Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
- In vitro studies investigating color stability of composite CAD/CAM blocks;
- In vitro studies including artificial staining procedures by liquids;
- Studies using color difference clinical thresholds to analyze the color difference values;
- Publications in English language;
- 5.
- In vitro studies with a sample size of less than five test specimens in each subgroup;
- 6.
- In vitro studies investigating color stability of hybrid dental ceramic CAD/CAM blocks (polymer-infiltrated ceramic networks);
- 7.
- In vitro studies investigating color stability of CAD/CAM materials for temporary restorations;
- 8.
- Clinical trials, case reports, reviews, or animal studies;
- 9.
- Papers analyzing color stability only with water aging/thermocycling procedures;
- 10.
- Papers analyzing color stability with whitening procedures;
- 11.
- Papers analyzing color stability with mouth rinses;
- 12.
- Papers analyzing color stability with smoking procedures;
2.2. Information Sources
2.3. Search Strategy
2.4. Selection Process
2.5. Data Items
2.6. Study Risk of Bias Assessment
3. Results
3.1. Study Selection and Study Characteristics
3.2. Composite Block Specimen Characteristics
3.3. Artificial Staining Procedures
3.4. Color Assessment
3.5. Surface Treatment
3.6. Clinical Thresholds and Comparison with Other Materials
3.7. Qualitative Assessment of the Investigations
4. Discussion
4.1. Type of Material
4.2. Spectrophotometric Analysis and Clinical Thresholds
4.3. Staining Solution
4.4. Effects of Surface Treatment on Discoloration
5. Conclusions
- Resin-based blocks for CAD/CAM procedures show higher color stability than direct or indirect (laboratory) RBCs;
- Resin-based blocks for CAD/CAM procedures show lower color stability than ceramic materials;
- The color stability of CCBs mainly depends on material composition and staining media, but finishing/polishing procedures also have an influence.
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Duret, F.; Blouin, J.L.; Duret, B. CAD-CAM in Dentistry. J. Am. Dent. Assoc. 1988, 117, 715–720. [Google Scholar] [CrossRef] [Green Version]
- Mörmann, W.H.; Brandestini, M.; Lutz, F.; Barbakow, F. Chairside Computer-Aided Direct Ceramic Inlays. Quintessence Int. 1989, 20, 329–339. [Google Scholar] [PubMed]
- Fasbinder, D.J. Clinical Performance of Chairside CAD/CAM Restorations. J. Am. Dent. Assoc. 2006, 137, 22S–31S. [Google Scholar] [CrossRef]
- Baldi, A.; Comba, A.; Tempesta, R.M.; Carossa, M.; Pereira, G.K.R.; Valandro, L.F.; Paolone, G.; Vichi, A.; Goracci, C.; Scotti, N. External Marginal Gap Variation and Residual Fracture Resistance of Composite and Lithium-Silicate CAD/CAM Overlays after Cyclic Fatigue over Endodontically-Treated Molars. Polymers 2021, 13, 3002. [Google Scholar] [CrossRef] [PubMed]
- Baldi, A.; Comba, A.; Ferrero, G.; Italia, E.; Michelotto Tempesta, R.; Paolone, G.; Mazzoni, A.; Breschi, L.; Scotti, N. External Gap Progression after Cyclic Fatigue of Adhesive Overlays and Crowns Made with High Translucency Zirconia or Lithium Silicate. J. Esthet. Restor. Dent. 2022, 34, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Comba, A.; Paolone, G.; Baldi, A.; Vichi, A.; Goracci, C.; Bertozzi, G.; Scotti, N. Effects of Substrate and Cement Shade on the Translucency and Color of CAD/CAM Lithium-Disilicate and Zirconia Ceramic Materials. Polymers 2022, 14, 1778. [Google Scholar] [CrossRef] [PubMed]
- Manauta, J.; Salat, A.; Putignano, A.; Devoto, W.; Paolone, G.; Hardan, L.S. Stratification in Anterior Teeth Using One Dentine Shade and a Predefined Thickness of Enamel: A New Concept in Composite Layering–Part II. Odontostomatol. Trop. 2014, 37, 5–13. [Google Scholar]
- Manauta, J.; Salat, A.; Putignano, A.; Devoto, W.; Paolone, G.; Hardan, L.S. Stratification in Anterior Teeth Using One Dentine Shade and a Predefined Thickness of Enamel: A New Concept in Composite Layering–Part I. Odontostomatol. Trop. 2014, 37, 5–16. [Google Scholar]
- Scolavino, S.; Paolone, G.; Orsini, G.; Devoto, W.; Putignano, A. The Simultaneous Modeling Technique: Closing Gaps in Posteriors. Int. J. Esthet. Dent. 2016, 11, 58–81. [Google Scholar]
- Ferracane, J.L. Hygroscopic and Hydrolytic Effects in Dental Polymer Networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Angeletaki, F.; Gkogkos, A.; Papazoglou, E.; Kloukos, D. Direct versus Indirect Inlay/Onlay Composite Restorations in Posterior Teeth. A Systematic Review and Meta-Analysis. J. Dent. 2016, 53, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Quek, S.H.Q.; Yap, A.U.J.; Rosa, V.; Tan, K.B.C.; Teoh, K.H. Effect of Staining Beverages on Color and Translucency of CAD/CAM Composites. J. Esthet. Restor. Dent. 2018, 30, E9–E17. [Google Scholar] [CrossRef] [PubMed]
