Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Extraction of Cellulose
2.3. Production of CNCs
2.4. Optimization of Preparation of CNCs Conditions
2.5. Characterization
2.5.1. The Yield of CNCs
2.5.2. Fiber Morphology Analysis
2.5.3. Morphological Characterization by TEM
2.5.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.5.5. X-ray Diffraction (XRD)
2.5.6. Zeta Potential Analysis
2.5.7. Thermal Gravimetric Analysis (TGA)
3. Results and Discussion
3.1. Chemical Composition of PSR
3.2. Optimization of CNCs Preparation Conditions
3.2.1. Response Surface Analysis
3.2.2. Surface Plots, Optimization and Model Verification
3.3. Morphology Analysis
3.4. FTIR Analysis
3.5. Crystal Structure
3.6. Zeta Potentiometric Analysis
3.7. Thermal Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fischer, E.K.; Paglialonga, L.; Czech, E.; Tamminga, M. Microplastic pollution in lakes and lake shoreline sediments—A case study on Lake Bolsena and Lake Chiusi (central Italy). Environ. Pollut. 2016, 213, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Fahrenkamp-Uppenbrink, J. Microplastics everywhere. Science 2018, 360, 44–46. [Google Scholar]
- Li, L.; Luo, Y.; Li, R.; Zhou, Q.; Peijnenburg, W.J.; Yin, N.; Yang, J.; Tu, C.; Zhang, Y. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat. Sustain. 2020, 3, 929–937. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the future? The impact of biodegradable polymers on the environment and on society. Angew. Chem. Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frank, B.P.; Smith, C.; Caudill, E.R.; Lankone, R.S.; Carlin, K.; Benware, S.; Pedersen, J.A.; Fairbrother, D.H. Biodegradation of functionalized nanocellulose. Environ. Sci. Technol. 2021, 55, 10744–10757. [Google Scholar] [CrossRef]
- Isogai, A. Emerging nanocellulose technologies: Recent developments. Adv. Mater. 2021, 33, 2000630. [Google Scholar] [CrossRef] [PubMed]
- Habibi, Y. Key advances in the chemical modification of nanocelluloses. Chem. Soc. Rev. 2014, 43, 1519–1542. [Google Scholar] [CrossRef]
- Tang, L.R.; Huang, B.; Ou, W.; Chen, X.R.; Chen, Y.D. Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Bioresour. Technol. 2011, 102, 10973–10977. [Google Scholar] [CrossRef]
- Lu, P.; Hsieh, Y.L. Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins. Carbohydr. Polym. 2012, 87, 2546–2553. [Google Scholar] [CrossRef]
- Pääkkönen, T.; Spiliopoulos, P.; Nonappa, D.; Kontturi, K.S.; Penttilä, P.; Viljanen, M.; Svedström, K.; Kontturi, E. Sustainable high yield route to cellulose nanocrystals from bacterial cellulose. ACS Sustain. Chem. Eng. 2019, 7, 14384–14388. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Cui, L.; Gao, Y.; He, Y.; Liu, H.; Huang, Z. Environmental application of magnetic cellulose derived from Pennisetum sinese Roxb for efficient tetracycline removal. Carbohydr. Polym. 2021, 251, 117004. [Google Scholar] [CrossRef] [PubMed]
- Bondeson, D.; Mathew, A.; Oksman, K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 2006, 13, 171–180. [Google Scholar] [CrossRef]
- Araki, J.; Wada, M.; Kuga, S.; Okano, T. Influence of surface charge on viscosity behavior of cellulose microcrystal suspension. J. Wood Sci. 1999, 45, 258–261. [Google Scholar] [CrossRef]
- Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose nanomaterials review: Structure, properties and nanocomposites. Chem. Soc. Rev. 2011, 40, 3941–3994. [Google Scholar] [CrossRef]
- Lu, Q.; Cai, Z.; Lin, F.; Tang, L.; Wang, S.; Huang, B. Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS Sustain. Chem. Eng. 2016, 4, 2165–2172. [Google Scholar] [CrossRef]
