Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of LNPs
2.3. Preparation of LβNPs
2.4. Preparation of LβNPs Stabilized Pickering Emulsions
2.5. Characterization of LNPs, LβNPs, and Pickering Emulsions
2.6. Stability Measurement of Pickering Emulsions
3. Results and Discussion
3.1. Preparation and Characterization of LNPs
3.2. Preparation and Characterization of LβNPs
3.3. Preparation and Characterization of LβNPs-Stabilized Pickering Emulsions
3.4. pH-Responsive Behavior of Pickering Emulsions
3.5. Stability of Pickering Emulsions during Storage
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, J.; Ma, G.H.J.S. Pickering Emulsions: Recent Studies of Pickering Emulsions: Particles Make the Difference. Small 2016, 12, 4582. [Google Scholar] [CrossRef]
- Jafari, S.M.; Doost, A.S.; Nasrabadi, M.N.; Boostani, S.; Van der Meeren, P. Van der Meeren and Technology. Phytoparticles for the stabilization of Pickering emulsions in the formulation of novel food colloidal dispersions. Trends Food Sci. Technol. 2020, 98, 117–128. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Sarkar and Technology. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. [Google Scholar] [CrossRef]
- Ding, J.; Li, Y.; Wang, Q.; Chen, L.; Mao, Y.; Mei, J.; Yang, C.; Sun, Y. Sun. Pickering high internal phase emulsions with excellent UV protection property stabilized by Spirulina protein isolate nanoparticles. Food Hydrocoll. 2023, 137, 108369. [Google Scholar] [CrossRef]
- Wu, B.; Yang, C.; Xin, Q.; Kong, L.; Eggersdorfer, M.; Ruan, J.; Zhao, P.; Shan, J.; Liu, K.; Chen, D.; et al. Attractive Pickering Emulsion Gels. Adv. Mater. 2021, 33, e2102362. [Google Scholar] [CrossRef]
- Cen, S.; Li, Z.; Guo, Z.; Li, H.; Shi, J.; Huang, X.; Zou, X.; Holmes, M. 4D printing of a citrus pectin/β-CD Pickering emulsion: A study on temperature induced color transformation. Addit. Manuf. 2022, 56, 102925. [Google Scholar] [CrossRef]
- Peng, L.; Feng, A.; Liu, S.; Huo, M.; Fang, T.; Wang, K.; Wei, Y.; Wang, X.; Yuan, J. Electrochemical Stimulated Pickering Emulsion for Recycling of Enzyme in Biocatalysis. ACS Appl. Mater. Interfaces 2016, 8, 29203–29207. [Google Scholar] [CrossRef]
- Guo, B.; Hu, X.; Wu, J.; Chen, R.; Dai, T.; Liu, Y.; Luo, S.; Liu, C. Soluble starch/whey protein isolate complex-stabilized high internal phase emulsion: Interaction and stability. Food Hydrocoll. 2021, 111, 106377. [Google Scholar] [CrossRef]
- Wu, M.; Zhou, Z.; Yang, J.; Zhang, M.; Cai, F.; Lu, P. ZnO nanoparticles stabilized oregano essential oil Pickering emulsion for functional cellulose nanofibrils packaging films with antimicrobial and antioxidant activity. Int. J. Biol. Macromol. 2021, 190, 433–440. [Google Scholar] [CrossRef]
- Ma, C.; Bi, X.; Ngai, T.; Zhang, G. Polyurethane-based nanoparticles as stabilizers for oil-in-water or water-in-oil Pickering emulsions. J. Mater. Chem. A 2013, 1, 5353–5360. [Google Scholar] [CrossRef]
- Lan, Q.; Liu, C.; Yang, F.; Liu, S.; Xu, J.; Sun, D. Synthesis of bilayer oleic acid-coated Fe3O4 nanoparticles and their application in pH-responsive Pickering emulsions. J. Colloid Interface Sci. 2007, 310, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Tham, C.Y.; Chow, W.S. Hydroxyapatite coated poly (lactic acid) microparticles with copper ion doping prepared via the Pickering emulsion route. Colloid Polym. Sci. 2018, 296, 1491–1499. [Google Scholar] [CrossRef]
- Lee, J.; Chang, J.Y. A hierarchically porous catalytic monolith prepared from a Pickering high internal phase emulsion stabilized by microporous organic polymer particles. Chem. Eng. J. 2020, 381, 122767. [Google Scholar] [CrossRef]
- Liu, J.; Shi, X.; Ma, L.; Zhang, D.; Lai, C.; Wang, C.; Li, M.; Ragauskas, A.J.; Chu, F.; Xu, Y. Facile design of renewable lignin copolymers by photoinitiated RAFT polymerization as Pickering emulsion stabilizers. Green Chem. 2023, 25, 5428–5437. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M.; Tabarestani, H.S. Shahiri Tabarestani. Production of d-limonene-loaded Pickering emulsions stabilized by chitosan nanoparticles. Food Chem. 2021, 354, 129591. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Sun, C.; Wei, Y.; Mao, L.; Gao, Y. Characterization of Pickering emulsion gels stabilized by zein/gum arabic complex colloidal nanoparticles. Food Hydrocoll. 2018, 74, 239–248. [Google Scholar] [CrossRef]