- Kocak, E.; Ekren, O.; Johnston, W.; Ucar, Y. Analysis of Color Differences in Stained Contemporary Esthetic Dental Materials. J. Prosthet. Dent. 2021, 126, 438–445. [Google Scholar] [CrossRef]
- Barutçugil, Ç.; Bilgili, D.; Barutcigil, K.; Dündar, A.; Büyükkaplan, U.Ş.; Yilmaz, B. Discoloration and Translucency Changes of CAD-CAM Materials after Exposure to Beverages. J. Prosthet. Dent. 2019, 122, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Eldwakhly, E.; Ahmed, D.R.M.; Soliman, M.; Abbas, M.M.; Badrawy, W. Color and Translucency Stability of Novel Restorative CAD/CAM Materials. Dent. Med. Probl. 2019, 56, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Sarikaya, I.; Yerliyurt, K.; Hayran, Y. Effect of Surface Finishing on the Colour Stability and Translucency of Dental Ceramics. BMC Oral Health 2018, 18, 40. [Google Scholar] [CrossRef]
- Schurmann, M.; Olms, C. Shade Stability of Polymer-Infiltrated and Resin Nano Ceramics. Open Dent. J. 2018, 12, 791–800. [Google Scholar] [CrossRef] [Green Version]
- Schurmann, M.; Olms, C. Shade Stability of Polymer Infiltrated and Resin Nano Ceramic Crowns after Dynamic Chewing Simulation. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Stamenković, D.D.; Tango, R.N.; Todorović, A.; Karasan, D.; Sailer, I.; Paravina, R.D. Staining and Aging-Dependent Changes in Color of CAD-CAM Materials. J. Prosthet. Dent. 2021, 126, 672–678. [Google Scholar] [CrossRef]
- Sagsoz, O.; Demirci, T.; Demirci, G.; Sagsoz, N.P.; Yildiz, M. The Effects of Different Polishing Techniques on the Staining Resistance of CAD/CAM Resinceramics. J. Adv. Prosthodont. 2016, 8, 417–422. [Google Scholar] [CrossRef] [Green Version]
- Comba, A.; Baldi, A.; Carossa, M.; Michelotto, T.R.; Garino, E.; Llubani, X.; Rozzi, D.; Mikonis, J.; Paolone, G.; Scotti, N. Post-Fatigue Fracture Resistance of Lithium Disilicate and Polymer-Infiltrated Ceramic Network Indirect Restorations over Endodontically-Treated Molars with Different Preparation Designs: An In-Vitro Study. Polymers 2022, 23, 5084. [Google Scholar] [CrossRef]
- Aydın, N.; Karaoğlanoğlu, S.; Oktay, E.A.; Kılıçarslan, M.A. Investigating the Color Changes on Resin-Based CAD/CAM Blocks. J. Esthet. Restor. Dent. 2020, 32, 251–256. [Google Scholar] [CrossRef]
- Aydin, N.; Karaoglanoglu, S.; Oktay, E.; Ersoz, B. Superficial Effects of Different Finishing and Polishing Systems on the Surface Roughness and Color Change of Resin-Based CAD/CAM Blocks. Odovtos Int. J. Dent. Sci. 2021, 23, 87–97. [Google Scholar] [CrossRef]
- Dalforno, R.F.; Auzani, M.L.; Zucuni, C.P.; da Silva Rodrigues, C.; May, L.G. Color and Translucency Stability of CAD/CAM Restorative Materials. Braz. J. Oral Sci. 2022, 21, e224265. [Google Scholar] [CrossRef]
- Elsaka, S.; Taibah, S.; Elnaghy, A. Effect of Staining Beverages and Bleaching on Optical Properties of a CAD/CAM Nanohybrid and Nanoceramic Restorative Material. BMC Oral Health 2022, 22, 96. [Google Scholar] [CrossRef]
- Jalali, H.; Mostafavi, A.; Balaghi, F. The Effect of Coloring Beverages on Color Stability of Hybrid Ceramics with Different Surface Treatments. Pesqui. Bras. Em Odontopediatria E Clin. Integr. 2022, 22, 1–11. [Google Scholar] [CrossRef]
- Kang, Y.-A.; Lee, H.-A.; Chang, J.; Moon, W.; Chung, S.H.; Lim, B.-S. Color Stability of Dental Reinforced CAD/CAM Hybrid Composite Blocks Compared to Regular Blocks. Materials 2020, 13, 4722. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.; Geng-Vivanco, R.; Tonani-Torrieri, R.; Pires-de-Souza, F. Stain Resistance and Surface Roughness of CAD/CAM Processed Hybrid Ceramic. Color Res. Appl. 2021, 46, 901–908. [Google Scholar] [CrossRef]
- Vichi, A.; Goracci, C.; Carrabba, M.; Tozzi, G.; Louca, C. Flexural Resistance of CAD-CAM Blocks. Part 3: Polymer-Based Restorative Materials for Permanent Restorations. Am. J. Dent. 2020, 33, 243–247. [Google Scholar]
- Barutcigil, Ç.; Yıldız, M. Intrinsic and Extrinsic Discoloration of Dimethacrylate and Silorane Based Composites. J. Dent. 2012, 40 (Suppl. S1), e57–e63. [Google Scholar] [CrossRef]
- Barutcigil, Ç.; Barutcigil, K.; Özarslan, M.M.; Dündar, A.; Yilmaz, B. Color of Bulk-Fill Composite Resin Restorative Materials. J. Esthet. Restor. Dent. 2018, 30, E3–E8. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Pavan, F.; Guglielmi, P.C.; Scotti, N.; Cantatore, G.; Vichi, A. In Vitro Procedures for Color Stability Evaluation of Dental Resin-Based Composites Exposed to Smoke: A Scoping Review. Dent. Mater J. 2022. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Sheth, V.H.; Shah, N.P.; Jain, R.; Bhanushali, N.; Bhatnagar, V. Development and Validation of a Risk-of-Bias Tool for Assessing in Vitro Studies Conducted in Dentistry: The QUIN. J. Prosthet. Dent. 2022, june, 1–5. [Google Scholar] [CrossRef]