- Song, K.; Ji, Y.; Wang, L.; Yu, Z. A green and environmental benign method to extract cellulose nanocrystal by ball mill assisted solid acid hydrolysis. J. Clean. Prod. 2018, 196, 1169–1175. [Google Scholar] [CrossRef]
- Ai, Y.; Zhang, L.; Cui, M.; Huang, R.; Qi, W.; He, Z.; Klemeš, J.J.; Su, R. Toward cleaner production of nanocellulose: A review and evaluation. Green Chem. 2022. [Google Scholar] [CrossRef]
- Pica, M. Zirconium phosphate catalysts in the XXI century: State of the art from 2010 to date. Catalysts 2017, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Embuscado, M.E.; Marks, J.S.; BeMiller, J.N. Bacterial cellulose. II. Optimization of cellulose production by Acetobacter xylinum through response surface methodology. Food Hydrocoll. 1994, 8, 419–430. [Google Scholar] [CrossRef]
- Segal, L.G.; Creely, J.J.; Martin, A.E., Jr.; Conrad, C.M. An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Text. Res. J. 1959, 29, 786–794. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 5th ed.; Jonh Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Li, W.; Wang, Z.; Sun, Y.S.; Chen, L.; Han, L.K.; Zheng, Y.N. Application of response surface methodology to optimise ultrasonic-assisted extraction of four chromones in Radix Saposhnikoviae. Phytochem. Anal. 2011, 22, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Fan, L.; Zheng, H.; Lu, Q.; Liao, Y.; Huang, B. Preparation, characterization and optimization of nanocellulose whiskers by simultaneously ultrasonic wave and microwave assisted. Bioresour. Technol. 2013, 146, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.Q.; Zhu, J.Y.; Reiner, R.S.; Verrill, S.P.; Baxa, U.; McNeil, S.E. Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: Recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 2012, 19, 2033–2047. [Google Scholar] [CrossRef]
- Su, Y.; Burger, C.; Ma, H.; Chu, B.; Hsiao, B.S. Exploring the nature of cellulose microfibrils. Biomacromolecules 2015, 16, 1201–1209. [Google Scholar] [CrossRef]
- Subhedar, P.B.; Gogate, P.R. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrason. Sonochemistry 2014, 21, 216–225. [Google Scholar] [CrossRef]
- Naduparambath, S.; Jinitha, T.V.; Shaniba, V.; Sreejith, M.P.; Balan, A.K.; Purushothaman, E. Isolation and characterisation of cellulose nanocrystals from sago seed shells. Carbohydr. Polym. 2018, 180, 13–20. [Google Scholar] [CrossRef]
- Xing, L.; Gu, J.; Zhang, W.; Tu, D.; Hu, C. Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra pak cellulose I. Carbohydr. Polym. 2018, 192, 184–192. [Google Scholar] [CrossRef]
- Thygesen, A.; Oddershede, J.; Lilholt, H.; Thomsen, A.B.; Ståhl, K. On the determination of crystallinity and cellulose content in plant fibres. Cellulose 2005, 12, 563–576. [Google Scholar] [CrossRef]
- Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. [Google Scholar] [CrossRef]
- Coelho, C.C.; Michelin, M.; Cerqueira, M.A.; Gonçalves, C.; Tonon, R.V.; Pastrana, L.M.; Freitas-Silva, O.; Vicente, A.A.; Cabral, L.M.; Teixeira, J.A. Cellulose nanocrystals from grape pomace: Production, properties and cytotoxicity assessment. Carbohydr. Polym. 2018, 192, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Dai, H.; Huang, H. Synthesis, characterization and properties of pineapple peel cellulose-g-acrylic acid hydrogel loaded with kaolin and sepia ink. Cellulose 2017, 24, 69–84. [Google Scholar] [CrossRef]
- Lu, Q.; Zhang, S.; Xiong, M.; Lin, F.; Tang, L.; Huang, B.; Chen, Y. One-pot construction of cellulose-gelatin supramolecular hydrogels with high strength and pH-responsive properties. Carbohydr. Polym. 2018, 196, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, C.; Zhu, J.Y.; Ragauskas, A.J.; Hu, L. In situ wood delignification toward sustainable applications. Acc. Mater. Res. 2021, 2, 606–620. [Google Scholar] [CrossRef]
