. Teach. Int. 2021, 3, 213–220. [Google Scholar] [CrossRef]
- Zhou, J.; Hsu, T.; Wang, J. Mechanochemical Degradation and Recycling of Synthetic Polymers. Angew. Chem. Int. Ed. 2023, 62, e202300768. [Google Scholar] [CrossRef] [PubMed]
- Itim, B.; Philip, M. Effect of multiple extrusions and influence of PP contamination on the thermal characteristics of bottle grade recycled PET. Polym. Degrad. Stab. 2015, 117, 84–89. [Google Scholar] [CrossRef]
- Incarnato, L.; Scarfato, P.; Acierno, D.; Milana, M.R.; Feliciani, R. Influence of recycling and contamination on structure and transport properties of polypropylene. J. Appl. Polym. Sci. 2003, 89, 1768–1778. [Google Scholar] [CrossRef]
- Alzerreca, M.; Paris, M.; Boyron, O.; Orditz, D.; Louarn, G.; Correc, O. Mechanical properties and molecular structures of virgin and recycled HDPE polymers used in gravity sewer systems. Polym. Test. 2015, 46, 1–8. [Google Scholar] [CrossRef]
- Lay, M.; Thajudin, N.L.N.; Hamid, Z.A.A.; Rusli, A.; Abdullah, M.K.; Shuib, R.K. Comparison of physical and mechanical properties of PLA, ABS and nylon 6 fabricated using fused deposition modeling and injection molding. Compos. Part B Eng. 2019, 176, 107341. [Google Scholar] [CrossRef]
- Giri, J.; Patil, A.; Prabhu, H. The Effect of Various Parameters on the Nozzle Diameter and 3D Printed Product in Fused Deposition Modelling: An Approach. In Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2018; pp. 839–847. [Google Scholar] [CrossRef]
- Doshi, M.; Mahale, A.; Singh, S.K.; Deshmukh, S. Printing parameters and materials affecting mechanical properties of FDM-3D printed Parts: Perspective and prospects. Mater. Today Proc. 2021, 50, 2269–2275. [Google Scholar] [CrossRef]
- Podsiadły, B.; Skalski, A.; Rozpiórski, W.; Słoma, M. Are We Able to Print Components as Strong as Injection Molded?—Comparing the Properties of 3D Printed and Injection Molded Components Made from ABS Thermoplastic. Appl. Sci. 2021, 11, 6946. [Google Scholar] [CrossRef]
- Vaes, D.; Van Puyvelde, P. Semi-crystalline feedstock for filament-based 3D printing of polymers. Prog. Polym. Sci. 2021, 118, 101411. [Google Scholar] [CrossRef]
- Anderson, I.; Raza, I.; Iannucci, L.; Curtis, P.T.; Ruppert, D.S.; Harrysson, O.L.; Marcellin-Little, D.J.; Abumoussa, S.; Dahners, L.E.; Weinhold, P.S.; et al. Mechanical Properties of Specimens 3D Printed with Virgin and Recycled Polylactic Acid. 3D Print. Addit. Manuf. 2017, 4, 110–115. [Google Scholar] [CrossRef]
- Lanzotti, A.; Martorelli, M.; Maietta, S.; Gerbino, S.; Penta, F.; Gloria, A. A comparison between mechanical properties of specimens 3D printed with virgin and recycled PLA. Proc. CIRP 2019, 79, 143–146. [Google Scholar] [CrossRef]
- Vidakis, N.; Petousis, M.; Tzounis, L.; Grammatikos, S.A.; Porfyrakis, E.; Maniadi, A.; Mountakis, N. Sustainable Additive Manufacturing: Mechanical Response of Polyethylene Terephthalate Glycol over Multiple Recycling Processes. Materials 2021, 14, 1162. [Google Scholar] [CrossRef] [PubMed]
- Pfaendner, R. How will additives shape the future of plastics? Polym. Degrad. Stab. 2006, 91, 2249–2256. [Google Scholar] [CrossRef]
- Pfaendner, R.; Herbst, H.; Hoffmann, K.; Sitek, F. Recycling and restabilization of polymers for high quality applications. An Overview. Die Angew. Makromol. Chem. 1995, 232, 193–227. [Google Scholar] [CrossRef]
- Pfaendner, R. Restabilization—30 years of research for quality improvement of recycled plastics review. Polym. Degrad. Stab. 2022, 203, 110082. [Google Scholar] [CrossRef]
- Mihelčič, M.; Oseli, A.; Huskić, M.; Perše, L.S. Influence of Stabilization Additive on Rheological, Thermal and Mechanical Properties of Recycled Polypropylene. Polymers 2022, 14, 5438. [Google Scholar] [CrossRef]
- Self, J.L.; Zervoudakis, A.J.; Peng, X.; Lenart, W.R.; Macosko, C.W.; Ellison, C.J. Linear, Graft, and Beyond: Multiblock Copolymers as Next-Generation Compatibilizers. JACS Au 2022, 2, 310–321. [Google Scholar] [CrossRef]