- Acar, O.; Yilmaz, B.; Altintas, S.H.; Chandrasekaran, I.; Johnston, W.M. Color Stainability of CAD/CAM and Nanocomposite Resin Materials. J. Prosthet. Dent. 2016, 115, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Al Amri, M.D.; Labban, N.; Alhijji, S.; Alamri, H.; Iskandar, M.; Platt, J.A. In Vitro Evaluation of Translucency and Color Stability of CAD/CAM Polymer-Infiltrated Ceramic Materials after Accelerated Aging. J. Prosthodont. 2021, 30, 318–328. [Google Scholar] [CrossRef]
- Lawson, N.C.; Burgess, J.O. Gloss and Stain Resistance of Ceramic-Polymer CAD/CAM Restorative Blocks. J. Esthet. Restor. Dent. 2016, 28, S40–S45. [Google Scholar] [CrossRef] [PubMed]
- Seyidaliyeva, A.; Rues, S.; Evagorou, Z.; Hassel, A.J.; Rammelsberg, P.; Zenthöfer, A. Color Stability of Polymer-Infiltrated-Ceramics Compared with Lithium Disilicate Ceramics and Composite. J. Esthet. Restor. Dent. 2020, 32, 43–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demarco, F.F.; Collares, K.; Coelho-de-Souza, F.H.; Correa, M.B.; Cenci, M.S.; Moraes, R.R.; Opdam, N.J.M. Anterior Composite Restorations: A Systematic Review on Long-Term Survival and Reasons for Failure. Dent. Mater. 2015, 31, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G. Direct Composite Restorations in Anterior Teeth. Managing Symmetry in Central Incisors. Int. J. Esthet. Dent. 2014, 9, 12–25. [Google Scholar]
- Paolone, G.; Formiga, S.; De Palma, F.; Abbruzzese, L.; Chirico, L.; Scolavino, S.; Goracci, C.; Cantatore, G.; Vichi, A. Color Stability of Resin-Based Composites: Staining Procedures with Liquids-A Narrative Review. J. Esthet. Restor. Dent. 2022, 34, 865–887. [Google Scholar] [CrossRef]
- Kalachandra, S.; Turner, D.T. Water Sorption of Polymethacrylate Networks: Bis-GMA/TEGDM Copolymers. J. Biomed. Mater. Res. 1987, 21, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.-F.; Feng, L.; Serban, D.; Malmstrom, H.S. Effects of Common Beverage Colorants on Color Stability of Dental Composite Resins: The Utility of a Thermocycling Stain Challenge Model in Vitro. J. Dent. 2012, 40 (Suppl. S1), e48–e56. [Google Scholar] [CrossRef]
- Gajewski, V.E.S.; Pfeifer, C.S.; Fróes-Salgado, N.R.G.; Boaro, L.C.C.; Braga, R.R. Monomers Used in Resin Composites: Degree of Conversion, Mechanical Properties and Water Sorption/Solubility. Braz. Dent. J. 2012, 23, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Paravina, R.D.; Ghinea, R.; Herrera, L.J.; Bona, A.D.; Igiel, C.; Linninger, M.; Sakai, M.; Takahashi, H.; Tashkandi, E.; Del Mar Perez, M. Color Difference Thresholds in Dentistry. J. Esthet. Restor. Dent. 2015, 27, S1–S9. [Google Scholar] [CrossRef]
- Paravina, R.D.; Pérez, M.M.; Ghinea, R. Acceptability and Perceptibility Thresholds in Dentistry: A Comprehensive Review of Clinical and Research Applications. J. Esthet. Restor. Dent. 2019, 31, 103–112. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.R.; Cui, G.; Rigg, B. The Development of the CIE 2000 Colour-Difference Formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Akl, M.A.; Sim, C.P.C.; Nunn, M.E.; Zeng, L.L.; Hamza, T.A.; Wee, A.G. Validation of Two Clinical Color Measuring Instruments for Use in Dental Research. J. Dent. 2022, 125, 104223. [Google Scholar] [CrossRef]
- Topcu, F.T.; Sahinkesen, G.; Yamanel, K.; Erdemir, U.; Oktay, E.A.; Ersahan, S. Influence of Different Drinks on the Colour Stability of Dental Resin Composites. Eur. J. Dent. 2009, 3, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Malekipour, M.R.; Sharafi, A.; Kazemi, S.; Khazaei, S.; Shirani, F. Comparison of Color Stability of a Composite Resin in Different Color Media. Dent. Res. J. 2012, 9, 441–446. [Google Scholar]
- de Anfe, T.E.A.; Agra, C.M.; Vieira, G.F. Evaluation of the Possibility of Removing Staining by Repolishing Composite Resins Submitted to Artificial Aging. J. Esthet. Restor. Dent. 2011, 23, 260–267. [Google Scholar] [CrossRef]
- Erdemir, U.; Kaner, A.O.; Eren, M.M.; Ozan, G.; Yıldız, E. Color Stability of Bulk-Fill Composites Immersed in Different Drinks. Color Res. Appl. 2018, 43, 785–793. [Google Scholar] [CrossRef]
- Um, C.M.; Ruyter, I.E. Staining of Resin-Based Veneering Materials with Coffee and Tea. Quintessence Int. 1991, 22, 377–386. [Google Scholar]