- Li, Z.; Yu, D. Controlled ibuprofen release from Pickering emulsions stabilized by pH-responsive cellulose-based nanofibrils. Int. J. Biol. Macromol. 2023, 242, 124942. [Google Scholar] [CrossRef] [PubMed]
- Camargos, C.H.; Rezende, C.A. Antisolvent versus ultrasonication: Bottom-up and top-down approaches to produce lignin nanoparticles (LNPs) with tailored properties. Int. J. Biol. Macromol. 2021, 193, 647–660. [Google Scholar] [CrossRef]
- Zhang, T.; Zhou, J.; Li, H.; Ma, J.; Wang, X.; Shi, H.; Niu, M.; Liu, Y.; Zhang, F.; Guo, Y. Stable lignin-based afterglow materials with ultralong phosphorescence lifetimes in solid-state and aqueous solution. Green Chem. 2023, 25, 1406–1416. [Google Scholar] [CrossRef]
- Yan, B.; Wang, X.; Zhang, X.; Liu, S.; Li, M.; Ran, R. Novel dispersant based on the synergy of nickel hydroxide and sulfonated lignin for applications in oil spill remediation. J. Environ. Chem. Eng. 2021, 9, 106607. [Google Scholar] [CrossRef]
- Li, S.-X.; Li, M.-F.; Bian, J.; Wu, X.-F.; Peng, F.; Ma, M.-G. Preparation of organic acid lignin submicrometer particle as a natural broad-spectrum photo-protection agent. Int. J. Biol. Macromol. 2019, 132, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Agustin, M.B.; Nematollahi, N.; Bhattarai, M.; Oliaei, E.; Lehtonen, M.; Rojas, O.J.; Mikkonen, K.S. Lignin nanoparticles as co-stabilizers and modifiers of nanocellulose-based Pickering emulsions and foams. Cellulose 2023, 30, 8955–8971. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Hou, S.; Huo, X.; Li, H.; Shi, H.; Wang, X.; Liu, C.; Guo, Y. Two-Pronged Approach: Synergistic Tuning of the Surface and Carbon Core to Achieve Yellow Emission in Lignin-Based Carbon Dots. ACS Appl. Mater. Interfaces 2023, 15, 42823–42835. [Google Scholar] [CrossRef] [PubMed]
- Shomali, Z.; Fatehi, P. Fatehi and Engineering. Carboxyalkylated Lignin Nanoparticles with Enhanced Functionality for Oil–Water Pickering Emulsion Systems. ACS Sustain. Chem. Eng. 2022, 10, 16563–16577. [Google Scholar] [CrossRef]
- Agustin, M.B.; Penttilä, P.A.; Lahtinen, M.; Mikkonen, K.S. Rapid and Direct Preparation of Lignin Nanoparticles from Alkaline Pulping Liquor by Mild Ultrasonication. ACS Sustain. Chem. Eng. 2019, 7, 19925–19934. [Google Scholar] [CrossRef]
- Xu, J.; Zhou, H.; Zheng, Y.; Li, C.; Dai, L.; Xu, C.; Si, C. A rapid and reversible pH control process for the formation and dissociation of lignin nanoparticles. ChemSusChem 2022, 15, e202200449. [Google Scholar] [CrossRef]
- Feng, Y.; Yu, J.; Sun, D.; Ren, W.; Shao, C.; Sun, R. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem. Eng. J. 2022, 433, 133202. [Google Scholar] [CrossRef]
- Morena, A.G.; Bassegoda, A.; Hoyo, J.; Tzanov, T. Hybrid Tellurium–Lignin Nanoparticles with Enhanced Antibacterial Properties. ACS Appl. Mater. Interfaces 2021, 13, 14885–14893. [Google Scholar] [CrossRef]
- Moreno, A.; Pylypchuk, I.; Okahisa, Y.; Sipponen, M.H. Urushi as a Green Component for Thermally Curable Colloidal Lignin Particles and Hydrophobic Coatings. ACS Macro Lett. 2023, 12, 759–766. [Google Scholar] [CrossRef]
- Gao, H.; Sun, M.; Duan, Y.; Cai, Y.; Dai, H.; Xu, T. Controllable synthesis of lignin nanoparticles with antibacterial activity and analysis of its antibacterial mechanism. Int. J. Biol. Macromol. 2023, 246, 125596. [Google Scholar] [CrossRef]
- Manisekaran, A.; Grysan, P.; Duez, B.; Schmidt, D.F.; Lenoble, D.; Thomann, J.-S. Solvents drive self-assembly mechanisms and inherent properties of Kraft lignin nanoparticles (<50 nm). J. Colloid Interface Sci. 2022, 626, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Liao, Y.; Jiang, Z.; Sun, Q.; Guo, X.; Zhang, W.; Hu, C.; Luque, R.; Shi, B.; Sels, B.F. Solvent effect on the production of spherical lignin nanoparticles. Green Chem. 2023, 25, 993–1003. [Google Scholar] [CrossRef]