- Raffa, P.; Coltelli, M.-B.; Savi, S.; Bianchi, S.; Castelvetro, V. Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: An experimental and modelling study. React. Funct. Polym. 2012, 72, 50–60. [Google Scholar] [CrossRef]
Study Title | Aim/Objective | Comments/Key Findings | Reference |
---|---|---|---|
Mechanical recycling of packaging plastics: A review. | This review summarizes current methods and challenges in mechanically recycling five main packaging plastics. It also discusses ways to improve polymer blending in mixed plastic waste streams and uses for lower quality recyclate. | Across the five common types of plastic, changes in polymer chain length and mechanical properties remain a persistent challenge despite differences in the degradation mechanisms. | [30] |
Recycling of waste from polymer materials: An overview of the recent works. | This study involves comparing the mechanical and chemical recycling techniques for various types of plastics, as well as analyzing the properties of polymers that have been mechanically recycled. | Mechanical recycling is the preferred and commonly used method of recycling compared to chemical recycling, which involves complex chemical treatments of the waste. | [31] |
Mechanical recycling: Compatibilization of mixed thermoplastic wastes. | Approaches employed to achieve compatibility in blends of various thermoplastic waste. | Mechanical recycling of mixed plastic wastes can be viable if their properties are enhanced through compatibilization, but the stability behavior of the resulting materials must be considered before they can be utilized in the production of new goods. | [32] |
Mechanical recycling of polylactide, upgrading trends and combination of valorization techniques. | This report provides an overview of the current state of mechanical recycling for PLA, with particular focus on a multi-scale comparison of various studies. | Out of all the recovery methods, mechanical recycling is the most cost-effective approach for PLA, but the recycled materials are typically used for lower-value applications due to inherent thermo-mechanical degradation. | [33] |
Quality concepts for the improved use of recycled polymeric materials: A review. | This review explores new methods of mechanically recycling plastics to produce quality materials from waste streams. | Introducing a quality standard is crucial in plastic recycling. The biggest obstacle is finding a way to merge scientific understanding of the degradation and quality properties of recyclates with the design of an efficient upgrading process for each waste stream. | [34] |
Mechanical and chemical recycling of solid plastic waste. | The current methods of polymer recycling, encompassing both mechanical and chemical recycling, are thoroughly described in this review. | Mechanical and chemical recycling are promising industrial techniques that can complement each other in closing the polymer loop. | [35] |
Polymer recycling in additive manufacturing: An opportunity for the circular economy. | This short review focuses on the circular economy of materials and the recycling methods utilized in the polymer additive manufacturing process. | The development of recycled composites thorough fused deposition modeling (FDM) can lead to increased strength compared to that of the printed recycled polymer. | [36] |
3D printing filament as a second life of waste plastics a review. | The main objective of this paper is to examine the existing literature concerning the use of recycled polymers in filament production for 3D printing, as an alternative to the current method of central selective plastic collection. | Traditional recycling methods have involved the use of large, centralized plants that produce low-value commodities, which results in high transportation costs. However, 3D printing presents new opportunities for recycling. | [37] |
Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy. | The focus of this study is to explore key themes within the six stages (recovery, preparation, compounding, feedstock, printing, and quality) of the distributed recycling by additive manufacturing chain proposed. | Limited efforts have been made regarding the recovery and preparation stages, whereas significant advancements have been made in the other stages to assess the technical feasibility, environmental impact, and economic viability. | [21] |
Plastics recycling: challenges and opportunities. | The challenges that may arise during various stages of the recycling process were discussed, along with potential opportunities for enhancing recycling efforts. | Expanding the scope of recycling to include post-consumer plastic packaging, as well as waste plastics from consumer goods and end-of-life vehicles, can enhance the recovery rates of plastic waste and reduce the amount that ends up in landfills. | [2] |
Fused deposition modelling approach using 3D printing and recycled industrial materials for a sustainable environment: a review. | This paper examines the sustainability of extrusion-based 3D printing materials, with a particular emphasis on the potential use of reusable and biodegradable materials. | Desktop 3D printing has the potential to advance plastic recycling through 3D printing. | [38] |
Recycling Stages | Management and Logistics | Waste Management | [39,40,41,42,43,44,45,46,47,48] |
Collection | [49,50] | ||
Supply Chain Modelling | [51,52,53,54,55,56,57] | ||
Mechanical Sorting | Sink-Float | [58,59,60,61,62] | |
Froth Flotation | [63,64,65,66,67,68,69,70,71] | ||
Spectroscopy | [72,73,74,75,76,77,78,79] | ||
Magnetic Density Separation | [80,81] | ||
Shredding | Design and Modelling | [82,83,84,85,86,87] |
Stage | Resource | Quantity | Time (Hours) | Cost ($) |
---|---|---|---|---|
Collection | Labor | N/A | N/A | Volunteer |
Sorting | Labor | N/A | N/A | Volunteer |
Cleaning | Water | 10 Gallons | 0.5 | $0.02 |
Drying | Oven | 1.88 kWh | 6 | $0.45 |
Shredding | Shredder | 0.75 kWh | 8 | $0.14 |
Total | $0.61 |
Topic | Material/Composite | Reference |
---|---|---|
Injection Molding | PP/Composite PP/Composite SEBS/PP ASA Composite Composite Nylon 12 PP/Composite | [179] [180] [181] [174] [182] [183] [184] [185] |
3D Printing | HDPE PET Nylon 6 Composites PP HDPE ABS PET/Rubber PLA + Glass Fiber LPDE PET, PP, PS PET PP/Composite PLA | [186] [187] [188] [164] [189] [190] [191] [192] [193] [194] [195] [196] [197] [29] |
Thermoforming | PP PET/Glass Fiber Composite | [161] [198] [199] |
Parameter | Value | Unit |
---|---|---|
Nozzle Diameter | 2.85 | mm |
Layer Height | 1.5 | mm |
Skirt Outlines | 5 | count |
Bottom Heat Zone (T0) | 185 | °C |
Middle Heat Zone (T1) | 180 | °C |
Top Heat Zone (T2) | 165 | °C |
Bed Temperature | 60 | °C |
Printing Speed | 900 | mm/min |
Travel Speed | 6000 | mm/min |
3D Printer | Gigabot X 2 XLT |
Additive | Benefit | Drawback |
---|---|---|
Stabilizer | Prevents Degradation | Infeasible |
Compatibilizer | Enhances Blend Compatibility | Infeasible |
Chain Extender | Increases Molecular Weight | Thermal Instability |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kassab, A.; Al Nabhani, D.; Mohanty, P.; Pannier, C.; Ayoub, G.Y. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers 2023, 15, 3881. https://doi.org/10.3390/polym15193881
Kassab A, Al Nabhani D, Mohanty P, Pannier C, Ayoub GY. Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy. Polymers. 2023; 15(19):3881. https://doi.org/10.3390/polym15193881
Chicago/Turabian StyleKassab, Ali, Dawood Al Nabhani, Pravansu Mohanty, Christopher Pannier, and Georges Y. Ayoub. 2023. "Advancing Plastic Recycling: Challenges and Opportunities in the Integration of 3D Printing and Distributed Recycling for a Circular Economy" Polymers 15, no. 19: 3881. https://doi.org/10.3390/polym15193881