- Ertaş, E.; Güler, A.U.; Yücel, A.C.; Köprülü, H.; Güler, E. Color Stability of Resin Composites after Immersion in Different Drinks. Dent. Mater. J. 2006, 25, 371–376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llena, C.; Fernández, S.; Forner, L. Color Stability of Nanohybrid Resin-Based Composites, Ormocers and Compomers. Clin. Oral. Investig. 2017, 21, 1071–1077. [Google Scholar] [CrossRef]
- Manojlovic, D.; Lenhardt, L.; Milićević, B.; Antonov, M.; Miletic, V.; Dramićanin, M.D. Evaluation of Staining-Dependent Colour Changes in Resin Composites Using Principal Component Analysis. Sci. Rep. 2015, 5, 14638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasbinder, D.J.; Neiva, G.F. Surface Evaluation of Polishing Techniques for New Resilient CAD/CAM Restorative Materials. J. Esthet. Restor. Dent. 2016, 28, 56–66. [Google Scholar] [CrossRef] [PubMed]
Search | Query |
---|---|
#1 | “color difference* “[All Fields] OR “color change” [All Fields] OR “color stability” [All Fields] OR “colour difference * ”[All Fields] OR “colour change” [All Fields] OR “colour stability” [All Fields] OR “staining” [All Fields] OR “stain susceptibility” [All Fields] |
#2 | “polymer infiltrated” [All Fields] OR “polymer-based” [All Fields] OR “resin nanoceramic * ” [All Fields] OR “resin ceramic *” [All Fields] OR “hybrid composite *” [All Fields] OR “composite ceramic * ”[All Fields] OR “hybrid ceramic * ”[All Fields] OR “resin infiltrated” [All Fields] |
#3 | “computer aided design” [MeSH Terms] OR (“computer aided” [All Fields] AND “design” [All Fields]) OR “computer aided design” [All Fields] OR (“cad” [All Fields] AND “cam” [All Fields]) OR “cad cam” [All Fields] |
#4 | #1 AND #2 AND #3 |
Product | MATRIX | FILLER | Manufacturer |
---|---|---|---|
Lava Ultimate | BisGMA, UDMA, BisEMA, TEGDMA (20 wt%) | SiO2 (20 nm), ZrO2 (4–11 nm), aggregated ZrO2/SiO2 microcluster (80 wt%) | 3M ESPE, St. Paul, MN, USA |
Paradigm MZ 100 | Bis-GMA, TEGDMA (15 wt%) | ultrafine zirconia-silica ceramic (85 wt%) | 3M ESPE, St. Paul, MN, USA |
Brilliant Crios | Cross-linked methacrylates (Bis-GMA, Bis-EMA, TEGDMA) (30 wt%) | Glass and amorphous silica (30 wt%) | Coltene, Switzerland |
Crystal Ultra | Cross-linked polymer (BisGMA, UDMA, BUDMA) (30 wt%) | Ceramic-like inorganic silicate glass fillers (70 wt%) | Digital Dental, Scottsdale, AZ, USA |
Brava Block | Methacrylate monomers | initiator, co-initiator, stabilizers, silane, glass-ceramic particles, silica, and pigments. | FGM Dental Group |
Cerasmart | BisMEPP†, UDMA, DMA (29 wt%) | Silica and barium glass nanoparticles (Silica (20 nm), barium glass (300 nm)) (71 wt%) | GC America, Alsip, IL, USA |
Cerasmart 300 | BisMEPP†, UDMA (22 wt%) | Silica and barium glass nanoparticles (Silica (20 nm), barium glass (300 nm)) (78 wt%) | GC America, Alsip, IL, USA |
Katana Avencia Block | UDMA, TEGDMA | silica, alumina filler | Kuraray, Japan |
Katana Avencia P Block | UDMA | Ba-glass, silica | Kuraray, Japan |
Shofu HC Block | UDMA + TEGDMA (39 wt%) | Silica-based glass and silica (61 wt%) | Shofu, Japan |
Estelite Block | UDMA, TEGDMA (25 wt%) | Silica, silica-zirconia (75 wt%) | Tokuyama Dental, Japan |
Estelite P Block | Bis-MPEPP, UDMA, NPGDMA (19 wt%) | Silica, silica-zirconia (81 wt%) | Tokuyama Dental, Japan |
Duro Ace | UDMA, Bis-EMA (15 wt%) | Silica, Ba-glass (85 wt%) | Vericom, Chuncheon, Korea |
Mazic Duro | UDMA + TEGGDMA (23 wt%) | Barium aluminosilicate, silicon dioxide and zirconia (77 wt%) | Vericom, Chuncheon, Korea |
Grandio Blocs | UDMA + DMA (14 wt%) | Nanohybrid filler (86 wt%) | VOCO GmbH, Germany |
KZR-CAD HR2 | UDMA, TEGDMA (21 wt%) | SiO2 + Al2O3 + ZrO2, SiO2 (79 wt%) | Yamakin, Japan |
KZR-CAD HR3 | UDMA, DEGDMA (25 wt%) | SiO2 + Al2O3 + ZrO2, SiO2 (75 wt%) | Yamakin, Japan |
First Author, Year | CCB | Comparison | Staining | Staining Protocol | Timeline | Spectrophotometer | Finishing/Polishing (Yes = y; No = n) | Repolishing | THRESHOLD (Perceptible = p; Acceptable = a) | Outcomes |
---|---|---|---|---|---|---|---|---|---|---|
Acar et al., 2016 [35] | Lava Ultimate (3 M, Seefeld, Germany) | Enamic; IPS e.max CAD; Filtek Supreme Ultra Universal | Coffee | 5.000TC (5–55 °C, dwell time: 30 s, transfer time: 10 s) Renewal: 8 h | Baseline, coffee TC 1 | Spectroradiometer | y | / | ∆E00 2 = 1.28 (p); ∆E00 = 2.24 (a) | Color change was beyond clinical acceptability for Lava Ultimate and Filtek Supreme Ultra Universal. The average color change of Vita Enamic was clinically perceivable over the tested thickness values. The color change of IPS e.max CAD was not clinically perceivable at any tested thickness |