Factors | Level | ||
---|---|---|---|
−1 | 0 | +1 | |
Phosphate acid concentration A (%) | 45 | 50 | 55 |
Reaction temperature B (°C) | 60 | 65 | 70 |
Reaction time C (h) | 4 | 5 | 6 |
Growth Cycle | Protein Content (%) | Fiber Content (%) | Fat Content (%) | Nitrogen Free Extract (%) | Ash Content (%) |
---|---|---|---|---|---|
4 week | 10.8 | 28.5 | 3.8 | 43 | 13.9 |
6 week | 8.8 | 32.2 | 3.5 | 42.6 | 12.9 |
8 week | 8.7 | 32.8 | 3.3 | 44.3 | 10.9 |
10 week | 6.5 | 33 | 2.7 | 46.4 | 11.4 |
12 week | 5.9 | 31.9 | 2.9 | 49 | 10.3 |
Run | Model Parameters | Responses | ||
---|---|---|---|---|
A (%) | B (°C) | C (h) | Yield (%) | |
1 | −1 (45) | −1 (60) | 0 (5) | 42.14 |
2 | 1 (45) | −1 (60) | 0 (5) | 40.00 |
3 | −1 (45) | 1 (70) | 0 (5) | 42.85 |
4 | 1 (55) | 1 (70) | 0 (5) | 41.04 |
5 | −1 (45) | 0 (65) | −1 (4) | 44.36 |
6 | 1 (55) | 0 (65) | −1 (4) | 42.29 |
7 | −1 (45) | 0 (65) | 1 (6) | 43.40 |
8 | 1 (55) | 0 (65) | 1 (6) | 41.00 |
9 | 0 (50) | −1 (60) | −1 (4) | 43.56 |
10 | 0 (50) | −1 (60) | −1 (4) | 44.64 |
11 | 0 (50) | 1 (70) | 1 (6) | 41.70 |
12 | 0 (50) | 1 (70) | 1 (6) | 42.82 |
13 | 0 (50) | 0 (65) | 0 (5) | 47.69 |
14 | 0 (50) | 0 (65) | 0 (5) | 47.70 |
15 | 0 (50) | 0 (65) | 0 (5) | 48.44 |
16 | 0 (50) | 0 (65) | 0 (5) | 48.00 |
17 | 0 (50) | 0 (65) | 0 (5) | 49.00 |
Source | Sum of Squares | df | Mean Square | F-Value | Prob > F |
---|---|---|---|---|---|
Model | 135.22 | 9 | 15.02 | 67.60 | <0.0001 |
A | 8.85 | 1 | 8.85 | 39.84 | 0.0004 |
B | 1.95 | 1 | 1.95 | 8.76 | 0.0211 |
C | 4.42 | 1 | 4.42 | 19.86 | 0.0029 |
AB | 0.027 | 1 | 0.027 | 0.12 | 0.7359 |
AC | 0.029 | 1 | 0.029 | 0.13 | 0.7297 |
BC | 3.240 × 10−4 | 1 | 3.240 × 10−4 | 1.458 × 10−3 | 0.9706 |
A2 | 52.62 | 1 | 52.62 | 236.72 | <0.0001 |
B2 | 41.01 | 1 | 41.01 | 184.50 | <0.0001 |
C2 | 14.65 | 1 | 14.65 | 65.92 | <0.0001 |
Residual | 1.56 | 7 | 0.22 | ||
Lack of Fit | 0.31 | 3 | 0.10 | 0.33 | 0.8039 |
R2 = 0.9886; Adj R2 = 0.9740. |
Sample | Zeta Potential (mV) |
---|---|
PSR cellulose | −5.4 |
45% PA, 65 °C, 5 h | −19.4 |
50% PA, 65 °C, 5 h | −24.5 |
55% PA, 65 °C, 5 h | −21.3 |
50% PA, 60 °C, 5 h | −15.8 |
50% PA, 70 °C, 5 h | −18.7 |
50% PA, 65 °C, 4 h | −23.9 |
50% PA, 65 °C, 6 h | −17.3 |
Sample | Oneset Temperature (°C) | Maximum Temperature (°C) | Char Residue (wt.%) |
---|---|---|---|
PSR-cellulose | 321.8 | 351.0 | 20 |
CNCs | 313.5 | 330.4 | 19 |
Sample | Initial Temperature (°C) | Peak Temperature (°C) | Enthalpy of Pyrolysis ΔH (J/g) |
---|---|---|---|
PSR-cellulose | 21.0 282.9 305.6 374.4 | 50.0 (endo) 297.9 (endo) 344.2 (endo) 379.0 (exo) | 115.0 34.85 339.0 75.0 |
CNCs | 24.4 296.8 377.0 | 54.0 (endo) 344.2 (endo) 380.3 (exo) | 99.0 209.3 73.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Wu, J.; Lian, Y.; Li, Y.; Huang, B.; Lu, Q. Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose. Polymers 2023, 15, 447. https://doi.org/10.3390/polym15020447
Wang H, Wu J, Lian Y, Li Y, Huang B, Lu Q. Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose. Polymers. 2023; 15(2):447. https://doi.org/10.3390/polym15020447
Chicago/Turabian StyleWang, Hanchen, Jiayin Wu, Yuan Lian, Yonggui Li, Biao Huang, and Qilin Lu. 2023. "Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose" Polymers 15, no. 2: 447. https://doi.org/10.3390/polym15020447
APA StyleWang, H., Wu, J., Lian, Y., Li, Y., Huang, B., & Lu, Q. (2023). Zirconium Phosphate Assisted Phosphoric Acid Co-Catalyzed Hydrolysis of Lignocellulose for Enhanced Extraction of Nanocellulose. Polymers, 15(2), 447. https://doi.org/10.3390/polym15020447