- Dai, L.; Liu, R.; Hu, L.-Q.; Zou, Z.-F.; Si, C.-L. Lignin Nanoparticle as a Novel Green Carrier for the Efficient Delivery of Resveratrol. ACS Sustain. Chem. Eng. 2017, 5, 8241–8249. [Google Scholar] [CrossRef]
- Liu, X.; Xie, M.; Hu, Y.; Li, S.; Nie, S.; Zhang, A.; Wu, H.; Li, C.; Xiao, Z.; Hu, C. Facile preparation of lignin nanoparticles from waste Camellia oleifera shell: The solvent effect on the structural characteristic of lignin nanoparticles. Ind. Crop. Prod. 2022, 183, 114943. [Google Scholar] [CrossRef]
- Yu, M.; Xin, H.; He, D.; Zhu, C.; Li, Q.; Wang, X.; Zhou, J. Electrospray lignin nanoparticles as Pickering emulsions stabilizers with antioxidant activity, UV barrier properties and biological safety. Int. J. Biol. Macromol. 2023, 238, 123938. [Google Scholar] [CrossRef]
- Li, S.; Willoughby, J.A.; Rojas, O.J. Oil-in-Water Emulsions Stabilized by Carboxymethylated Lignins: Properties and Energy Prospects. ChemSusChem 2016, 9, 2460–2469. [Google Scholar] [CrossRef]
- Meng, Q.; Xue, Z.; Chen, S.; Wu, M.; Lu, P. Smart antimicrobial Pickering emulsion stabilized by pH-responsive cellulose-based nanoparticles. Int. J. Biol. Macromol. 2023, 233, 123516. [Google Scholar] [CrossRef]
- Jo, M.; Ban, C.; Goh, K.K.; Choi, Y.J. Influence of chitosan-coating on the stability and digestion of emulsions stabilized by waxy maize starch crystals. Food Hydrocoll. 2019, 94, 603–612. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, S.; Li, H.; Ma, J.; Wang, X.; Shi, H.; Wang, Z.; Zhang, F.; Niu, M.; Guo, Y. One-pot preparation of amphoteric cellulose polymers for simultaneous recovery of ammonium and dihydrogen phosphate from wastewater and reutilizing as slow-release fertilizer. Eur. Polym. J. 2022, 171, 111223. [Google Scholar] [CrossRef]
- Sipponen, M.H.; Smyth, M.; Leskinen, T.; Johansson, L.-S.; Österberg, M. All-lignin approach to prepare cationic colloidal lignin particles: Stabilization of durable Pickering emulsions. Green Chem. 2017, 19, 5831–5840. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, S.; Qiu, X.; Luo, Y.; Lou, H.; Huang, J. Preparation of Lignin/Sodium Dodecyl Sulfate Composite Nanoparticles and Their Application in Pickering Emulsion Template-Based Microencapsulation. J. Agric. Food Chem. 2017, 65, 11011–11019. [Google Scholar] [CrossRef] [PubMed]
- Kelly, V. β-alanine: Performance Effects, Usage and Side Effects; BMJ Group: London, UK, 2017. [Google Scholar]
- Chen, L.; Shi, Y.; Gao, B.; Zhao, Y.; Jiang, Y.; Zha, Z.; Xue, W.; Gong, L. Gong and Engineering. Lignin nanoparticles: Green synthesis in a γ-valerolactone/water binary solvent and application to enhance antimicrobial activity of essential oils. ACS Sustain. Chem. Eng. 2019, 8, 714–722. [Google Scholar] [CrossRef]
- Noronha, C.; Otsuka, I.; Bouilhac, C.; Rochas, C.; Barreto, P.; Borsali, R. Self-assembly of maltoheptaose-b-PMMA block copolymer systems: 10 nm Resolution in thin film and bulk states. Carbohydr. Polym. 2017, 170, 15–22. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Kang, Y.; Zhang, W.; Yang, J.; Li, H.; Niu, M.; Guo, Y.; Wang, Z. Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion. Polymers 2023, 15, 4643. https://doi.org/10.3390/polym15244643
Wang L, Kang Y, Zhang W, Yang J, Li H, Niu M, Guo Y, Wang Z. Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion. Polymers. 2023; 15(24):4643. https://doi.org/10.3390/polym15244643
Chicago/Turabian StyleWang, Lina, Yue Kang, Weilu Zhang, Jiahao Yang, Haiming Li, Meihong Niu, Yanzhu Guo, and Zhiwei Wang. 2023. "Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion" Polymers 15, no. 24: 4643. https://doi.org/10.3390/polym15244643
APA StyleWang, L., Kang, Y., Zhang, W., Yang, J., Li, H., Niu, M., Guo, Y., & Wang, Z. (2023). Preparation of Lignin-Based Nanoparticles with Excellent Acidic Tolerance as Stabilizer for Pickering Emulsion. Polymers, 15(24), 4643. https://doi.org/10.3390/polym15244643