Al Amri et al., 2021 [36] | Lava Ultimate; Cerasmart; Crystal Ultra | IPS e.max-CAD; Vita Enamic | Coffee, distilled water (control) | 5.000 TC (5–55 °C, dwell time: 30 s, transfer time: 10 s) Renewal: 1d | Baseline, T0 (5.000 TC), T1 (immersion in coffee or distilled water), T2 (further 5.000 TC) | Spectrophotometer (CM-2600d, Konica Minolta Sensing Inc., Osaka, Japan) | y | / | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | The Crystal Ultra exhibited better color stability compared to Lava Ultimate and Cerasmart, but had higher color change when compared with Vita Enamic PICN 3 and IPS e.max CAD. |
Aydin et al., 2020 [23] | Cerasmart; Shofu Block; Grandio Blocs; Brilliant Crios | Celtra Duo | Red wine, coffee, coke, energy drink, and distilled water | 30d immersion; Renewal: 1d; T: 37 °C | Baseline, 1d, 7d, 30d after immersion | Spectrophotometer (Vita Easy Shade Advance, Germany) | n | / | ∆E00 = 1.3 (p); ∆E00 = 2.25 (a) | After 30 d, all materials exposed to wine and coffee showed color change above the clinically acceptable value (ΔE00 = 2.25). Celtra Duo (Zirconia-reinforced lithium silicate) showed highest color stability |
Aydin et al., 2021 [22] | Grandio Blocs; Brilliant Crios | Vita Enamic | Coffee | 7d immersion; Renewal: 1d; T: 37 °C | Baseline, 1d, 7d after immersion | Spectrophotometer (Vita Easyshade V; VITA Zahnfabrik, Germany) | y | / | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | Brilliant Crios and Grandio Blocs unpolished specimen showed color change beyond clinical acceptability (>∆E00 = 1.8). All polished specimens showed perceptible color change but were clinically acceptable. |
Barutçug et al., 2019 [14] | Lava Ultimate; Cerasmart | Vita Enamic | Red wine, coffee, distilled water | 30d immersion; Renewal: 1d | Baseline, 1d, 30d | Spectrophotometer (VITA Easyshade Compact; VITA Zahnfabrik) | y | / | ∆E00 = 2.25 (a) | After 1 month of immersion in coffee and red wine, a discoloration higher than the clinically acceptable threshold level (ΔE00 = 2.25) was observed for all tested CAD/CAM materials |
Dalforno et al., 2022 [24] | Brava block | Vita Enamic; Vitablocks Mark II | Red wine | 30 min immersions twice a day for 30 days; T: 37 °C | Baseline, 15d, 30d after immersion | Spectrophotometer (SP60, X-Rite, Grand Rapids, USA) | y | / | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | Brava Bloc and Vita Enamic showed significantly higher color change than Vita Mark II. |
Eldwakhly et al., 2019 [15] | Lava Ultimate | IPS-e.max-CAD; Celtra Duo; Lava Plus; Vita Enamic | Coffee, coke, ginger, distilled water | 28d immersion; Renewal: 1d; T: 37 °C | Baseline, 28d | Spectrophotometer (model RM200QC; X-Rite GmbH, Neu-Isenburg, Germany) | y | / | ∆E = 1.2 (p); ∆E = 2.7 (a) | The color change was staining-solution- and material-dependent, with IPS-e.max-CAD showing the greatest color stability. Lava Plus stained with ginger and coffee showed a clinically unacceptable color change. The Lava Ultimate materials were most affected by the coffee and ginger solutions, whereas the Celtra Duo was affected by cola drinks. |
Elsaka et al., 2022 [25] | Grandio Blocs; Lava Ultimate | / | Coffee, tea, coke, ginger, distilled water | 7d immersion; Renewal: 2d; T: 37 °C | Baseline, 7d, after bleaching | Spectrophotometer (VITA Easyshade Advance 4.0, VITA Zahnfabrik, Bad Säckingen, Germany) | y | / | ∆E00 = 1.8 (a) | Lava Ultimate revealed higher color changes than Grandio Blocs. Staining beverage solutions had a distinct influence on the optical properties of the tested CAD/CAM restorative materials. |
Jalali et al., 2022 [26] | Mazic Duro | Vita Enamic; Vita Mark II | Carrot juice, coffee, distilled water | 30d immersion; Renewal: 3d; T: 37 °C | Baseline, 30d | Spectrophotometer (X-Rite I1-Pro, X-Rite, Grand Rapids, USA) | y | / | ∆E 4 = 3.3 (a) | The color change of all ceramic specimens was within the clinically acceptable range, except for the glazed Mazic Duro ceramic specimens immersed in carrot juice. However, the color difference of Vita Enamic and Mazic Duro was higher than that of feldspathic porcelain. |
Kang et al., 2020 [27] | Cerasmart 200; Cerasmart 300; KZR-CAD HR; KZR-CAD HR3; Estelite Block; Estelite P Block; Katana Avencia Block; Katana Avencia P Block; Mazic Duro; Duro Ace | / | 10% ethanol, simulated red wine, deionized water | 12w immersion; Renewal: 1w; T: 37 °C | Baseline, 12w | Spectrophotometer (CiXX0, X-rite, USA) | y | / | ∆E = 3.0 | The tested reinforced hybrid blocks (except Duro Ace and Estelite P Block) showed lower color stability than their regular hybrid block counterparts. Estelite Block/Estelite P Block and Mazic Duro/Duro Ace showed better stain resistance than the others investigated materials |
