Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Recycled PET Supports Preparation and Evaluation
2.2.1. Synthesis Procedure
2.2.2. Water Uptake Capacity of PET-Based Substrates
2.2.3. PET-Based Substrate Surface Morphology
2.3. Collagen Artificial Contamination of PET-Composite Pellets
2.3.1. ATR-IR Spectra before and after Collagen Deposition
2.3.2. Contact Angle Measurements
3. Results and Discussions
3.1. Composite Materials Based on Recycled PET and Their Properties
- -
- composite materials containing Al or Fe nano-powders;
- -
- composite materials containing PP or HDPE components;
- -
- composite materials containing PP or HDPE components and Al or Fe nano-powders.
3.2. Surface Potential of Recycled PET Composite Supports on the Collagen Contamination Level
3.3. FTIR-ATR Analysis
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koshti, R.; Mehta, L.B.; Samarth, N. Biological Recycling of Polyethylene Terephthalate: A Mini-Review. J. Polym. Environ. 2018, 26, 3520–3529. [Google Scholar] [CrossRef]
- Tiseo, I. Global Plastic Market Size Value 2021–2030. 2022. Available online: https://www.statista.com/statistics/1060583/global-market-value-of-plastic/ (accessed on 10 December 2022).
- Gebre, S.H.; Sendeku, M.G.; Bahri, M. Recent Trends in the Pyrolysis of Non-Degradable Waste Plastics. Chemistryopen 2021, 10, 1202–1226. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Bedi, R.; Kaith, B.S. Composite materials based on recycled polyethylene terephthalate and their properties–A comprehensive review. Compos. Part B Eng. 2021, 219, 108928. [Google Scholar] [CrossRef]
- Saddem, M.; Koubaa, A.; Riedl, B. Properties of High-Density Polyethylene-Polypropylene Wood Composites. In Biocomposites; Kumar, B., Ed.; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Rabbi, M.S.; Islam, T.; Islam, G.M.S. Injection-molded natural fiber-reinforced polymer composites—A review. Int. J. Mech. Mater. Eng. 2021, 16, 15. [Google Scholar] [CrossRef]
- Lin, T.A.; Lin, J.H.; Bao, L. Polypropylene/thermoplastic polyurethane blends: Mechanical characterizations, recyclability and sustainable development of thermoplastic materials. J. Mater. Res. Technol. 2020, 9, 5304–5312. [Google Scholar] [CrossRef]
- Schneiderman, D.K.; Hillmyer, M.A. 50th Anniversary Perspective: There Is a Great Future in Sustainable Polymers. Macromolecules 2017, 50, 3733–3749. [Google Scholar] [CrossRef]
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [PubMed]
- Grigore, M.E. Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling 2017, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Awaja, F.; Pavel, D. Recycling of PET. Eur. Polym. J. 2005, 41, 1453–1477. [Google Scholar] [CrossRef]
- Maurya, A.; Bhattacharya, A.; Khare, S.K. Enzymatic Remediation of Polyethylene Terephthalate (PET)-Based Polymers for Effective Management of Plastic Wastes: An Overview. Front. Bioeng. Biotechnol. 2020, 8, 602325. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Christiansen, J.D.; Daugaard, A.E.; Astrup, T.F. Closing the loop for PET, PE and PP waste from households: Influence of material properties and product design for plastic recycling. Waste Manag. 2019, 96, 75–85. [Google Scholar] [CrossRef] [PubMed]
- Ricard-Blum, S. The Collagen Family. Cold Spring Harb. Perspect. Biol. 2011, 3, a004978. [Google Scholar] [CrossRef]
- Dodi, G.; Popescu, D.; Cojocaru, F.D.; Aradoaei, M.; Ciobanu, R.C.; Mihai, C.T. Use of Fourier-Transform Infrared Spectroscopy for DNA Identification on Recycled PET Composite Substrate. Appl. Sci. 2022, 12, 4371. [Google Scholar] [CrossRef]
- ISO—International Organization for Standardization. Available online: https://www.iso.org/standard/55483.html (accessed on 11 March 2022).