Koçak et al., 2021 [13] | Cerasmart | Vita Enamic; Cerec Blocs (Feldspatic); IPS-e.max-CAD | Tea, coffee, red wine, water | 1, 7, and 30 days | Baseline, 1d, 7d, 30d | Spectrophotometer (SpectroShade Micro II; MHT Corp) | y | / | ∆E = 2.65 (a); ∆E00(1:1:1) = 1.76 (a); ∆E00(2:1:1) = 1.78 (a) | Cerasmart (and Vita Enamic) CAD-CAM materials showed clinically unacceptable color change. LiDiSi showed highest color stability. |
Lawson and Burgess, 2022 [37] | Lava Ultimate; Paradigm MZ 100 | Vita Enamic; Paradigm C; IPS-e.max-CAD | Cranberry juice, tea, coffee | 12d immersion; T: 37 °C | Baseline, 12d | Spectrophotometer (CM-700d; Konica Minolta, Ramsey, NJ, USA) | y | / | ∆E00 = 1.25 (p); ∆E00= 2.23 (a) | The hybrid materials showed less stain resistance than IPS e.max CAD. When polished, however, all materials showed clinically acceptable color change following 1 year of artificial staining. |
Quek et al., 2018 [12] | Lava Ultimate; Shofu HC block | Filtek Z350XT; Shofu Ceramage; Vita Enamic | Cola, tea, coffee, red wine, distilled water | 7d immersion; renewal: 2d; T: 37 °C | baseline, 7d | Spectrophotometer (Konica Minolta CM-2600D, Tokyo, Japan) | y | / | ∆E = 3.3 (a) | CAD/CAM composites (Shofu HC Block; Lava Ultimate; Vita Enamic) showed higher clinical stability in red wine when compared to direct and indirect composites. Nevertheless, almost all materials evaluated suffered a clinically unacceptable change (∆E > 3.3) when exposed to red wine, tea, and coffee. |
Sarıkaya et al., 2018 [16] | Lava Ultimate | Vita Enamic | Cola, tea, coffee, distilled water | 2d immersion; T: 37 °C | baseline, 2d | Spectrophotometer (Vita Easy Shade Advance, Vita Zahnfab- rik, Germany) | y | / | ∆E = 2.7 (a) | Both of the Lava Ultimate specimens stored in coffee and tea had higher ΔE* values than the Lava Ultimate specimens stored in the cola. |
Schürmann and Olms, 2018 [18] | Lava Ultimate | Vita Enamic | Coffee, cola, red wine, distilled water | 14d immersion; renewal: 2d; T: room T | baseline, 14d | Spectrophotometer Vita Easyshade 4.0 | n | / | ∆E = 2.7 (a); ∆E = 3.7 (a) | Investigated materials (Lava Ultimate; Vita Enamic) are particularly vulnerable to coffee and red wine with regard to shade stability. |
Seyidaliyeva et al., 2020 [38] | Grandio Blocs | Vita Enamic; IPS-e.max-CAD | Red wine, curry, black tea, cola, water | 4 week immersion; renewal: 2d; T: 37 °C | baseline, after termocycling, after 2w and 4w storage in staining solution | Spectroradiameter (SR, SpectraScan PR-650, MS- 75 lens, Photo Research Inc. Chatsworth, California) | y | / | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | Grandio Blocs shows the highest color change, followed by Vita Enamic and IPS e.max CAD. By polishing, discolorations of the above-mentioned materials could be considerably reduced. |
Schürmann and Olms, 2018 [17] | Lava Ultimate | Vita Enamic; Vita Blocs Mark II; CAD-Temp | Coffee, cola, red wine, distilled water | 14d immersion; renewal: 3.5d; T: room T | baseline, 14d | Spectrophotometer VITA Easyshade Advance 4.0 (VITA Zahnfabrik, Bad Säckingen, Germany) | n | / | ∆E = 2.7 (a) | Lava Ultimate showed higher color change than Vita Enamic. After 14 days of immersion, shade differences which exceeded the clinical acceptance threshold of ΔE = 2.7 were shown by CAD-Temp in Coca-Cola, by Mark II in coffee, Coca-Cola and red wine, and by Vita Enamic and Lava Ultimate in coffee and red wine. |
Silva et al., 2021 [28] | Lava Ultimate | Filtek Z350XT; IPS e.max Press | Coffee, distilled water | 3 h/day for 30 days; T: 37 °C | baseline, 30d | Spectrophotometer (PCB 6807, BYK Gardner) | y | / | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | The Lava Ultimate showed intermediate staining and roughness compared to the Filtek Z350 and the IPS emax Press, the latter showing the best optical and physical properties. |
Stamenkovic et al., 2021 [19] | Cerasmart; Lava Ultimate; Shofu HC | IPS e.max CAD; Vita Enamic; Vita Suprinity | Coffee, red wine, accelerated artificial aging | 2.5 (T1) and 5 (T2) days; renewal: 1d; T: 37 °C | baseline, 5d | Spectrophotometer Ci7600 (X-Rite) | y | / | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | Coffee caused the greatest color changes for T0-T2 interval. Staining-dependent color differences increased with increased exposure, except for IPS e.max and Vita Suprinity. For artificial aging, color change appeared to be dependent on material. |
First Author, Year | Clinical Threshold (Perceptible = p; Acceptable = a) | Lava Ultimate | Paradigm MZ 100 | Brilliant Crios | Crystal Ultra | Brava Block | Cerasmart | Cerasmart 300 | Katana Avencia Block | Katana Avencia P Block | Shofu HC Block | Estelite Block | Estelite P Block | Duro Ace | Mazic Duro | Grandio Blocs | KZR-CAD HR2 | KZR-CAD HR3 | p |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acar et al., 2016 [35] | ∆E00 1 = 1.28 (p); ∆E00 = 2.24 (a) | 2.24 < ∆E00 < 6 (data extracted from graph) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Al Amri et al., 2021 [36] | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | T1: 2.2 < ∆E00 < 3; T2: 1.2 < ∆E00 < 1.7 (data extracted from graph) | \ | \ | T1: 1.2 < ∆E00 < 2; T2: 0.7 < ∆E00 < 1.2 (data extracted from graph) | \ | T1: 1.7 < ∆E00 < 2.6; T2: 0.8 < ∆E00 < 1.5 (data extracted from graph) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Aydin et al., 2020 [23] | ∆E00 = 1.3 (p); ∆E00 = 2.25 (a) | \ | \ | Wine: ∆E00 = 8.69 ± 0.93; Coffee: ∆E00 = 2.43 ± 0.52; Coke: ∆E00 = 0.77 ± 0.21; Energy drink: ∆E00 = 0.60 ± 0.17 | \ | \ | Wine: ∆E00 = 6.46 ± 1.10; Coffee: ∆E00 = 2.31 ± 0.29; Coke: ∆E00 = 0.51 ± 0.22; Energy drink: ∆E00 = 0.59 ± 0.08 | \ | \ | \ | Wine: ∆E00 = 6.63 ± 0.88; Coffee: ∆E00 = 2.38 ± 0.22; Coke: ∆E00 = 0.52 ± 0.10; Energy drink: ∆E00 = 0.37 ± 0.06 | \ | \ | \ | \ | Wine: ∆E00 = 8.69 ± 0.93; Coffee: ∆E00 = 2.43 ± 0.52; Coke: ∆E00 = 0.60 ± 0.21; Energy drink: ∆E00 = 0.60 ± 0.17 | \ | \ | <0.05 |
Aydin et al., 2021 [22] | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | \ | \ | One step: ∆E00 = 1.0 ± 0.2; One step + paste: ∆E00 = 0.9 ± 0.1; Two step: ∆E00 = 1.0 ± 0.1; Two step + paste: ∆E00 = 0.9 ± 0.1; Multi step: ∆E00 = 1.7 ± 0.1; Multi step + paste: ∆E00 = 1.4 ± 0.1 | \ | \ | . | \ | \ | \ | \ | \ | \ | \ | \ | One step: ∆E00 = 1.3 ± 0.2; One step + paste: ∆E00 = 1.2 ± 0.2; Two step: ∆E00 = 1.3 ± 0.2; Two step + paste: ∆E00 = 1.2 ± 0.2; Multi step: ∆E00 = 1.6 ± 0.1; Multi step + paste: ∆E00 = 1.3 ± 0.2 | \ | \ | <0.05 |
Barutçug et al., 2019 [14] | ∆E00 = 2.25 (a) | Wine: ∆E00 = 3.5 ± 0.3; Coffee: ∆E00 = 3.2 ± 0.5 | \ | \ | \ | \ | Wine: ∆E00 = 2.7 ± 0.7; Coffee: ∆E00 = 3.1 ± 1.1 | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Dalforno et al., 2022 [24] | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | \ | \ | \ | \ | ∆E00 = 5.49 ± 0.73 | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Eldwakhly et al., 2019 [15] | ∆E 2 = 1.2 (p); ∆E = 2.7 (a) | ∆E = 1.59 ± 0.66 | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Elsaka et al., 2022 [25] | ∆E00 = 1.8 (a) | Tea: ∆E00 = 2.8 ± 0.2; Coffee: ∆E00 = 3.1 ± 0.2; Coke: ∆E00 = 2.5 ± 0.2; Ginger: ∆E00 = 2.7 ± 0.2 (data extracted from graph) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | Tea: ∆E00 = 2.4 ± 0.2; Coffee: ∆E00 = 2.6 ± 0.2; Coke: ∆E00 = 2.1 ± 0.2; Ginger: ∆E00 = 2.3 ± 0.2 (data extracted from graph) | \ | \ | <0.05 |
Jalali et al., 2022 [26] | ∆E = 3.3 (a) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | Polished: (carrot juice: ∆E = 1.63 ± 0.76; coffee: ∆E = 1.01 ± 0.75); glazed: (carrot juice: ∆E = 3.46 ± 2.66; coffee: ∆E = 3.05 ± 2.28) | \ | \ | \ | <0.05 |
Kang et al., 2020 [27] | ∆E = 3.0 | \ | \ | \ | \ | \ | 10% ethanol: ∆E = 0.93 ± 0.39; Wine: ∆E = 7.16 ± 1.15 | 10% ethanol: ∆E = 1.52 ± 0.49; Wine: ∆E = 7.16 ± 1.15 | 10% ethanol: ∆E = 0.58 ± 0.10; Wine: ∆E = 2.07 ± 0.25 | 10% ethanol: ∆E = 3.51 ± 0.06; Wine: ∆E = 8.50 ± 0.81 | \ | 10% ethanol: ∆E = 1.45 ± 0.23; Wine: ∆E = 4.52 ± 0.53 | 10% ethanol: ∆E = 0.93 ± 0.19; Wine: ∆E = 4.45 ± 0.27 | 10% ethanol: ∆E = 1.84 ± 0.38; Wine: ∆E = 3.51 ± 0.56 | 10% ethanol: ∆E = 1.38 ± 0.01; Wine: ∆E = 3.95 ± 0.29 | \ | 10% ethanol: ∆E = 1.13 ± 0.38; Wine: ∆E = 5.58 ± 0.90 | 10% ethanol: ∆E = 1.51 ± 0.75; Wine: ∆E = 9.59 ± 1.71 | <0.05 |
Koçak et al., 2021 [13] | ∆E00(1:1:1) = 1.76 (a) | \ | \ | \ | \ | \ | Wine: ∆E00 = 18 ± 1; Coffee: ∆E00 = 6 ± 1; Tea: ∆E00 = 3 ± 1 (data extracted from graph) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Lawson and Burgess, 2022 [37] | ∆E00 = 1.25 (p); ∆E00 = 2.23 (a) | Polished: ∆E00 = 1.51 ± 0.51; Un-polished: ∆E00 = 2.76 ± 1.19 | Polished: ∆E00 = 0.58 ± 0.34; Un-polished: ∆E00 = 1.23 ± 0.25 | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Quek et al., 2018 [12] | ∆E = 3.3 (a) | Tea: ∆E = 3.16 ± 0.45; Coffee: ∆E = 4.01 ± 0.48; Coke: ∆E = 0.56 ± 0.19; wine: ∆E = 6.30 ± 1.47 | \ | \ | \ | \ | \ | \ | \ | \ | Tea: ∆E = 5.42 ± 0.51; Coffee: ∆E = 4.08 ± 0.38; Coke: ∆E = 0.73 ± 0.18; wine: ∆E = 5.55 ± 0.59 | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Sarıkaya et al., 2018 [16] | ∆E = 2.7 (a) | polishing (Tea: ∆E = 2.69 ± 0.59; Coffee: ∆E = 3.35 ± 0.40; Coke: ∆E = 1.89 ± 0.24); Sof-lex (Tea: ∆E = 3.43 ± 0.27; Coffee: ∆E = 3.84 ± 0.85; Coke: ∆E = 2.75 ± 0.28); Shofu (Tea: ∆E = 3.55 ± 0.36; Coffee: ∆E = 3.87 ± 0.46; Coke: ∆E = 2.81 ± 0.35) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Schürmann and Olms. 2018 [18] | ∆E = 2.7 (a); ∆E = 3.7 (a) | Coffee 1.5 < ∆E < 2; Coffee + simulated chewing 2.7 < ∆E < 4.3 (data extracted from graph) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Seyidaliyeva et al., 2020 [38] | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | ∆E00 = 5.0 ± 4.5 | \ | \ | <0.05 |