- Anis, A.; Elnour, A.Y.; Alam, M.A.; Al-Zahrani, S.M.; AlFayez, F.; Bashir, Z. Aluminum-Filled Amorphous-PET, a Composite Showing Simultaneous Increase in Modulus and Impact Resistance. Polymers 2020, 12, 2038. [Google Scholar] [CrossRef]
- Taşdemır, M.; Gülsoy, H. Mechanical Properties of Polymers Filled with Iron Powder. Int. J. Polym. Mater. Polym. Biomater. 2008, 57, 258–265. [Google Scholar] [CrossRef]
- Gomiero, A.; Strafella, P.; Fabi, G. From Macroplastic to Microplastic Litter: Occurrence, Composition, Source Identification and Interaction with Aquatic Organisms. Experiences from the Adriatic Sea. In Plastics in the Environment; Gomiero, A., Ed.; IntechOpen: London, UK, 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Rahman, K.S.; Islam, M.N.; Rahman, M.M.; Hannan, M.O.; Dungani, R.; Khalil, H.A. Flat-pressed wood plastic composites from sawdust and recycled polyethylene terephthalate (PET): Physical and mechanical properties. SpringerPlus 2013, 2, 629 . [Google Scholar] [CrossRef]
- Choi, H.J.; Kim, M.S.; Ahn, D.; Yeo, S.Y.; Lee, S. Electrical percolation threshold of carbon black in a polymer matrix and its application to antistatic fibre. Sci. Rep. 2019, 9, 6338. [Google Scholar] [CrossRef] [Green Version]
- Ziąbka, M.; Dziadek, M. Thermoplastic Polymers with Nanosilver Addition-Microstructural, Surface and Mechanical Evaluation during a 36-Month Deionized Water Incubation Period. Materials 2021, 14, 361. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Liu, P.; Wang, J.; Bao, X.; Chu, H. Direct Numerical Simulation of Capillary Rise in Microtubes with Different Cross-Sections. Acta Phys. Pol. A 2019, 135, 532–538. [Google Scholar] [CrossRef]
- Arahman, N.; Fahrina, A.; Amalia, S.; Sunarya, R.; Mulyuti, S. Effect of PVP on the characteristic of modified membranes made from waste PET bottles for humic acid removal. F1000Research 2017, 6, 668. [Google Scholar] [CrossRef] [PubMed]
- Walton, R.S.; Brand, D.D.; Czernuszka, J.T. Influence of telopeptides, fibrils and crosslinking on physicochemical properties of Type I collagen films. J. Mater. Sci. Mater. Med. 2009, 21, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Romero-Castillo, I.; López-Ruiz, E.; Fernández-Sánchez, J.F.; Marchal, J.A.; Gómez-Morales, J. Self-Assembled Type I Collagen-Apatite Fibers with Varying Mineralization Extent and Luminescent Terbium Promote Osteogenic Differentiation of Mesenchymal Stem Cells. Macromol. Biosci. 2020, 21, e2000319. [Google Scholar] [CrossRef] [PubMed]
- González-Gómez, M.A.; Belderbos, S.; Yañez-Vilar, S.; Piñeiro, Y.; Cleeren, F.; Bormans, G.; Deroose, C.M.; Gsell, W.; Himmelreich, U.; Rivas, J. Development of Superparamagnetic Nanoparticles Coated with Polyacrylic Acid and Aluminum Hydroxide as an Efficient Contrast Agent for Multimodal Imaging. Nanomaterials 2019, 9, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample Codification | Recycled PET (%) | PP (%) | HDPE (%) | Al Nano-Powder (%) | Fe Nano-Powder (%) | HD (g/cm3) |
---|---|---|---|---|---|---|
M1 | 100 | 0 | 0 | 0 | 0 | 1.318 ± 0.0004 |
M2 | 95 | 5 | 1.347 ± 0.0009 | |||
M3 | 92 | 8 | 1.382 ± 0.0011 | |||
M4 | 95 | 0 | 5 | 1.317 ± 0.0018 | ||
M5 | 92 | 8 | 1.381 ± 0.0004 | |||
M6 | 70 | 30 | 0 | 1.186 ± 0.0016 | ||
M7 | 66.5 | 28.5 | 5 | 1.395 ± 0.2833 | ||
M8 | 64.5 | 27.5 | 8 | 1.207 ± 0.0013 | ||
M9 | 66.5 | 28.5 | 0 | 5 | 1.306 ± 0.0000 | |
M10 | 64.5 | 27.5 | 8 | 1.827 ± 0.6088 | ||
M11 | 70 | 0 | 30 | 0 | 1.180 ± 0.0004 | |
M12 | 66.6 | 28.5 | 5 | 1.210 ± 0.0000 | ||
M13 | 64.5 | 27.5 | 8 | 1.219 ± 0.0004 | ||
M14 | 66.5 | 28.5 | 0 | 5 | 1.228 ± 0.0004 | |
M15 | 64.5 | 27.5 | 8 | 1.318 ± 0.0004 |
Sample Codification | Temperatures on Heating Zones (°C) | ||||
---|---|---|---|---|---|
M1 | 300 | 295 | 290 | 285 | 280 |
M2–M3 | 260 | 255 | 250 | 245 | 240 |
M4–M5 | 270 | 265 | 260 | 255 | 250 |
M6–M10 | 260 | 255 | 250 | 245 | 240 |
M11 | |||||
M12–M15 | 250 | 245 | 240 | 235 | 230 |
Sample Codification | Q7, % | Q17, % | Q21, % | Q25, % | Q50, % |
---|---|---|---|---|---|
M1 | 0.22 | 0.32 | 0.43 | 0.58 | 0.65 |
M2 | 0.32 | 0.54 | 0.76 | 0.65 | 0.68 |
M3 | 0.38 | 0.57 | 0.54 | 0.75 | 0.78 |
M4 | 0.24 | 0.48 | 0.61 | 0.73 | 0.73 |
M5 | 0.31 | 0.52 | 0.72 | 0.72 | 0.72 |
M6 | 0.24 | 0.59 | 1.06 | 1.42 | 1.53 |
M7 | 0.39 | 1.04 | 1.68 | 2.07 | 2.07 |
M8 | 0.74 | 1.89 | 2.03 | 2.16 | 2.30 |
M9 | 0.52 | 1.42 | 1.94 | 2.10 | 2.22 |
M10 | 0.69 | 0.69 | 1.15 | 1.61 | 1.72 |
M11 | 0.25 | 0.88 | 1.01 | 1.01 | 1.01 |
M12 | 0.41 | 2.04 | 2.99 | 3.66 | 3.80 |
M13 | 0.50 | 0.74 | 0.99 | 1.12 | 1.24 |
M14 | 3.61 | 4.48 | 4.61 | 6.10 | 6.10 |
M15 | 1.25 | 1.25 | 1.25 | 1.25 | 1.25 |
Sample Codification | Contact Angle, ° ± SD | |
---|---|---|
T0 | T50 | |
M1 | 95 ± 9 | 97.5 ± 7.7 |
M2 | 99.9 ± 12.6 | 114 ± 7.1 |
M3 | 96.4 ± 5.5 | 109.3 ±0.42 |
M4 | 97.5 ± 3.3 | 104.5 ± 6.3 |
M5 | 94.3 ± 6.6 | 102 ± 5.6 |
M6 | 114 ± 0.1 | 93.5 ± 3.5 |
M7 | 103.9 ± 3.1 | 100.5 ± 3.5 |
M8 | 108.3 ± 0.9 | 107 ± 15.5 |
M9 | 105.5 ± 2.3 | 97.5 ± 2.12 |
M10 | 107.4 ± 14.2 | 89.5 ± 0.7 |
M11 | 114.9 ± 8.6 | 106 ± 2.7 |
M12 | 102.9 ± 1.9 | 109 ± 5.6 |
M13 | 118.1 ± 4.8 | 107.5 ± 0.7 |
M14 | 103. 7 ± 3.7 | 116 ± 11.3 |
M15 | 101.1 ± 6.3 | 106.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epure, E.-L.; Cojocaru, F.D.; Aradoaei, M.; Ciobanu, R.C.; Dodi, G. Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level. Polymers 2023, 15, 776. https://doi.org/10.3390/polym15030776
Epure E-L, Cojocaru FD, Aradoaei M, Ciobanu RC, Dodi G. Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level. Polymers. 2023; 15(3):776. https://doi.org/10.3390/polym15030776
Chicago/Turabian StyleEpure, Elena-Luiza, Florina Daniela Cojocaru, Mihaela Aradoaei, Romeo Cristian Ciobanu, and Gianina Dodi. 2023. "Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level" Polymers 15, no. 3: 776. https://doi.org/10.3390/polym15030776
APA StyleEpure, E.-L., Cojocaru, F. D., Aradoaei, M., Ciobanu, R. C., & Dodi, G. (2023). Exploring the Surface Potential of Recycled Polyethylene Terephthalate Composite Supports on the Collagen Contamination Level. Polymers, 15(3), 776. https://doi.org/10.3390/polym15030776