Schürmann and Olms, 2018 [17] | ∆E = 2.7 (a) | Wine: ∆E = 8.61 ± 0.30; Coffee: ∆E = 6.08 ± 0.76; Coke: ∆E = 1.32 ± 0.14 | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Silva et al., 2021 [28] | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | ∆E00 = 2.5 ± 0.5 | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Stamenkovic et al., 2021 [19] | ∆E00 = 0.8 (p); ∆E00 = 1.8 (a) | Coffee: ∆E00 = 6.5 ± 1.0; Wine: ∆E = 2.8 ± 0.4 | \ | \ | \ | \ | Coffee: ∆E00 = 3.1 ± 0.5; Wine: ∆E = 1.6 ± 0.2 | \ | \ | \ | Coffee: ∆E00 = 5.0 ± 0.3; Wine: ∆E = 2.8 ± 0.3 | \ | \ | \ | \ | \ | \ | \ | <0.05 |
Clearly Stated Aims/Objectives | Detailed Explanation of Sample Size Calculation | Detailed Explanation of Sampling Technique | Details of Comparison Group | Detailed Explanation of Methodology | Operator Details | Randomization | Method of Measurement of Outcome | Outcome Assessor Details | Blinding | Statistical Analysis | Presentation of Results | Total Score | Final Score % | Risk of Bias | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Acar et al. [36] | 2 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 11 | 45.83 | high |
Al Amri et al. [37] | 2 | 2 | 1 | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 2 | 2 | 19 | 79.16 | low |
Aydin et al. [22] | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 10 | 41.66 | high |
Aydin et al. [23] | 2 | 1 | 0 | 0 | 1 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 10 | 41.66 | high |
Barutcugil et al. [14] | 2 | 2 | 1 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 2 | 2 | 13 | 54.16 | medium |
Dalforno et al. [24] | 2 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 13 | 54.16 | medium |
Eldwakhly et al. [15] | 2 | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 15 | 62.5 | medium |
Elsaka et al. [25] | 2 | 2 | 2 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 15 | 62.5 | medium |
Jalali et al. [26] | 2 | 2 | 1 | 0 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 14 | 58.33 | medium |
Kang et al. [27] | 2 | 1 | 2 | 0 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 15 | 62.5 | medium |
Kocak et al. [13] | 2 | 1 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 13 | 54.16 | medium |
Lawson and Burgess et al. [38] | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 14 | 58.33 | medium |
Quek et al. [12] | 2 | 2 | 2 | 0 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 14 | 58.33 | medium |
Sarikaya et al. [16] | 2 | 2 | 2 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 15 | 62.5 | medium |
Schurmann and Olms et al. [18] | 2 | 0 | 1 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 2 | 2 | 12 | 50 | medium |
Schurmann and Olms et al. [17] | 2 | 1 | 1 | 1 | 2 | 1 | 0 | 2 | 0 | 0 | 2 | 2 | 14 | 58.33 | medium |
Seydaliyeva et al. [39] | 2 | 2 | 2 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 2 | 2 | 15 | 62.5 | medium |
Silva et al. [28] | 2 | 2 | 2 | 2 | 2 | 0 | 2 | 2 | 0 | 0 | 2 | 2 | 18 | 75 | low |
Stamenkovic et al. [19] | 2 | 2 | 1 | 0 | 2 | 1 | 2 | 2 | 0 | 0 | 2 | 2 | 16 | 66.66 | medium |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolone, G.; Mandurino, M.; De Palma, F.; Mazzitelli, C.; Scotti, N.; Breschi, L.; Gherlone, E.; Cantatore, G.; Vichi, A. Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review. Polymers 2023, 15, 464. https://doi.org/10.3390/polym15020464
Paolone G, Mandurino M, De Palma F, Mazzitelli C, Scotti N, Breschi L, Gherlone E, Cantatore G, Vichi A. Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review. Polymers. 2023; 15(2):464. https://doi.org/10.3390/polym15020464
Chicago/Turabian StylePaolone, Gaetano, Mauro Mandurino, Francesca De Palma, Claudia Mazzitelli, Nicola Scotti, Lorenzo Breschi, Enrico Gherlone, Giuseppe Cantatore, and Alessandro Vichi. 2023. "Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review" Polymers 15, no. 2: 464. https://doi.org/10.3390/polym15020464
APA StylePaolone, G., Mandurino, M., De Palma, F., Mazzitelli, C., Scotti, N., Breschi, L., Gherlone, E., Cantatore, G., & Vichi, A. (2023). Color Stability of Polymer-Based Composite CAD/CAM Blocks: A Systematic Review. Polymers, 15(2), 464. https://doi.org/10.3390/polym15020464